
Pharmacovigilance analysis of 
neurological adverse events 
associated with GLP-1 receptor 
agonists based on the FDA Adverse 
Event Reporting System
He Chen1, Sixing Liu2, Shuai Gao1, Hangyu Shi3, Yan Yan1, Yixing Xu1, Jiufei Fang1, 
Weiming Wang1, Huan Chen4 & Zhishun Liu1

We conducted a disproportionality analysis of the FDA Adverse Event Reporting System (FAERS) 
database (2005 Q2–2024 Q3) to evaluate neurological adverse events (NAEs) associated with six 
glucagon-like peptide-1 receptor agonists (GLP-1 RAs): exenatide, liraglutide, lixisenatide, dulaglutide, 
semaglutide, and tirzepatide. Among 28,953 NAE reports associated with GLP-1 RAs, 19 distinct NAE 
signals were identified using reporting odds ratios (RORs), including dizziness, tremor, dysgeusia, 
lethargy, taste disorder, presyncope, parosmia, allodynia, and hypoglycemic unconsciousness, etc. 
Time-to-onset analysis revealed a median latency of 32 days (IQR 7–122) for GLP-1 RA-related NAEs, 
with 45.28% occurring within 30 days of treatment initiation. Sensitivity analyses using proportional 
reporting ratios (PRRs), information components (ICs), and empirical Bayes geometric means (EBGMs) 
confirmed robustness of these signals. While these pharmacovigilance findings underscore the need for 
heightened clinical vigilance, they represent associations rather than causal relationships, constrained 
by inherent limitations of FAERS such as reporting bias and confounding. Future prospective studies 
are needed to confirm these associations and clarify underlying mechanisms.
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VANs	� Vagal afferent neurons
T2DM	� Type 2 diabetes mellitus
OR	� Odds ratios

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are structurally modified analogs of endogenous GLP-1, 
engineered to resist enzymatic degradation while retaining potent agonism at the GLP-1 receptor (GLP-1R)1. 
GLP-1Rs exhibit broad tissue distribution, spanning the pancreas, gastrointestinal tract, cardiovascular system, 
and central nervous system, allowing GLP-1 RAs to impact multiple organ systems2,3. Beyond their well-
established benefits in managing type 2 diabetes mellitus (T2DM) and promoting weight reduction, emerging 
evidence suggests that GLP-1 RAs may also offer neuroprotective, anti-inflammatory, and cardiovascular 
protective effects4–7. Nevertheless, the broad spectrum of targets for GLP-1 RAs also introduces certain risks 
and side effects.

While gastrointestinal AEs such as nausea and vomiting dominate safety reports8  and recent 
pharmacovigilance studies highlight increasingly recognized risks including acute pancreatitis, nephritis, 
hypotension, and syncope9–11, emerging data suggest that GLP-1 RAs may be associated with neurological 
adverse events (NAEs)12,13. Despite the potential clinical significance of these findings, research into NAEs 
associated with GLP-1 RAs remains limited. Besides, patients with diabetes may already have a predisposition 
to diabetic neuropathy, potentially masking or confounding drug-related NAEs. Given the global increase in the 
use of GLP-1 RAs and the growing number of patients at risk, further investigation into their neurological safety 
profile is warranted.

The Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) is a spontaneous 
reporting database monitoring the safety of drugs and biologics after their market approval14. FAERS collects 
reports from manufacturers, healthcare professionals, and patients, providing a valuable resource for post-
marketing pharmacovigilance14. Using the FAERS database from the second quater (Q2) of 2005 to the third 
quater (Q3) of  2024, we conducted a comprehensive analysis to investigate the association between GLP-1 
RAs and NAEs. NAE reports associated with GLP-1 RAs were extracted, and disproportionality analysis was 
performed to identify NAEs significantly disproportionately related to these agents, which were defined as GLP-
1 RA-related NAEs in this work. This study aims to enhance understanding of the neurological safety profile of 
GLP-1 RAs and inform clinical practice and patient care.

Methods
Ethical approval and informed consent were waived as this study utilized publicly available, de-identified data from 
the FAERS database. Statistical analyses were performed in R (v4.4.2)15. This study follows the recommendations 
of the reporting of a disproportionality analysis for drug safety signal detection using individual case safety 
reports in pharmacovigilance (READUS-PV)16.

Data source
FAERS database aggregates spontaneous adverse event (AE) reports from healthcare providers, manufacturers, 
and consumers17. Its structure comprises seven standardized files: demographic data (DEMO), medication 
records (DRUG), AE descriptions (REAC), patient outcomes (OUTC), reporter information (RPSR), drug 
therapy timelines (THER), and treatment indications (INDI)14,18,19. Medical concepts are systematically 
categorized using the Medical Dictionary for Regulatory Activities (MedDRA) terminology, with Preferred 
Terms (PTs) representing granular AE descriptions, hierarchically grouped into High-Level Terms (HLTs), 
High-Level Group Terms (HLGTs), and System Organ Classes (SOCs)18,19. Detailed descriptions of the files and 
relevant terminology are provided in Tables S1 and S2.

