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Reverse Vaccinology (RV) has revolutionized vaccine discovery, utilizing bioinformatics to surpass 
traditional methods in identifying genes and proteins. By analyzing pathogen genomic data, RV 
pinpoints proteins with key traits such as immunogenicity, surface localization, and conservation 
across strains. Despite its advantages, current RV tools face challenges like prediction accuracy, 
computational demands, and accessibility. To address these challenges, we introduce B-vac, an 
executable pipeline designed to streamline bacterial vaccine design. B-vac features a user-friendly 
interface and robust algorithms for high-throughput proteomics data analysis, covering modules 
like Localization, Non-host Homolog, Virulence Factor, and Epitope Mapping. It operates offline, 
enhancing accessibility for researchers with limited computational resources. B-vac is equipped with 
epitope libraries, bacterial proteomes and virulence factor database which helps the program process 
the protein sequences locally and feeds data back to users with the ability to set variables and toggles 
for cut-off and filter values. The B-vac pipeline uses a string-based matching approach to match 
proteomes supplied by users with the pipeline’s curated database. This approach aligns and compares 
pathogen protein sequences by string similarity and enables the researchers to easily identify motifs 
important for immunogenic function. Evaluation of the pipeline by employing the Helicobacter pylori 
proteome revealed B-vac’s effectiveness in identifying vaccine candidates. B-vac offers a user-friendly, 
standalone solution for bacterial vaccine development, eliminating the need for external libraries and 
enabling offline usability, addressing key gaps in convenience and accessibility compared to existing 
RV tools. B-vac can be downloaded from: https://mgbio.tech/tools/.

Keywords  B-vac, Bacteria, Reverse vaccinology, Bacterial vaccines, Antimicrobial resistance, Alternative 
therapies

Bacterial infections and antibiotic resistance have now become one of the biggest global health challenges of the 
21st century. The Centers for Disease Control and Prevention (CDC) reports that over two million people in the 
United States are affected by antibiotic-resistant infections annually, resulting in approximately 23,000 deaths. 
This alarming trend is compounded by the overuse and misuse of antibiotics, resulting to their ineffectiveness 
and thereby fueling multidrug resistance among bacterial pathogens1,2. Bacteria have evolved various 
mechanisms to resist antibiotics, such as genetic mutations, acquisition of resistance genes, and alterations 
in gene expression3,4. These mechanisms continuously evolve, posing critical challenges to existing treatment 
strategies5. Antimicrobial Resistance (AMR) has been identified as a high-priority public health concern by the 
World Health Organization since it causes several impacts on human health and the economy such as longer 
hospital stays and higher healthcare costs. Addressing Combating AMR requires cooperation across borders to 
rationalise antibiotic consumption, create new approaches to fighting infections, and promote equal access to 
potent medications6,7.

Vaccines are emerging as promising alternatives to antibiotics in the fight against bacterial infections. 
They reduce the need for antibiotics by preventing infections, and consequently slow down the development 
of antibiotic resistance8,9. Vaccines targeting bacterial pathogens are particularly vital in regions with limited 
healthcare resources, as they are designed to be affordable, stable without refrigeration, and administrable orally 
or intranasally. These features make them suitable for widespread global use10. Moreover, vaccines can prevent 
infections caused by multidrug-resistant (MDR) bacteria, which are hard to treat with existing antibiotics11,12. 
While vaccines for extracellular bacteria like tetanus and diphtheria have been successful, developing vaccines 
against intracellular bacteria remains a complex task requiring advanced technologies9. Innovative vaccine 
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technologies, including reverse vaccinology and novel adjuvants are being explored to enhance vaccine efficacy 
against multidrug-resistant bacteria8.

