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Neutrophil extracellular traps (NETs) and immunity play critical roles in liver hepatocellular carcinoma 
(LIHC) progression, but their mechanisms remain unclear. This study explored the potential of NETs-
related genes (NETs-RGs) and immune-related genes (IRGs) as prognostic markers for LIHC. LIHC 
transcriptome data and IRGs were obtained from public databases, and NETs-RGs were derived 
from prior research. Differentially expressed genes (DEGs) intersecting with key module genes 
were identified, followed by Cox regression analysis and machine learning to determine prognostic 
genes. A risk prediction model and nomogram were constructed and validated. Enrichment analysis, 
immune infiltration, and drug sensitivity studies were conducted to explore underlying mechanisms. 
Reverse transcription quantitative PCR (RT-qPCR) was used to validate findings. Five prognostic 
genes—HMOX1, MMP9, TNFRSF4, MMP12, and FLT3—were identified. A risk model and nomogram 
demonstrated strong predictive ability. Gene set enrichment analysis revealed pathways related to 
retinol metabolism and cytochrome P450 drug metabolism in different risk groups. Immune infiltration 
analysis showed regulatory T cells positively correlated with MDSCs, which were directly associated 
with the five genes. Drug sensitivity analysis identified 74 drugs with differential sensitivity between 
risk groups; axitinib showed lower sensitivity in high-risk patients, while ABT-888 showed higher 
sensitivity. RT-qPCR confirmed reduced HMOX1 and FLT3 expression in LIHC tissues, while MMP9 
and TNFRSF4 were upregulated. This study developed a robust predictive model for LIHC prognosis, 
offering valuable insights for clinical management and personalized treatment strategies.
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Hepatocellular carcinoma (HCC), the prevalent sub-type of liver cancer and the fourth leading cause of 
cancer-related mortality globally, often impacts individuals suffering from chronic liver disease and cirrhosis1. 
Consequently, it claims the dubious distinction of being one of the deadliest cancers globally2. Illnesses commonly 
arise from viral hepatitis infections, chronic liver conditions, alcohol abuse, and metabolic disorders such as 
diabetes3. Although patients can be cured by liver transplantation, surgical resection and thermal ablation, long-
term outcomes are compromised by high recurrence rates (up to 70% of cases 5 years after treatment)4. Clinical 
statistics reveal that a significant number of patients are often diagnosed at advanced stage, resulting in the 
inability to achieve a complete cure5. Even though multiple biomarkers for HCC have been identified to aid in 
surveillance and early detection, there are still a considerable proportion of individuals with poor survival6,7. 
Therefore, it is crucial to investigate new therapeutic targets to improve the treatment efficacy of HCC.

Research suggest that rapid progression of HCC and poor survival rates are frequently attributed to the 
presence of heterogeneous sub-populations of tumor cells8.

A key factor influencing the heterogeneity of HCC is the tumor micro-environment (TME)9. Inflammation 
in the liver micro-environment plays a pivotal role in cancer invasion and metastasis, and pro-inflammatory 

1The eleventh Ward of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, 
China. 2The third ward of Medical Oncology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu 
Province, China. 3Department of Pathology, The First Hospital of Lanzhou University, Donggang District, Lanzhou 
730000, Gansu Province, China. 4The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu 
Province, China. 5 Defeng Yuan, Feng Zhang, Pengfei Lv, Jun Zhu and Haiwei Zhang contributed equally to this work. 
email: 120220903471@lzu.edu.cn

OPEN

Scientific Reports |        (2025) 15:19390 1| https://doi.org/10.1038/s41598-025-01335-1

www.nature.com/scientificreports

https://orcid.org/0009-0000-4616-4332
http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-01335-1&domain=pdf&date_stamp=2025-6-2


cytokines secreted by immune cells implicated in steatohepatitis can also promote cancer progression10. 
Neutrophils, as the most numerous type of white blood cells in human immune system, play a complex and 
important role in the TME11. Studies have shown that the accumulation of tumor-associated neutrophils (TANs) 
in tumors can be triggered by external stimuli from TME, leading to a switch between pro-tumor and anti-tumor 
phenotypes12.

Neutrophil extracellular traps (NETs) are web-like structures released by activated neutrophils, primarily 
composed of decondensed chromatin and intracellular granule proteins13. Initially, it was discovered to capture 
and eliminate extracellular pathogens, playing a protective role in antibacterial defense14. Tumor-associated 
neutrophils have been shown to readily form NETs in HCC, indicating that NETs play a significant role in the 
progression and metastasis of liver cancer15. Zhan et al.‘s mechanistic study revealed that the levels of NETs 
are markedly increased in hepatitis B virus (HBV)-positive HCC. Suppressing NETs via the TLR4/RAGE-ROS 
signaling pathway could potentially be advantageous for HCC patients16. Additionally, studies have found that 
NETs trigger tumorous inflammatory response and fuel HCC metastasis. Focusing on NETs, rather than the 
neutrophils directly, may present a viable strategy to combat HCC metastasis17. One study also proved that 
NETs can effectively predict the immunotherapy response and prognosis of HCC patients as imaging genomics 
biomarkers18. Therefore, analyzing the levels of NETs and their relationship with the survival of HCC patients is 
of great value. Moreover, the new and reliable prognostic model developed by NETs offers enhanced guidance 
for targeted therapy.