Data extraction and processing
We analyzed FAERS reports from 2005 Q2 to 2024 Q3. The starting point coincided with the approval date of 
the first GLP-1 RA, exenatide (BYETTA), April 28, 2005. Duplicate entries were resolved through a two-step 
deduplication protocol20: 1) retaining the most recent FDA receipt date (FDA_DT) for identical CASEID entries; 
2) selecting the higher PRIMARYID when CASEID and FDA_DT matched.

GLP-1 RAs were identified in the DRUG files using generic or brand names, including exenatide (BYETTA, 
BYDUREON BCISE), liraglutide (VICTOZA, SAXENDA, XULTOPHY), lixisenatide (LYXUMIA, ADLYXIN, 
SOLIQUA), dulaglutide (TRULICITY), semaglutide (OZEMPIC, RYBELSUS, WEGOVY), and tirzepatide 
(MOUNJARO, ZEPBOUND). Withdrawn agents were excluded from the analysis. FDA approval dates for 
these GLP-1 RAs are detailed in Table S3. Target drugs were identified in the DRUG file, focusing on those 
marked as primary suspect (PS) drugs in the reported role code (ROLE_COD). NAEs were identified using 
SOC = “nervous system disorders” (SOC ID: 10,029,205) and primary SOC = “Yes”, encompassing 1075 PTs 
from MedDRA version 27.0. And then reports of NAEs associated with GLP-1 RAs were filtered. A descriptive 
analysis evaluated report characteristics including demographics, outcomes, and indications, and identified the 
top 20 concomitant medications.

Time-to-onset analysis
Time-to-onset was calculated as the duration between GLP-1 RA initiation and the occurrence of a NAE21. 
Cumulative incidence curves stratified by GLP-1 RA type were generated using time-to-onset data, excluding 
reports with implausible (onset ≤ 0 days) or missing event dates (Table S4). Differences between GLP-1 RAs were 
assessed using the log-rank test. Weibull distribution modeling characterized failure patterns of time-to-onset 
data, where the shape parameter (β) defined three scenarios: the upper limit of 95% confidence interval (CI) of 
β < 1 (early failure: NAEs clustered in treatment initiation phases), 95% CI of β including 1 (random failure: no 
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temporal association), and the lower limit of 95% CI of β > 1 (wear-out failure: risk escalation with prolonged 
use)22 (Table S4).

Signal mining and statistical analysis
Disproportionality analysis serves as a crucial tool for pharmacovigilance to identify potential drug-event safety 
signals23. The reporting odds ratio (ROR) quantifies the relative likelihood of a specific AE being reported for a 
target drug compared to its reporting frequency with all other drugs in the FAERS database24,25. In this study, 
we utilized the ROR to identify NAE signals significantly associated with GLP-1 RAs, using contemporaneous 
FAERS reports of other medications as the reference cohort26,27.

The ROR with 95% CI was calculated as:

	
ROR = a/c

b/d

	 95% CI = eln(ROR)±1.96
√

1
a + 1

b + 1
c + 1

d

In these equations, ‘a’ represents the number of reports with both target drug exposure and target AEs; ‘b’ 
represents reports with target drug exposure ​but without target AEs; ‘c’ represents the number of reports ​without 
target drug exposure ​but with target AEs; and ‘d’ represents the number of reports with ​neither target drug 
exposure ​nor target AEs.

NAE signals were considered significant if ≥ 3 reports existed and the lower limit of 95% CI of the ROR 
exceeded 128. PTs classified under nervous system disorders meeting these thresholds were identified as GLP-
1 RA-related NAEs for subsequent analysis. We further examined the top 20 concomitant medications and 
performed time-to-onset analysis for these cases.

Sensitivity analyses incorporated three validated pharmacovigilance methods: proportional reporting ratio 
(PRR), information component (IC), and empirical Bayes geometric mean (EBGM). Detailed equations for 
these methods are provided in Table S5. The PRR identifies potential adverse drug reactions (ADRs) through 
disproportionate reporting rates, with thresholds of PRR ≥ 2, ≥ 3 cases, and χ2 ≥ 4 indicating significant 
associations25. Bayesian approaches were featured for their enhanced detection of ADRs. The IC metric quantifies 
observed-to-expected reporting discrepancies through the Bayesian Confidence Propagation Neural Network 
framework (BCPNN)29, while EBGM estimates posterior reporting rates by integrating prior reporting patterns 
and adjusting for cross-drug variability27,30. These methods improve signal detection reliability by mitigating 
random reporting fluctuations and strengthening true safety signals31.