Reverse vaccinology (RV) can be described as revolutionary approach to vaccine development, that uses 
pathogen’s genomic insights to identify potential vaccine candidates (PVCs) quickly and precisely as compared 
to traditional vaccinology methods. The approach that was initially introduced in the post-genomic era, started 
by sequencing the pathogen’s genome, which allowed researchers to analyze its whole antigenic repertoire. Unlike 
conventional methods which often required cultivation of the pathogen in vitro, RV relies on in silico methods 
for the analysis of pathogen’s genomic data. These tools look for genes that code for proteins with favorable 
characteristics for a vaccine and includes immunogenicity, exposure on the surface and/or conservation among 
different pathogens. This approach greatly accelerated and reduced the costs of identifying vaccine targets, 
making the journey from identifying a pathogen to developing a vaccine much faster13,14.

Traditionally, vaccine development was based on principles pioneered by Louis Pasteur, who introduced key 
techniques such as isolating, inactivating, and injecting pathogens to induce protective immunity. This approach 
resulted in production of vaccines for diseases such as rabies, typhoid, diphtheria, tetanus among others using 
attenuated pathogens, or simply components of microbes that can trigger immune response15,16. As time went on, 
advancements in molecular biology and biotechnology brought new techniques including genetic engineering, 
purification of microbial elements, and the use of live vectors to express vaccine proteins17. These improvements 
made the production of vaccines much more accurate and safer, however the use of these methods was limited 
by the amount of empirical testing that was still required. The advent of genomic technologies brought about a 
new era in vaccine development known as reverse vaccinology. This method not only overcame the challenges 
associated with traditional methods but also allowed the development of vaccines for pathogens that were 
previously considered intractable18,19.

The first successful application of reverse vaccinology was in developing a vaccine against serogroup B 
Neisseria meningitidis (MenB), a significant cause of sepsis and meningitis20. The 4CMenB vaccine, includes 
three recombinant antigens (fHbp, NadA, and NHBA) combined with outer membrane vesicles. This 
multicomponent vaccine has shown effectiveness in enhancing immune response across various age groups21–23. 
The 4CMenB vaccine underwent extensive clinical trials to evaluate its safety and efficacy. It was approved in 
Europe in 2013 and included in the UK’s National Immunization Program in 2015, showing an effectiveness of 
83% against invasive MenB disease22,23. Research continues to refine MenB vaccines, exploring new antigens and 
formulations to enhance coverage and effectiveness. The use of reverse vaccinology remains a promising strategy 
for developing vaccines against other pathogens as well24–26.

Since then, several tools have been developed on principles of reverse vaccinology, each with unique features 
and methodologies. NERVE was designed to be user-friendly having integrated multiple algorithms for protein 
analysis. It ranks vaccine candidates and maintains comprehensive data for further analysis. NERVE is noted 
for its high recall of known protective antigens, making it efficient in identifying safe and experimentally viable 
candidates27. The authors of NERVE have since published an updated version, NERVE 2.0 ​(​​​h​t​t​p​s​:​/​/​n​e​r​v​e​-​b​i​o​.​o​r​g​
/​h​o​m​e​​​​​)​, which we have included in our benchmarking to evaluate its performance against other state-of-the-art 
tools28. Vaxign was the first web-based RV tool, and Vaxign2 enhances this with machine learning capabilities. 
Vaxign and Vaxign2 (https://violinet.org/vaxign2) offers comprehensive framework for vaccine design, including 
predictive and post-prediction analysis components29. Furthermore, known for its application in predicting 
vaccine candidates for various pathogens, VaxiJen (​h​t​t​p​s​:​​/​/​w​w​w​.​​d​d​g​-​p​h​​a​r​m​f​a​c​​.​n​e​t​/​​v​a​x​i​j​e​​n​/​V​a​x​i​​J​e​n​/​V​a​​x​i​J​e​n​.​h​t​
m​l) is widely used in RV30. It has been particularly applied to SARS-CoV-2, although experimental validation of 
its predictions is limited31. VacSol (https://sourceforge.net/projects/vacsol/) automates the prediction of vaccine 
candidates using a high-throughput approach. It efficiently screens bacterial proteomes and reduces false positives, 
making it a cost-effective tool for vaccine candidate identification32. Jenner-Predict focuses on host-pathogen 
interactions and pathogenesis, using functional domains to predict vaccine candidates. It has demonstrated 
better prediction accuracy compared to other tools, particularly in identifying non-cytosolic proteins involved 
in host-pathogen interactions33. Despite all of these pros, the above-mentioned current RV tools also face several 
technical and scientific limitations. Many RV tools, including VaxiJen and Jenner Predict, have low prediction 
accuracy, which limits their application in vaccine development. Only a small fraction of predicted candidates 
undergo experimental validation, which is crucial for confirming their potential as vaccines31,33,34. Some tools, 
such as NERVE, are designed to be user-friendly but still require significant expertise to install, run and interpret 
results effectively. This complexity can be a barrier for broader adoption27. Many tools focus on limited criteria, 
such as adhesin-likeliness, without considering other functional classes of proteins that may be involved in host-
pathogen interactions and pathogenesis33. Tools like VacSol aim to reduce computational costs and time, but 
the efficiency of these processes can still be improved32. Moreover, most of the current RV tools like NERVE, 
Vaxign, and VacSol integrate various open-source bioinformatics tools and algorithms for protein analysis for 
screening of pathogen proteomes to identify potential vaccine candidates. Despite their utility, these tools often 
require internet access, local installations, and heavy computational resources, making them less accessible for 
researchers without advanced computational expertise or infrastructure.

