Table 2 Summary of key equations and their purpose.
Number | Key equation | Purpose |
---|---|---|
Equation (10) | \(\textbf{H}_t=tanh((1-\textbf{U}_r)\odot \textbf{H}_{t-1}+\textbf{U}_r\odot \textbf{I}_r)\odot \textbf{0}_r\) | Filter key information, suppress redundancy |
Equation (11) | \(\textbf{R}_t=tanh((1-\textbf{U}_c)\odot \textbf{R}_{t-1}+\textbf{U}_c\odot \textbf{I}_c)\odot \textbf{O}_c\) | |
Equation (16) | \(\textbf{H}_t^{final}=LayerNorm\left( \beta \cdot \textbf{H}_t^{att}+(1-\beta )\cdot \textbf{H}_t\right)\) | Capturing long-distance dependencies |
Equation (17) | \(\parallel \delta \parallel _p=Normalize(\textbf{W}_4\cdot ReLU(\textbf{W}_3\cdot \textbf{p}_\textrm{rand}+\tilde{\textbf{b}_1})+\tilde{\textbf{b}_2})\) | Generate adversarial noise |
Equation (18) | \(v=sigmoid(\textbf{W}_d\cdot {ReLU}(\textbf{W}_c\cdot \parallel \delta \parallel _p+\tilde{\textbf{b}_c})+\tilde{\textbf{b}_d) }\) | Screening for meaningful adversarial noise |
Equation (21) | \(\textbf{H}_t^{noise}=\textbf{H}_t+\epsilon \varvec{\cdot }{(v\cdot \parallel \delta \parallel _p+(1-v)\cdot \textbf{p}_{\textrm{rand}})}\) | Adding adversarial noise |
Equation (22) | \(\textbf{R}_t^{noise}=\textbf{R}_t+\epsilon \varvec{\cdot }{(v\cdot \parallel \delta \parallel _p+(1-v)\cdot \textbf{p}_{\textrm{rand}})}\) | |
Equation (27) | \(\mathscr {L}_{intra-H}=-\sum _{i=1}^{|\mathscr {N}_t|}\log \frac{S_{intra-pos,i}^H}{\sum _{k=1}^{|\mathscr {N}_t|}S_{intra-neg,k}^H}\) | Capturing short-term dynamic features |
Equation (30) | \(\mathscr {L}_{inter-H}=-\sum _{i=1}^{|\mathscr {N}_t|}\log \frac{S_{inter-pos,i}^H}{\sum _{k=1}^{|\mathscr {N}_t|}S_{inter-neg,k}^H}\) | Capturing global temporal relationships |
Equation (32) | \(\textbf{P}_{score}^\mathscr {N}=\sigma (\textbf{H}^{mdgu}\cdot {ConvTransE}(\textbf{n}_{s,t},\textbf{r}_t+\textbf{H}_t^{final}\cdot {ConvTransE}(\textbf{n}_{s,t},\textbf{r}_t))\) | Calculating entity prediction scores |