Results
NAE reports associated with GLP-1 RAs
From 2005 Q2 to 2024 Q3, the FAERS database recorded a total of 250,014 AE reports associated with GLP-1 
RAs, of which 28,953 (11.58%) were NAEs (Fig. 1). Among these NAEs, exenatide accounted for 10,175 cases 
(35.14%), liraglutide for 3,686 cases (12.73%), lixisenatide for 256 cases (0.88%), dulaglutide for 6,034 cases 
(20.84%), semaglutide for 5,935 cases (20.50%), and tirzepatide for 2,867 cases (9.90%). Surveillance data from 
2014 to 2024 demonstrated a sustained upward trajectory in NAE reports associated with GLP-1 RAs, peaking 
in 2023–2024 (Fig. 2A). This growth contrasted with an overall decrease in NAE proportional representation 
among total AEs, declining from 22.92% (2005) to 9.27% (2024) (Fig. 2B). Despite this relative decline, NAEs 
persisted as a substantial AE subset, maintaining notable absolute reporting frequencies during the final three 
observation years (2021–2024) (Fig. 2).

Descriptive analysis
Table 1 summarizes the clinical characteristics of 28,953 NAE reports associated with GLP-1 RAs. Females 
predominated (n = 18,907, 65.3%) over males (n = 8,838, 30.5%). Among 18,464 reports with documented 
age, most patients (39.9%) were aged 18–65 years. Most reports were submitted by consumers (n = 23,663, 
81.7%), with physicians accounting for 8.5% (n = 2,451). Since FAERS is maintained by FDA, 89.6% of reports 
(n = 25,934) originated from the United States. Diabetes constituted the majority of indications (n = 16,863, 
58.2%), followed by weight control (n = 1,352, 4.7%) and non-diabetic blood glucose abnormalities (n = 556, 
1.9%). Notably, 10,182 cases (35.2%) were recorded as other indications or lacked documented indications. 
Regarding clinical outcomes, hospitalization was the most common outcome (n = 3,336, 11.5%), while death 
(n = 234, 0.8%) and life-threatening events (n = 354, 1.2%) occurred less frequently. Concomitant antidiabetic 
therapies were frequently reported, with metformin being the most frequently reported concomitant medication 
(n = 1,879), followed by pioglitazone (n = 478), insulin glargine (n = 474), glipizide (n = 467), and glimepiride (n 
= 345) (Figure S1).

Time-to-onset analysis of NAEs associated with GLP-1 RAs
The median time-to-onset of NAEs for all GLP-1 RAs was 31 days (interquartile range [IQR] 7–123), with 
46.25% occurring within the first 30 days of treatment initiation (Table S6, Figure S2). Substantial variability 
emerged among individual agents: exenatide demonstrated the longest median latency (54 days, IQR 16–184), 
while dulaglutide showed the shortest (7 days, IQR 2–34). Intermediate values were observed for liraglutide 
(11 days, IQR 2–57), tirzepatide (19 days, IQR 3–69), lixisenatide (20 days, IQR 5–116), and semaglutide (27 
days, IQR 5–77) (Table S6). A log-rank test confirmed significant inter-agent differences in onset timing (P < 
0.001; Figure S3), with distinct onset time distribution curves. The Weibull distribution model demonstrated 
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that upper limits of 95% CIs of β were all below 1 (Table S6), consistent with an early failure profile, indicating 
NAEs predominantly manifest during initial treatment phases.

Scanning for GLP-1 RA-related NAEs
A heatmap (Fig. 3A) illustrates the RORs for 60 important NAEs associated with GLP-1 RAs. The most frequently 
reported NAEs included dizziness (n = 7,078), tremor (n = 2,519), dysgeusia (n = 1,469), lethargy (n = 783), taste 
disorder (n = 482), presyncope (n = 370), allodynia (n = 192), and parosmia (n = 192) (Fig. 3B).

Disproportionality analysis identified 19 GLP-1 RA-related NAEs using the ROR method. These signals 
included dizziness (ROR, 1.30, 95% CI 1.27–1.33), tremor (1.37, 1.32–1.42), dysgeusia (1.72, 1.64–1.81), lethargy 
(1.24, 1.15–1.33), taste disorder (2.55, 2.33–2.80), presyncope (1.39, 1.25–1.54), parosmia (2.39, 2.07–2.75), 
allodynia (25.55, 21.71–30.08), hypoglycemic unconsciousness (8.11, 6.94–9.46), brain fog (1.78, 1.51–2.10), 
hyperesthesia (1.40, 1.18–1.66), diabetic neuropathy (1.95, 1.61–2.36), hypoglycemic seizure (3.29, 2.32–4.66), 
ophthalmic migraine (3.14, 1.88–5.27), Wernicke’s encephalopathy (2.37, 1.39–4.04), diabetic hyperglycemic 
coma (3.07, 1.68–5.62), hyperglycemic unconsciousness (7.94, 4.27–14.77), vagus nerve disorder (3.75, 1.92–
7.32), and hyperglycemic seizure (5.85, 1.81–18.90) (Fig. 4A). Among which, allodynia had the highest ROR 
value.

Sensitivity analyses using PRR, IC, and EBGM methodologies produced divergent results. Venn diagram 
analysis revealed eight consistent signals across all four algorithms: taste disorders, parosmia, allodynia, 
hypoglycemic unconsciousness, hypoglycemic seizure, hyperglycemic unconsciousness, vagus nerve disorder, 
and hyperglycemic seizure (Figs. 3C and 4A).