To address these limitations, we developed B-vac, an executable program that integrates a series of internally 
designed algorithms for protein sequence processing, comparison and vaccine target analysis. Unlike existing 
tools described earlier, B-vac is designed to improve prediction accuracy by employing a streamlined, specialized 
approach to vaccine targets prediction and analysis, reducing reliance on broad, less accurate criteria. It also 
prioritizes ease of use, requiring no internet connection, command-line execution, or advanced computational 
expertise. B-vac’s self-contained architecture utilizing Python in its core framework, and user-friendly interface 
make it accessible to a broader range of researchers, including those without extensive bioinformatics experience. 
By focusing on practical, efficient workflows and eliminating the need for external dependencies, B-vac facilitates 
the identification of potential vaccine candidates with greater reliability and accessibility.
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The predicted features in B-vac include protein subcellular localization, virulence factors, and epitope mapping 
among pathogen genomes, and sequence similarity to host (human) proteomes. Surface-exposed proteins, such 
as secreted proteins, fimbrial proteins, and outer membrane proteins, are crucial for vaccine development as 
they are accessible to the immune system. Studies have identified various surface proteins in pathogens like 
Streptococcus pneumoniae and Leptospira interrogans, which are promising vaccine targets due to their role in 
virulence and immune response elicitation35–37. In contrast, non-surface proteins are less suitable as they do not 
interact directly with host cells. Moreover, vaccine candidates should include virulence factors to elicit strong 
immune responses. Proteins that contribute to a pathogen’s virulence, such as adhesins, exoenzymes, and toxins, 
are essential for effective vaccines. These factors ensure a strong immune response, making them ideal candidates 
for vaccine development35,36,38. Additionally, effective vaccine targets should also avoid sequence similarity 
to host proteins to prevent autoimmunity. Identifying unique antigens that do not share homology with host 
proteins is critical to avoid autoimmunity. For instance, the Cp-P34 protein in Cryptosporidium is unique to the 
parasite and elicits immune responses, making it a potential vaccine candidate. These considerations are integral 
to the B-vac pipeline39. The overall architecture of B-vac pipeline is given in Fig. 1.