This study aims to identify prognostic genes associated with NETs through TCGA database, and to explore the 
correlation between NETs and TME. Thereafter, the nomograms were constructed using the prognostic genes. 
Studies on enrichment analysis, immune infiltration, and drug sensitivity provides a deeper understanding of 
the complex mechanisms of these prognostic genes. The ultimate aim is to offer potential guidance for targeted 
and immunotherapeutic treatments of HCC, as well as to provide fresh perspectives for prognostic evaluations.

Materials and methods
Data source
TCGA-HCC was downloaded on August 19, 2024, from the cancer genome atlas (TCGA, ​h​t​t​p​s​:​/​/​p​o​r​t​a​l​.​g​d​c​.​c​
a​n​c​e​r​.​g​o​v​​​​​)​, contained 374 LIHC tissue samples and 50 adjacent tissue samples (control cohort), among which 
existed 368 tumor tissue samples with survival information. The validation cohort GSE14520 (GPL3921) tracked 
to gene expression omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database, including 221 LIHC tumor 
samples with survival information. The count and FPKM data from TCGA were logarithmically transformed 
(using 2 ^ x − 1 and log2(x + 1)) to compress the data range. Additionally, the data were further standardized 
using the Z-score normalization method, so that the mean of the data became 0 and the standard deviation was 
1.

The na.omit function was directly used to delete the rows containing missing values. If the data information 
was not desired to be lost, the mean imputation method could be employed, that is, the missing values were 
replaced with the mean value of the corresponding column. The quality of the data and the pertinence of the 
analysis were ensured by removing the duplicate gene information and screening the samples according to the 
sample types. From a previous study19, a total of 87 neutrophil extracellular traps-related genes (NETs-RGs) were 
obtained. Referring to the methods of a previous study20, 1793 immune-related genes (IRGs) were acquired.

Differentially expressed genes (DEGs) identification
DESeq2 package (v 1.38.0)21 was engaged to pinpointed DEGs between cancerous and control tissues samples 
with survival information in the TCGA-LIHC (p.adj < 0.05 and |log2fold change (FC)| >1). Subsequently, 
ggplot2 package (v 3.4.1)22 was applied to create a volcano plot of DEGs, while the top 10 up-regulated and 
down-regulated DEGs were annotation in volcano plot ranked by |log2FC|. Furthermore, we utilized the 
ComplexHeatmap package (v 2.14.0)23 to generate a heatmap for these 20 DEGs.

Weighted gene co-expression network analysis (WGCNA)
First, a preliminary gene screening of NETs-RGs was conducted via univariate Cox regression (p < 0.05). 
Subsequently, we calculated the NETs-RGs scores for both the tumor cohort with survival information and 
the normal cohort in TCGA-LIHC using ssGSEA algorithm from GSVA package (v 1.42.0)24. Then, differences 
between the two cohorts were tested (p < 0.05). After that, 368 LIHC patients were cohorted via median NETs-
RGs score and a survival analysis utilizing the Kaplan-Meier (K-M) was performed on the two cohorts with the 
aid of the survival package (v 3.5.3)25 (p < 0.05).

Next, in all samples of the TCGA-LIHC dataset, WGCNA analysis was completed through WGCNA package 
(v 1.7.1)26. Initially, LIHC samples were clustered to identify and remove outliers. PckSoftThreshold was 
employed to determine the soft value required to construct the scale-free network (R2 = 0.85). Subsequently, a 
hierarchical clustering dendrogram was constructed using a dynamic tree cut method (minModuleSize = 500). 
Finally, by calculating the correlation coefficient matrix and p-values between gene modules and NETs-RGs 
scores, we selected the modules most correlated with NETs-RGs scores (|correlation (cor)| > 0.3 and p < 0.05), 
the module genes were named key module genes.