Fig. 1.  Flowchart of the analysis process. Abbreviations: NAEs, neurological adverse events; PS, primary 
suspect drug; GLP-1 RAs, glucagon-like peptide-1 receptor agonists.
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For 19 identified GLP-1 RA-related NAE signals, we recalculated the RORs after grouping these NAEs in 
the FAERS database. For different GLP-1 RAs, the data limits during data retraction were coinciding with their 
respective first approval date (Table S3). This analysis confirmed a significant association between GLP-1 RAs 
and these NAEs (ROR 1.44, 95% CI 1.41–1.46), with variation observed across different GLP-1 RAs (Fig. 4B). 
Exenatide, liraglutide, dulaglutide, and semaglutide demonstrated significant associations with these 19 NAE 
signals, whereas lixisenatide and tirzepatide showed no significant associations.

Concomitant medications in cases of GLP-1 RA-related NAEs mirrored patterns observed in all NAE cases, 
with frequent co-administration of oral antidiabetics and insulin (Fig. 5A). Temporal analysis revealed early 
onset characteristics, with median time-to-event of 32 days (IQR 7–122). Weibull distribution modeling (β 
= 0.59, 95% CI 0.58–0.61) indicated these NAEs are likely to occur during initial treatment phases (Table 2, 
Fig. 5B). Significant inter-agent differences in onset timing were observed (P < 0.001, Fig. 5C).

Discussion
The global diabetes epidemic, affecting approximately 828 million adults in 202232, has driven widespread 
adoption of GLP-1 RAs due to their dual glycemic and weight management benefits33–35. While AEs associated 

Fig. 2.  Temporal and pharmacological patterns of NAEs associated with GLP-1 RAs. (A) Annual case counts 
of NAEs. (B) Annual proportion of NAEs relative to total AE reports. (C) Drug-specific NAE case counts 
across GLP-1 RAs. (D) Drug-specific NAE proportions relative to total AEs per agent. Abbreviations: NAEs, 
neurological adverse events; non-NAEs, non-neurological adverse events; AEs, adverse events; GLP-1 RAs, 
glucagon-like peptide-1 receptor agonists.
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Characteristics
Exenatide
N (%)

Liraglutide
N (%)

Lixisenatide
N (%)

Dulaglutide
N (%)

Semaglutide
N (%)

Tirzepatide
N (%)

Total
N (%)

Number of reports 10,175 3686 256 6034 5935 2867 28,953

Sex

 Female 6929 (68.1) 2510 (68.1) 123 (48.0) 3476 (57.6) 3878 (65.3) 1991 (69.4) 18,907 (65.3)

 Male 3125 (30.7) 1110 (30.1) 100 (39.1) 2130 (35.3) 1799 (30.3) 574 (20.0) 8838 (30.5)

 Missing 121 (1.2) 66 (1.8) 33 (12.9) 428 (7.1) 258 (4.3) 302 (10.5) 1208 (4.2)

Weight (kg)

 < 50 17 (0.2) 12 (0.3) 2 (0.8) 9 (0.1) 4 (0.1) 5 (0.2) 49 (0.2)

 50–100 3795 (37.3) 535 (14.5) 20 (7.8) 236 (3.9) 674 (11.4) 150 (5.2) 5410 (18.7)

 > 100 2491 (24.5) 249 (6.8) 5 (2.0) 123 (2.0) 347 (5.8) 82 (2.9) 3297 (11.4)

 Missing 3872 (38.1) 2890 (78.4) 229 (89.5) 5666 (93.9) 4910 (82.7) 2630 (91.7) 20,197 (69.8)

Age (years)

 < 18 7 (0.1) 8 (0.2) 0 3 (0) 9 (0.2) 2 (0.1) 29 (0.1)

 18–65 (not include 65) 4743 (46.6) 1750 (47.5) 78 (30.5) 1428 (23.7) 2087 (35.2) 1462 (51.0) 11,548 (39.9)

 65–85 (include 85) 2616 (25.7) 879 (23.8) 91 (35.5) 1238 (20.5) 1479 (24.9) 449 (15.7) 6752 (23.3)

 > 85 26 (0.3) 13 (0.4) 2 (0.8) 53 (0.9) 33 (0.6) 8 (0.3) 135 (0.5)

 Missing 2783 (27.4) 1036 (28.1) 85 (33.2) 3312 (54.9) 2327 (39.2) 946 (33.0) 10,489 (36.2)

Reporter

 Physician 801 (7.9) 565 (15.3) 38 (14.8) 221 (3.7) 754 (12.7) 72 (2.5) 2451 (8.5)

 Pharmacist 94 (0.9) 91 (2.5) 5 (2.0) 121 (2.0) 232 (3.9) 28 (1.0) 571 (2.0)

 Registered nurse 0 (0) 3 (0.1) 0 0 0 0 3 (0)

 Health professional 18 (0.2) 81 (2.2) 30 (11.7) 134 (2.2) 449 (7.6) 81 (2.8) 793 (2.7)

 Consumer 8221 (80.8) 2694 (73.1) 165 (64.5) 5472 (90.7) 4436 (74.7) 2675 (93.3) 23,663 (81.7)