B-vac implementation
B-vac is written in Python v3.10.8, with its graphical user interface (GUI) developed using the Tkinter v8.6.12 
library, which is a standard Python library for creating simple and user-friendly desktop interfaces. To ensure 
compatibility and ease of use on Windows and Linux (Ubuntu) platforms, it is compiled using PyInstaller 
v6.10.0, a tool that packages Python applications into standalone executables, allowing them to run without 
requiring a separate Python installation. The pipeline integrates extensive pre-saved datasets critical for reverse 
vaccinology. These datasets include protein FASTA files for each bacterial strain, specifically containing secreted, 
outer membrane, and fimbrial proteins, downloaded from the LocTree3 ​(​​​h​t​t​p​:​/​/​w​w​w​.​r​o​s​t​l​a​b​.​o​r​g​/​s​e​r​v​i​c​e​s​/​l​o​c​
t​r​e​e​3​​​​​)​​​4​0​​​, for protein localization filtering, 916 CD4 + epitopes and 1659 CD8 + epitopes across multiple HLA 
alleles, stored in CSV format obtained from IEDB database v3 (accessed on March 13, 2025, ​h​t​t​p​s​:​/​/​w​w​w​.​i​e​d​b​.​o​
r​g​/​​​​​)​, and 27,502 virulence factors obtained from the Virulence Factors Database (https://www.mgc.ac.cn/VFs/) 
with their corresponding IDs and protein fasta sequences (accessed on September 12, 2022)41–43. Additionally, it 
includes 67,297 B-cell linear epitopes in FASTA format obtained from IEDB and the human reference proteome 
downloaded from Uniprot (accessed on October 5, 2022, https://www.uniprot.org/) for non-host homologs 
analysis41,43.

Fig. 1.  Overall architecture of B-vac pipeline.
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B-vac is optimized for local execution without internet dependency. Testing was performed on two systems; 
an Intel i5-8350U CPU (1.70 GHz base / 1.90 GHz max) quadcore processor with 8 GB RAM running Windows 
11, and an Intel i5-4570 CPU (3.20 GHz) quadcore processor with 4 GB RAM running Ubuntu 22.04.2 LTS. The 
pipeline supports batch processing of multiple protein sequences, with processing times averaging 20 min for 
100 proteins under default parameters. B-vac’s architecture utilizes pre-saved datasets to enable local, resource-
efficient processing of protein data. The GUI provides adjustable parameters (e.g., sequence identity thresholds, 
epitope lengths) and dynamically displays results, including filtered proteins, virulence factors, and mapped 
epitopes. By eliminating cloud dependencies and offering offline compatibility, B-vac streamlines strain-specific 
vaccine candidate identification while maintaining low memory overhead (< 1GB during runtime).

Graphical user interface of B-vac
The B-vac pipeline incorporates a user-friendly graphical user interface (GUI) optimized for rapid and 
effective vaccine target prediction and analysis, as illustrated in Fig.  2. This pipeline employs a string-based 
matching mechanism to compare the user’s provided proteome with a curated database. String-based matching 
mechanisms are fundamental in bioinformatics for aligning and comparing protein sequences based on their 
string similarity44,45. This approach is particularly helpful in recognizing conserved motifs or regions essential 
which might be important for protein function. Such statistically significant algorithms prioritize biologically 
relevant patterns, favoring conserved regions, and penalizing mismatches at key positions. This approach 
improves both the sensitivity and specificity of functional predictions of proteins44. Moreover, the user-defined 
identity percentage threshold in the pipeline acts as a filter, ensuring that only alignments with adequate 
sequence similarity are considered valid. This approach effectively balances sensitivity and specificity. These 
interconnected components synergistically contribute to a streamlined system of B-vac for precise and efficient 
vaccine candidates’ prediction, enabling researchers to focus on sequences that are most likely to provide useful 
immunogenic insights.

