Table 3 Different ML classifiers and their prediction parameters for the raw impedance data for six bacteria culture.

From: Synergistic detection of E. coli using ultrathin film of functionalized graphene with impedance spectroscopy and machine learning

Classifier

Bacteria type

Precision

Recall

F1-score

Classification Accuracy

Random Forest

B.C.

0.44

0.47

0.45

71%

S.A.

0.92

0.91

0.91

P.F.

0.59

0.54

0.57

E. coli

1

1

1

L.P.

0.84

0.78

0.81

B.S.

0.51

0.57

0.53

Support Vector Machine

B.C.

0.06

0.01

0.01

20%

S.A.

0

0

0

P.F.

0

0

0

E. coli

0.86

0.29

0.43

L.P.

0.15

0.08

0.1

B.S.

0.17

0.9

0.28

K Nearest Neighbours

B.C.

0.19

0.37

0.25

35%

S.A.

0.43

0.42

0.42

P.F.

0.24

0.23

0.24

E. coli

0.95

0.62

0.75

L.P.

0.41

0.21

0.27

B.S.

0.29

0.27

0.28

Decision Tree

B.C.

0.55

0.56

0.55

77%

S.A.

0.92

0.91

0.91

P.F.

0.68

0.65

0.66

E. coli

1

1

1

L.P.

0.85

0.81

0.83

B.S.

0.64

0.69

0.66

Gradient Boost Accuracy

B.C.

0.28

0.26

0.27

67%

S.A.

0.43

0.13

0.2

P.F.

0.31

0.28

0.29

E. coli

1

0.49

0.66

L.P.

0.23

0.42

0.29

B.S.

0.3

0.46

0.36

Bagging Classifier

B.C.

0.69

0.7

0.69

83%

S.A.

0.94

0.95

0.94

P.F.

0.73

0.73

0.73

E. coli

1

1

1

L.P.

0.93

0.94

0.93

B.S.

0.71

0.72

0.72

Gaussian Naive Bayes

B.C.

0.52

0.18

0.27

26%

S.A.

0.19

0.68

0.3

P.F.

0.08

0.01

0.02

E. coli

0.93

0.25

0.4

L.P.

0.27

0.34

0.3

B.S.

0.21

0.06

0.1

Multilayer Perceptron Neural Network

B.C.

0.42

0.26

0.32

34%

S.A.

0.27

0.58

0.37

P.F.

0.5

0.09

0.15

E. coli

0.91

0.37

0.53

L.P.

0.36

0.32

0.34

B.S.

0.25

0.46

0.32