 Lawyer 4 (0) 4 (0.1) 0 (0) 5 (0.1) 5 (0.1) 6 (0.2) 24 (0.1)

 Other 207 (2.0) 197 (5.3) 17 (6.6) 60 (1.0) 38 (0.6) 0 519 (1.8)

 Missing 830 (8.2) 51 (1.4) 1 (0.4) 21 (0.3) 21 (0.4) 5 (0.2) 929 (3.2)

Country

 United States 9689 (95.2) 2901 (78.7) 196 (76.6) 5382 (89.2) 5070 (85.4) 2696 (94.0) 25,934 (89.6)

 United Kingdom 56 (0.6) 92 (2.5) 2 (0.8) 66 (1.1) 160 (2.7) 76 (2.7) 452 (1.6)

 Japan 18 (0.2) 43 (1.2) 2 (0.8) 140 (2.3) 47 (0.8) 40 (1.4) 290 (1.0)

 Canada 6 (0.1) 69 (1.9) 2 (0.8) 10 (0.2) 137 (2.3) 1 (0) 225 (0.8)

 Brazil 28 (0.3) 93 (2.5) 9 (3.5) 28 (0.5) 52 (0.9) 7 (0.2) 217 (0.7)

 France 44 (0.4) 53 (1.4) 1 (0.4) 61 (1.0) 32 (0.5) 0 (0) 191 (0.7)

 China 69 (0.7) 48 (1.3) 2 (0.8) 45 (0.7) 25 (0.4) 0 (0) 189 (0.7)

 Germany 44 (0.4) 20 (0.5) 4 (1.6) 57 (0.9) 35 (0.6) 17 (0.6) 177 (0.6)

 Other countries 221 (2.2) 367 (10.0) 38 (14.8) 245 (4.1) 377 (6.4) 30 (1.0) 1278 (4.4)

 Missing 4 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 4 (0)

Received year

 2005–2010 6946 (68.3) 376 (10.2) 0 (0) 0 (0) 0 (0) 0 (0) 7322 (25.3)

 2010–2015 865 (8.5) 1106 (30.0) 2 (0.8) 130 (2.2) 0 (0) 0 (0) 2103 (7.3)

 2016–2020 1725 (17.0) 1506 (40.9) 147 (57.4) 2940 (48.7) 770 (13.0) 0 (0) 7088 (24.5)

 2021–2024 639 (6.3) 698 (18.9) 107 (41.8) 2964 (49.1) 5165 (87.0) 2867 12,440 (43.0)

Indications

 Diabetes 8592 (84.4) 1999 (54.2) 164 (64.1) 3108 (51.5) 2078 (35.0) 926 (32.3) 16,863 (58.2)

 Non-diabetic blood glucose abnormal* 158 (1.6) 51 (1.4) 0 87 (1.4) 141 (2.4) 115 (4.0) 556 (1.9)

 Weight control 42 (0.4) 287 (7.8) 1 (0.4) 16 (0.3) 714 (12.0) 292 (10.2) 1352 (4.7)

 Others and Missing 1383 (13.6) 1349 (36.6) 91 (35.5) 2823 (46.8) 3002 (50.6) 1534 (53.5) 10,182 (35.2)

Outcomes

 Death 86 (0.8) 45 (1.2) 4 (1.6) 57 (0.9) 32 (0.5) 10 (0.3) 234 (0.8)

 Life-threatening 102 (1.0) 70 (1.9) 5 (2.0) 63 (1.0) 91 (1.5) 23 (0.8) 354 (1.2)

 Hospitalization 1183 (11.6) 489 (13.3) 26 (10.2) 717 (11.9) 719 (12.1) 202 (7.0) 3336 (11.5)

Continued
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with these agents have been investigated19,36,37, our analysis reveals critical gaps in understanding their NAEs 
given the central nervous system penetration and expanding indications of GLP-1 RAs. Data from 2005 Q2 to 
2024 Q3 suggested NAEs persisted as a substantial AE subset associated with GLP-1 RAs based on FAERS. The 
analysis identified 19 significant NAE signals associated with GLP-1 RAs, representing 11.58% of all reported 
AEs associated with these agents between 2005 Q2 and 2024 Q3. Notably, semaglutide and exenatide showed 
higher NAE proportions (16.97% and 14.44%, respectively) compared to tirzepatide (6.06%). In addition, 
our analysis demonstrated significant variability in RORs for GLP-1 RA-related NAEs across agents, with 
semaglutide exhibiting stronger disproportionality signals compared to lixisenatide and tirzepatide. These 
inter-agent differences may be due to pharmacokinetic and pharmacodynamic distinctions including receptor 
internalization rates and secondary messenger activation38.