The user-friendly interface of B-vac enables users to upload proteome files in FASTA format (.faa or .fasta) 
for analysis. Users can customize their workflows by choosing from the available filters i.e. Localization, Non-
Host Homologs, Virulence Factors, and Epitope Mapping through a well-organized layout. Key parameters like 
reliability score, identity percentage, and epitope lengths can be fine-tuned to meet the different analysis needs. 
The system also has the ability to handle dynamic processing, which is quite useful in display of results based 
on the given sequences and matching in the database. For example, when the Localization filter is selected 
and parameters like a 70% identity percentage and a reliability score of 50 are defined, the system immediately 
generates a list of proteins in the database that meet these criteria and displays the count of these proteins on the 
interface. Subsequently the Non-Host Homologs and Virulence Factors filters further refine the query dataset, 
by excluding the proteins having homology to the host and pinpointing important virulence factors respectively. 
The Epitope Mapping filter then identifies B-cell and T-cell epitopes according to user-specified lengths and 

Fig. 2.  Snapshot of GUI of B-vac pipeline, when analysis is completed.
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identity percentages. Upon processing, the interface generates a summary which includes the lists of reliable 
proteins, predicted epitopes and the number of proteins filtered during each step of the process. The pipeline 
enables simultaneous and thorough analysis and is therefore suitable for high-throughput screening of vaccine 
candidates while minimizing manual intervention and errors.

Methods
B-vac is a comprehensive pipeline that integrates multiple internally developed algorithms with a clean graphical 
user interface with input fields and adjustable thresholds and filters for customizing analysis parameters to assist 
in RV.

B-vac algorithm for vaccine candidates filtering
The main input is a bacterial protein sequence, which is analyzed to filter and prioritize vaccine candidates. 
B-vac employs a custom string-based matching algorithm for sequence analysis, which calculates the percentage 
of matched residues between a submitted protein sequence and reference sequences from the dataset integrated 
in the software package. Sequences that meet or exceed the user-defined identity percentage threshold (e.g., 
70%) are retained as potential candidates. Key adjustable parameters include:

Localization
This feature evaluates protein localization, a critical step in vaccine design. Proteins localized to the surface 
or secreted extracellularly are preferred candidates as they are accessible to the host immune system46–48. 
Localization will filter secreted, outer membrane and fimbrium proteins.

•	 Select Bacteria Genus and Strain: Users can specify the genus and strain of interest, enabling strain-specific 
vaccine design.

•	 Reliability Score: The reliability score used in the localization filter is based on the LocTree3, which predicts 
protein subcellular localization with a reliability index (RI) ranging from 0 (low confidence) to 100 (high con-
fidence)40. B-vac incorporates these reliability scores to filter proteins, allowing users to set a threshold (e.g., 
70) to retain only high-confidence predictions. These adjustable thresholds allow users to set confidence levels 
for protein localization evaluation, providing flexibility in stringency based on the organism being analyzed 
or project goals. The thresholds are based on common practices in reverse vaccinology, but users can modify 
them to suit their specific needs.

 Non-host homologs
This section allows removal of proteins homologous to host proteins by setting thresholds for identity percentage 
and non-homology percentage, reducing the likelihood of autoimmune responses49–52. The threshold of 70% for 
non-host homology screening was chosen to balance sensitivity and specificity in identifying non-host proteins, 
but users can adjust this value to increase or decrease stringency based on their requirements.

Virulence factors
By incorporating virulence factors, the software identifies proteins essential for pathogen virulence, which are 
promising targets for subunit vaccine development53–56. Adjustable parameters include identity percentage to 
filter known virulence factors.

 Epitope mapping
The B-vac pipeline extracts out antigenic epitopes recognized by B-cells (antibody-producing) and T-cells 
(CD4 + helper and CD8 + cytotoxic T-cells) from the input proteins. These epitopes are crucial for eliciting 
a robust immune response. B-cell epitopes are essential for the production of antibodies, which neutralize 
pathogens and prevent infection57. T-cell epitopes, on the other hand, are vital for the activation of CD4 + helper 
T-cells and CD8 + cytotoxic T-cells, which play key roles in coordination of immune response and directly 
killing infected cells58. The identification of these epitopes ensures that the vaccine can stimulate both humoral 
and cellular immunity and provide comprehensive protection against the pathogen59. Adjustable fields include 
length and identity thresholds for predicted epitopes.

