Table 5 Ablation experiment results (percentage) of the DNCL model. ’w/o DG’ represents the DNCL model without the dual-gate mechanism, ‘w/o AN’ represents the DNCL model without the adversarial noise modeling mechanism, ’w/o intra’ represents the DNCL model without use the intra-layer contrastive learning, ’w/o inter’ represents the DNCL model without use inter-layer contrastive learning and ‘w/o CL’ represents the DNCL model without use the multi-layer embedding contrastive learning strategy.

From: A contrastive learning framework with dual gates and noise awareness for temporal knowledge graph reasoning

Model

ICEWS14

ICEWS05-15

ICEWS18

GDELT

MRR

H@1

H@3

H@10

MRR

H@1

H@3

H@10

MRR

H@1

H@3

H@10

MRR

H@1

H@3

H@10

DNCL

51.18

40.37

56.86

71.89

59.02

48.06

65.50

80.88

37.43

25.83

42.70

60.01

23.59

14.78

25.40

42.39

w/o DG

50.05

38.87

56.18

71.70

58.70

47.62

65.34

80.04

36.45

24.88

41.74

58.89

21.69

12.49

23.53

40.34

w/o AN

50.27

38.90

56.30

71.67

58.82

47.78

65.46

79.91

37.03

25.69

42.10

59.16

21.11

11.97

22.79

39.62

w/o intra

50.19

38.81

56.18

72.24

58.70

47.92

65.13

79.51

37.17

25.78

42.59

59.86

23.09

13.98

25.06

42.17

w/o inter

50.40

39.10

56.71

72.11

58.65

47.89

65.19

79.84

36.83

25.33

41.89

59.42

23.35

14.12

25.18

42.33

w/o CL

47.50

35.79

53.82

70.72

58.41

47.37

64.99

79.72

36.77

25.10

41.93

59.63

22.89

13.78

24.55

41.53

  1. The best result is highlighted in black font and the second best result is underlined.
  2. The model results with the best performance under each evaluation indicator.