The analyses revealed sex-specific reporting patterns, consumer-driven pharmacovigilance, and early-onset 
NAE manifestations. Female predominance in AE reports (65.3% vs 30.5% male) persists despite global diabetes 
prevalence favoring males39, suggesting either biological susceptibility or heightened health-seeking behavior in 
women. Patient-submitted reports constituted 81.7% of NAEs, reflecting both expanded GLP-1 RA accessibility 
and growing public awareness of NAEs. Furthermore, GLP-1 RA-related NAEs are likely to occur in the early 
stages of treatment, mirroring the temporal trajectory of psychiatric19, gastrointestinal36, and ophthalmic37 AEs 
associated with these agents, and emphasizing vigilance during treatment initiation phase. While early onset may 
indicate physiological adaptation to receptor activation, detection bias from intensified early monitoring cannot 
be excluded. Notably, exenatide showed delayed NAE emergence, necessitating relatively prolonged monitoring.

The 19 identified GLP-1 RA-related NAEs are not documented in approved labeling, expanding on prior 
evidence. A 2019 network meta-analysis of 233 trials (n = 147,710) reported elevated risks of dizziness (odds ratios 
[ORs] 1.92, 1.57, 1.40) and headache (ORs 1.34, 1.41, 1.18) with GLP-1 RAs versus insulin, thiazolidinediones, 
and placebo40. The effect of GLP-1 RAs on blood flow, blood pressure, and the risk of hypoglycemia may increase 
risks of dizziness40. Headache has been reported in 4%–25% of patients using GLP-1 RAs13. Although our 
disproportionality analysis did not identify headache as a statistically significant NAE signal, it represented the 
most frequently reported adverse event with 7,132 cases.

While our analysis identified significant pharmacovigilance signals, we emphasize these findings represent 
associations rather than established causation. As per Bradford Hill’s criteria41, the biological plausibility through 
GLP-1R expression in the nervous system and temporal consistency in time-to-onset analysis support potential 
causality, but confounding factors inherent to spontaneous reporting systems preclude definitive conclusions. 
Future longitudinal studies are needed to strengthen causal inference.

Consistent with FDA labeling, GLP-1 RAs amplify hypoglycemia risk when combined with insulin or 
sulfonylureas42, a complication linked to seizures, syncope, and tremors43. Mitigation strategies include frequent 
glucose monitoring when changes are made to insulin dosage, oral hypoglycemic medications, meal patterns, 
physical activity, and in cases of renal or hepatic impairment or hypoglycemia unawareness, with consideration 
for dose reduction.

Emerging evidence highlights taste and olfactory disturbances as underrecognized NAEs of GLP-1 RA 
therapy44–46. Clinical reports document taste alterations and xerostomia in patients using semaglutide47, 
with studies implicating GLP-1R expression in mammalian taste buds and their role in modulating gustatory 
sensitivity48. Notably, Khan et al. demonstrated GLP-1 RAs broadly suppress perception of all five basic taste 
modalities, potentially mediated through brainstem GLP-1Rs and vagally mediated pathways44. In addition, 
Brindisi et al. observed enhanced sweet taste sensitivity and reduced hedonic responses to fatty foods in 
liraglutide-treated T2DM patients49, while Sever et al. reported semaglutide improved taste perception alongside 
altered tongue gene expression and modified central integration of sweet stimuli50.

Olfactory dysfunction, including parosmia, has been associated with liraglutide use46, likely reflecting GLP-
1R-mediated modulation of odor-evoked insulin secretion and foraging behaviors in the olfactory bulb51,52. 
Central nervous system involvement is further supported by GLP-1 production in caudal brainstem neurons, 
key integrators of vagus nerve-mediated gut-brain signaling53–56. Vagal afferent neurons (VANs) expressing 
GLP-1Rs innervate intestinal mucosa and hepatic portal vasculature, suggesting these pathways may transduce 
peripheral GLP-1 RA effects to central satiety and glucoregulatory centers57–59. This neuroanatomical overlap 
raises the possibility of vagus nerve disorders, though causal mechanisms require further elucidation.

Wernicke encephalopathy, a life-threatening complication of thiamine deficiency characterized by 
ophthalmoparesis, ataxia, confusion, and nystagmus60,61, has been reported in patients using semaglutide62. 
GLP-1 RAs may indirectly precipitate this condition via appetite suppression, which risks inadequate nutritional 

Characteristics
Exenatide
N (%)

Liraglutide
N (%)

Lixisenatide
N (%)

Dulaglutide
N (%)

Semaglutide
N (%)

Tirzepatide
N (%)

Total
N (%)

 Disability 48 (0.5) 48 (1.3) 8 (3.1) 77 (1.3) 121 (2.0) 24 (0.8) 326 (1.1)

 Required intervention to prevent 6 (0.1) 2 (0.1) 0 (0) 5 (0.1) 23 (0.4) 7 (0.2) 43 (0.1)

 Congenital anomaly 0 (0) 1 (0) 0 (0) 1 (0) 0 (0) 1 (0) 3 (0)

 Other 892 (8.8) 741 (20.1) 92 (35.9) 1125 (18.6) 1166 (19.6) 354 (12.3) 4370 (15.1)

 Missing 7858 (77.2) 2290 (62.1) 121 (47.3) 3989 (66.1) 3783 (63.7) 2246 (78.3) 20,287 (70.1)

Table 1.  Demographic and clinical characteristics of NAE reports associated with GLP-1 RAs in FAERS (2005 
Q2–2024 Q3). Abbreviation: NAEs, neurological adverse events; GLP-1 RAs, glucagon-like peptide-1 receptor 
agonists; N, number of cases.
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intake and subsequent thiamine depletion. Proactive patient education on maintaining balanced micronutrient 
intake during GLP-1 RA therapy is critical to mitigate preventable complications. Wernicke encephalopathy 
exemplifies the importance of vigilance for rare NAEs. Clinicians must balance therapeutic efficacy with 
proactive risk management, particularly in vulnerable populations.