Output metrics also display in right-hand panel of the interface, including:

•	 Reliable Proteins: The number of candidate proteins that meet reliability criteria.
•	 Proteins and PVCs: Total proteins analyzed and final vaccine candidates.
•	 Epitope Predictions: Counts of epitopes mapped for B-cells, CD4+, and CD8 + T-cells.

Case study: Helicobacter pylori
To evaluate the functionality of the B-vac pipeline, the proteome of Helicobacter pylori, comprising 100 proteins, 
was downloaded from the NCBI database (https://www.ncbi.nlm.nih.gov/), and subsequently analyzed using 
the pipeline. The session initiated by browsing and uploading the proteome FASTA file (accepted formats .faa 
and .fasta), followed by saving the session in a user-defined directory to store the analysis results. The “Must 
Evaluate” option was checked to ensure all filters and methods; Localization, Non-Host Homologs, Virulence 
Factors, and Epitope Mapping, were applied without omission.

Within the Localization filter, parameters were adjusted to refine candidate proteins. The bacterial genus and 
species were selected, with the reliability score set to 50 and the identity percentage to 70. Upon applying these 
criteria, the right-hand panel of the interface displayed 192 reliable proteins from the pipeline’s dataset, which 
were subsequently matched against the query proteins. In the Non-Host Homologs filter, thresholds for identity 
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and non-homology percentages were set at 35% and 70%, respectively, to exclude proteins homologous to the 
host genome, minimizing the risk of autoimmunity. The Virulence Factors filter was applied with an identity 
percentage threshold of 70%, to ensure that only proteins essential to pathogen virulence were retained for 
further analysis. Finally, Epitope Mapping was configured to assess antigenic epitopes. For B-cell epitopes, all 
lengths were included, while for T-cell epitopes, all CD8 + and CD4 + lengths were considered, with an identity 
percentage threshold set to 50%.

Upon submission, B-vac processed the protein dataset through all selected filters. The right-hand panel 
displayed the number of proteins passing all criteria and the counts of predicted epitopes for B-cells, CD8+, and 
CD4 + T-cells, providing a comprehensive overview for the analysis.

Results
Findings of H. pylori case study
Protein localization filter
Using the selected identity percentage thresholds, the analysis filters out five proteins which were saved in faa 
FASTA file format, with metadata embedded within the FASTA identifiers. These proteins showed a high identity 
match, ranging from 97 to 98%. Among them, four were categorized as secreted, indicating their potential 
accessibility to the host immune system, while one was classified as an outer membrane protein, supporting its 
suitability as a vaccine candidate.

Non-host homology filter
Using the non-host homologs filter, the analysis extracted four proteins from the five proteins that passed the 
localization filter. These proteins were also saved in .faa FASTA file format, with metadata embedded within the 
FASTA identifiers. The selected proteins showed non-homology identity percentage ranging from 71 to 90%, 
indicating their reduced similarity to host proteins and minimizing the risk of autoimmunity.

Virulence factors filter
Applying the virulence factors filter, the analysis identified two virulence factors among the four proteins that 
passed the non-host homology filter. These proteins were also saved in .faa FASTA file format, with information 
embedded in the FASTA identifiers. The selected virulence factors exhibited high identity percentages of 
97% and 98%. Finally, two potential vaccine candidates (PVCs) with NCBI accession WP_000418838.1 and 
WP_000347746.1 were filtered out of the 100 proteins of Helicobacter pylori from the analysis. The detailed 
results of these analysis steps are given in Table 1.

Epitope mapping
Epitope analysis identified 434 total epitopes, with 17 B-cell epitopes on HLA-B07:02 with identity percentage 
ranging from 50 to 56% in one of the two PVCs WP_000418838.1, 36 CD4 + and 381 CD8 + T-cell epitopes with 
identity percentage ranging from 50 to 66% across the two potential vaccine candidates (PVCs). The detailed 
results of epitope analysis step are given in Supplementary Table S1a and S1b. The sequence fasta files of these 
results are given in Supplementary Files F1-F6.

Protein localization filter

Sr. no NCBI accession of protein Protein localization Identity percentage

1 WP_000243404.1 secreted 98%

2 WP_000261674.1 secreted 97%

3 WP_000347746.1 secreted 98%

4 WP_000395382.1 outer membrane 97%

5 WP_000418838.1 secreted 97%

Non-host homology filter

Sr. 
No NCBI accession of protein Non-homology Identity percentage

1 WP_000243404.1 Non-Homolog 80%

2 WP_000347746.1 Non-Homolog 90%

3 WP_000395382.1 Non-Homolog 71%

4 WP_000418838.1 Non-Homolog 82%

Virulence factors filter

Sr. no NCBI accession of protein Virulency Identity percentage

1 WP_000347746.1 Virulence 97%

2 WP_000418838.1 Virulence 98%

Table 1.  This table summarizes the results of the sequential filtering process applied to identify potential 
vaccine candidates. The filters include protein localization, Non-Host homology, and virulence factors steps, 
with corresponding NCBI accession IDs and identity percentages for each protein.
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Comparison of features and computational requirements
The comparative analysis of B-vac with other reverse vaccinology tools, including NERVE 2.0, Vaxign2, VaxiJen 
2.0, VacSol, and Jenner-Predict, highlights the unique strengths and limitations of each tool (Table 2). B-vac stands 
out for its low computational requirements, ease of use, and self-contained architecture, requiring no internet 
connection, command-line execution, or advanced computational expertise. It integrates comprehensive datasets 
for localization (secreted, outer membrane, and fimbrial proteins from LocTree3), non-host homologs (human 
reference proteome), virulence factors (27,502 entries from VFDB), and epitope mapping, enabling filtering and 
dynamic results display on GUI. In contrast, NERVE 2.0 and Vaxign2 rely on web-based platforms with active 
internet connections, while VacSol requires moderate computational resources for high throughput screening. 
VaxiJen 2.0 and Jenner-Predict lack explicit focus on key filters like virulence factors and epitope mapping, with 
the latter having inaccessible URL. Notably, NERVE 2.0 failed to process our dataset with default parameters, 
succeeding only after disabling the virulent and loop-razor filters, completing predictions in 5  min. B-vac 
demonstrated superior efficiency, processing 100 proteins in 20 min with default parameters, outperforming 
Vaxign2 (3–4 h approx.) and matching VacSol (10 min). These results underscore B-vac’s potential as a reliable, 
user-friendly, and efficient tool for high-throughput vaccine candidate identification, addressing key limitations 
of existing tools.

Feature/Tool B-vac NERVE 2.0 Vaxign2 VaxiJen 2.0 VacSol

Programming language Python Python PHP/HTML/SQL Perl Java

Computational requirements
Executable, no external 
dependencies, supported 
on windows and ubuntu 
OS)

Web-based Web-based Web-based Executable with prerequisite tools and 
languages

Prerequisites and dependencies
No internet, no command-
line, graphical user 
interface

Requires active 
internet connection

Requires active internet 
connection

Requires 
active 
internet 
connection

Installation and configurations of all 
prerequisite tools and environment set:
• PSORTb
• NCBI Blast+
• Perl
• Bioperl
• Pftools
• Hmmtop
• ABCPred
• ProPred-I
• ProPred
• Java

Localization
Method

Integrated pre-saved 
datasets (secreted, outer 
membrane, fimbrial 
proteins) from LocTree3.