Fig. 3.  Signal detection of GLP-1 RA-related NAEs. (A) Heatmap visualization of RORs for 60 NEAs meeting 
case threshold (≥ 3 reports). NAEs labelled in dark red are GLP-1 RA-related NAEs. (B) Case frequency 
distribution of 19 GLP-1 RA-related NAEs. (C) Methodological concordance analysis using Venn diagram. 
Abbreviations: ROR, reporting odds ratio; PRR, proportional reporting ratio; EBGM, empirical Bayesian 
geometric mean; BCPNN, Bayesian confidence propagation neural network; NAEs, neurological adverse 
events; GLP-1 RAs, glucagon-like peptide-1 receptor agonists.
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Hyperglycemic crises and related neurological sequelae including seizures and altered consciousness may 
link to suboptimal glycemic control during GLP-1 RA therapy. Central GLP-1R activation in hypothalamic and 
mesolimbic pathways may lead to fatigue, lethargy, or brain fog63, though such effects might be often transient 
and dose-dependent. Rare neuro-ophthalmic events such as ophthalmic migraine warrant monitoring despite 
low incidence64.

Signals including allodynia, hyperesthesia, and diabetic neuropathy have been detected. However, diabetes 
itself predisposes individuals to neuropathy, potentially confounding the association between GLP-1 RAs and 
NAEs. As a secondary analysis of the FAERS database, subgroup analyses were unfeasible due to incomplete 
clinical data. Future prospective studies could better adjust for such confounders. Intriguingly, studies suggest a 
potential role of GLP-1 RAs in pain relief, including acute and chronic pain65, chronic migraine66, and diabetic 
neuropathic pain67. These discrepancies highlight the need for further investigation.

GLP-1 and its analogs exhibit blood–brain barrier penetrance, enabling direct modulation of central nervous 
system function68. GLP-1R expression spans multiple neuroanatomical domains including the basal ganglia 
(caudate, putamen, globus pallidus), limbic system (amygdala, hippocampus), hypothalamic nuclei, cerebellum, 
and spinal cord69. GLP-1 influences fundamental neurobiological processes such as mitochondrial function, 
protein aggregation, and synaptic plasticity70–72. Emerging evidence delineates central roles of GLP-1 in appetite 
regulation, neuroprotection, neuroinflammatory mitigation, enhanced intracellular signaling, and cognitive 
enhancement72–74. These multifaceted roles of central GLP-1R activation may provide a plausible biological 
framework for understanding the spectrum of reported NAEs associated with GLP-1 RAs.

Our findings support several key clinical and regulatory imperatives. First, clinicians should implement 
baseline neurological evaluations before initiating therapy, particularly in patients with pre-existing neurological 
comorbidities. Second, structured surveillance protocols should prioritize the initial treatment month when 
approximately 46% of NAEs occur, with scheduled follow-ups during this period. Third, regulatory agencies 

Fig. 4.  Forest plots of signal detection for GLP-1 RA-related NAEs. (A) Results for 19 GLP-1 RA-related 
NAEs. (B) Recalculation of the RORs after grouping 19 GLP-1 RA-related NAEs in the FAERS database. 
Abbreviations: PT, Preferred Term; GLP-1 RAs, glucagon-like peptide-1 receptor agonists; NAEs, neurological 
adverse events; ROR, reporting odds ratio; CI, confidence interval; PRR, proportional reporting ratio; χ2, 
chi-squared; EBGM, empirical Bayesian geometric mean; EBGM05, the lower limit of 95% CI of EBGM; IC, 
information component; IC025, the lower limit of 95% CI of the IC. Note: Bold text indicates statistically 
significant signals per algorithm criteria.
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Drug Cases Median (IQR) (days)
Scale parameter
α (95%CI)

Shape parameter
β (95%CI)

Overall 3156 32 (7–122) 75.51 (70.82, 80.19) 0.59 (0.58, 0.61)

Exenatide 2119 53 (17–175) 105.62 (98.38, 112.86) 0.66 (0.63, 0.68)

Liraglutide 208 8 (2–31) 29.47 (20.31, 38.62) 0.46 (0.42, 0.51)

Lixisenatide 8 19 (9–29) 35.52 (− 4.88, 75.92) 0.65 (0.32, 0.97)

Dulaglutide 225 5 (1–22) 16.54 (11.95, 21.12) 0.50 (0.46, 0.55)

Semaglutide 466 27 (5–78) 44.7 (38.12, 51.29) 0.65 (0.61, 0.70)

Tirzepatide 118 17 (3–78) 40.82 (27.43, 54.22) 0.58 (0.5, 0.66)

Table 2.  Weibull distribution parameters for time-to-onset analysis of GLP-1 RA-related NAE reports. 
Abbreviation: NAEs, neurological adverse events; GLP-1 RAs, glucagon-like peptide-1 receptor agonists; IQR, 
interquartile range; Cl, confidence interval.