Integrated PSORTb 
3.0 Integrated PSORTb 2.0

N/A
Integrated PSORTb 2.0

Parameters /Thresholds User-defined thresholds Threshold 7.5 User-defined 
localization User-defined localization

Non-host homologs Human reference 
proteome

Human and mouse 
reference proteomes

Human, pig and mouse 
reference proteomes N/A N/A

Virulence 
factors

Integrated databases VFDB (full dataset: 27502 
entries) N/A N/A N/A VFDB + MvirDB

Prediction modules N/A ML trained on VFDB 
subset (1,820 entries)

Adhesins prediction 
via SPAAN (default 
settings)

N/A N/A

Parameters/Threshold User-defined thresholds N/A N/A N/A User-defined thresholds

Epitope 
mapping

Method
Integrated 67,297 linear 
epitopes, 30,931 CD4 & 
30,650 CD8 epitopes from 
IEDB

Integrated 2060 
mouse Ligands and 
7473 human MHC 
linear epitopes from 
MHC Ligand module 
of IEDB.

MHC I and II 
prediction via Vaxitop 
through PSSM. Also 
map input proteins 
to IEDB T and B cell 
epitopes.

N/A

Integrated ProPred for MHC II, 
ProPred-I for MHC I and ABCPred 
programs for linear B cell epitopes 
prediction

Parameters /Thresholds User-defined lengths and 
identity percentages

User-defined 
lengths and identity 
percentages

Parameters are not user 
defined

User-defined lengths and identity 
percentages

Processing time (100 Proteins-default 
parameters)

20 min
(15–30 min depending 
upon computational power 
of system)

Failed processing 
our dataset with 
default parameters; 
predictions succeeded 
only after disabling 
the virulent and 
loop-razor filters, 
completing in 5 min

3–4 h approx.
(2–5 h depending 
upon computing server 
of tool and internet 
connection of user)

1 min
(30 s–2 min 
upon 
computing 
server of 
tool and 
internet 
connection 
of user)

10 min
(5–15 min depending upon 
computational power of system)

Table 2.  Comparative analysis of B-vac and current reverse vaccinology frameworks: features and 
computational efficiency analysis.
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Discussion
B-vac is a comprehensive software package for vaccine design of bacterial pathogens on principles of reverse 
vaccinology. B-vac integrates string-based matching algorithms to efficiently compare user-provided proteomic 
data against a manually curated database. This seamless pipeline enhances identification of immunogenic 
potential of proteins, offering a user-friendly platform for high-throughput vaccine target prediction. Our results 
indicate that B-vac can identify both known vaccine targets and potential novel candidates. However, additional 
validation across diverse datasets and experimental confirmations are required to evaluate its predictive accuracy 
and broader applicability. Possible directions for further development could include refining Bvac’s core 
algorithm to enhance the accuracy and efficiency of the matching and alignment processes. While deep learning 
and machine learning-based models offer potential improvements in performance, their integration would 
require careful consideration to maintain B-vac’s design principles of simplicity, offline usability, and minimal 
dependency on external resources. Algorithmic optimizations could also target existing filters i.e. Localization, 
Non-Host Homologs, Virulence Factors, and Epitope Mapping, to improve computational efficiency without 
compromising the tool’s lightweight architecture.

Beyond algorithmic refinements, the pipeline could be expanded to include new filters and criteria that 
support advanced reverse vaccinology workflows, such as prioritizing proteins based on immunogenicity 
scores, structural stability, or host-pathogen interaction networks. While B-vac currently focuses on providing 
customizable thresholds and filters to assist in reverse vaccinology, we acknowledge the importance of 
incorporating statistical significance metrics (e.g., P-values, confidence intervals, or ROC analysis) in future 
updates to further enhance the tool’s analytical capabilities. This approach would ensure that B-vac remains 
accessible and efficient for researchers without requiring complex hardware or external libraries. These 
enhancements would not only improve prediction reliability but also broaden the scope of vaccine target 
discovery.

Data availability
Data is provided within the manuscript or supplementary information files.
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