 

Fig. 5.  Analysis of cases of 19 GLP-1 RA-related NAEs. (A) Top 20 concomitant medications. (B) Onset time 
distribution. (C) Cumulative distribution curves of the onset time. Abbreviations: NAEs, neurological adverse 
events; GLP-1 RAs, glucagon-like peptide-1 receptor agonists.
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should evaluate updates to prescribing information to reflect emerging safety signals meeting pharmacovigilance 
thresholds, while maintaining evidentiary standards for causal inference. Other operational recommendations 
include implementing patient-specific education programs about medication adherence and potential NAEs; 
establishing longitudinal monitoring frameworks to elucidate dose–response relationships and temporal 
patterns; and prioritizing prospective studies to validate signal strength and refine risk mitigation strategies. 
These measures will enable timely dissemination of safety updates while preserving the risk–benefit balance 
essential for optimal therapeutic deployment.

The FAERS remains pivotal for post-marketing pharmacovigilance, yet its dependence on spontaneous 
reports introduces critical methodological constraints. Underreporting may exist due to voluntary submissions. 
Reporting bias arises from disproportionate U.S. submissions and consumer-driven reports, skewing signal 
detection. Lack of denominator data precludes incidence calculations. Systematic differential reporting patterns 
influenced by patient awareness, outcome severity, and regulatory activities create substantial ascertainment 
bias, and underreporting of mild events and chronic risks may persist18. These limitations may distort signal-to-
noise ratios in risk quantification. Furthermore, the predominant representation of U.S. healthcare ecosystems 
of this database limits generalizability to global populations, and missing data elements complicate accurate 
benefit-risk assessments. Future surveillance frameworks should prioritize multinational data harmonization 
and integration with real-world evidence streams to enhance validity.

Strengths and limitations
While causal relationships between GLP-1 RAs and NAEs remain unproven and underlying mechanisms 
remain uncertain, the temporal association observed in our analysis necessitates enhanced clinical vigilance 
for early detection and management. Our analysis faces several limitations. First, FAERS spontaneous reporting 
architecture introduces selection biases in ethnicity, geographic representation, and temporal reporting 
patterns tied to drug approval timelines and public awareness cycles18. These inherent constraints preclude 
causal inference between GLP-1 RAs and NAEs while preventing incidence rate calculations75. Second, 
despite employing sensitivity analyses, disproportionality metrics carry inherent false-positive risks that 
require confirmation through controlled studies76. Third, insufficient information on medication histories and 
confounding by indication limits differentiation between drug effects and underlying disease progression and 
complications. Concomitant antidiabetic medication use may also confound the observed neurological event 
associations. Fourth, as diabetes itself predisposes individuals to neurological complications, confounding from 
disease progression cannot be excluded in this disproportionality analysis. The absence of longitudinal clinical 
data in FAERS precludes adjustment for these factors. Fifth, disproportionality analyses do not account for 
temporal trends in GLP-1 RA prescription rates or cumulative drug exposure. Sixth, while the FAERS database 
provides valuable insights, exclusion of international pharmacovigilance databases such as the EudraVigilance 
or WHO VigiBase limits global generalizability, though accessibility constraints justify this approach. Finally, 
several identified safety signals lack mechanistic validation or replication in clinical studies, emphasizing the 
exploratory nature of this complete-case analysis. Prospective trials incorporating longitudinal monitoring 
of neurological parameters and biomarker profiling are critically needed to validate these pharmacovigilance 
signals while elucidating dose–response relationships and underlying mechanisms.

Conclusion
This pharmacovigilance study leveraging FAERS real-world data identified 19 GLP-1 RA-related NAEs 
through disproportionality analysis. These NAEs constituted over 5% of all reported AEs for this drug class, 
encompassing more than 12,000 cases. While the observed associations do not establish causality, they highlight 
the importance of vigilance for potential NAEs during treatment, particularly given the heterogeneous temporal 
patterns of onset across events. Clinicians should prioritize early recognition and targeted monitoring of 
high-risk neurological manifestations. The exploratory nature of this analysis underscores the necessity for 
validation in prospective longitudinal study. Further population-based studies may quantify incidence rates, 
characterize dose-dependent relationships, and investigate mechanistic pathways to optimize risk stratification 
and therapeutic decision-making.

Data availability
The datasets generated and analyzed during the current study are available in the U.S. FAERS database (​h​t​t​p​s​:​​/​/​f​
i​s​.​​f​d​a​.​g​o​​v​/​e​x​t​e​​n​s​i​o​n​​s​/​F​P​D​-​​Q​D​E​-​F​A​​E​R​S​/​F​P​​D​-​Q​D​E​-​F​A​E​R​S​.​h​t​m​l). These datasets will also be available from the 
corresponding author upon reasonable request.
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