Pinpointed candidate genes and function enrichment evaluation
Candidate genes were obtained through DEGs, IRGs and key module genes by ggvenn package (v 0.1.9). 
Subsequently, the clusterProfiler package (v 4.7.1.3)27 was utilized to perform gene ontology (GO) and kyoto 
encyclopedia of genes and genomes (KEGG) to research the potential pathways and functions of these candidate 
genes (p.adj < 0.05)28–30. An the enrichment results were sorted in ascending order by p.adj value, displaying 
the top 10 most significant functions; for KEGG, the top 5 most significant pathways were displayed. Then, 
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a protein-protein interaction (PPI) network was generated by STRING (https://string-db.org/) (interaction 
score > 0.4) to gain insights into the interconnections between these genes and was visualized using Cytoscape (v 
3.5.2), and genes with interactions were retained for further analysis.

Construction and validation of prognostic models
To further screen for genes with prognostic value from the candidate genes, we first took the following steps in 
TCGA-HCC: univariate Cox regression analysis (hazard ratio (HR) ≠ 1 and p < 0.05) and proportional hazards 
(PH) assumption test (p > 0.05) were performed via survival package. A HR value greater than 1 indicated 
that the gene was a risk gene for CC, an HR value less than 1 indicated that the gene was a protective gene 
for HCC, and an HR value of 1 indicated that the result was meaningless. Meanwhile, the 95% confidence 
interval (CI) values were calculated. Least absolute shrinkage and selection operator (LASSO) was used to 
select prognostic genes, which was accomplished by glmnet package (v 4.1.4)31. The LASSO analysis, through 
10-fold cross-validation, could compress the regression coefficients of some unimportant variables to 0, thus 
achieving variable selection. In traditional regression methods, when dealing with multicollinearity, the 
estimated regression coefficients were unstable, and the standard errors were increased, resulting in inaccurate 
judgments of the significance of variables. The regularization feature of LASSO could make the coefficients of 
some of the independent variables with collinearity become 0, and only one or a few independent variables 
that had a greater impact on the dependent variable were retained. In this way, the problem of multicollinearity 
was effectively alleviated, and the stability of the model was improved32.Then, the Bootstrap method was used 
to evaluate the reliability of the model. Each gene in the model was sampled 1000 times with replacement. 
After each sampling, the Cox regression model was fitted, and the regression coefficients were recorded. 
Finally, the mean value, standard deviation, and 95% confidence interval of the regression coefficients for each 
gene were calculated. For small samples, the exact Cox regression was used instead of the asymptotic Cox 
regression, which could estimate the parameters and test the hypotheses more accurately. In order to ensure 
that the model was not overfitted and that sufficient statistical power was maintained when the sample size 
was small, the exact Cox regression was used instead of the asymptotic Cox regression for small samples, as it 
could estimate the parameters and test the hypotheses more accurately. After that, a predictive risk model was 
established by integrating these selected prognostic genes. The methodology for determining the risk score is 
outlined follow: risk score =

∑ n
j=1Expr(genej) × Coef (genej), where Expr genej and Coef genej represent 

prognostic gene expression levels and prognostic gene coefficients, respectively.
Then, scores indicating risk were computed for all LIHC specimens, and the median risk score was determined 

to stratify the samples in the TCGA-LIHC. Subsequently, risk curve plots and survival status plots were drawn 
to display the distribution of samples in two risk cohorts. Then, the survminer package (v 0.4.9) was used for 
K-M to ascertain the distinctions in survival status between the two cohorts (p < 0.05). After that, survivalROC 
package (v 0.4) was utilized to generate the receiver operating characteristic (ROC) curves to assess 1, 3, and 5 
year survival probabilities. The external validation cohort GSE14520 was used to validate the risk model.

Independent prognostic analysis and nomogram construction
Subsequently, an independent prognostic analysis was conducted by integrating risk score and clinical 
characteristics (stage (stage I/II, stage III/IV), age (≤ 60, > 60), gender, stage T (T1/T2, T3/T4), stage N (N0, 
N1), stage M (M0,M1)) of tumor samples in TCGA-HCC, Wilcoxon test was done by stats package (v 3.6.2)33 
for samples with two or fewer clinical characteristics and the risk score. For samples with three or more clinical 
characteristics and risk score, Kruskal-Wallis test was conducted using the Kruskal.test function. The data 
lacking clinical characteristics were deleted. This step was aimed to examine the distribution differences in risk 
scores among LIHC patients with survival information who had different clinical characteristics (p < 0.05).

Subsequently, based on TCGA-HCC, Cox regression analysis (p < 0.05) and PH assumption test (p > 0.05) 
were employed to integrate risk score and clinical characteristics, thereby identifying independent prognostic 
factors associated with LIHC.

After that, a nomogram was built using the rms package (v 6.5-1)34 based on the prognostic genes. Calibration 
plot and decision curve analysis (DCA) curves were generated using rms package.

Gene set enrichment analysis (GSEA)
Subsequently, relevant signaling pathways and bioinformatics of LIHC patients with survival information in two 
risk cohorts were explored. The reference gene set was c2.cp.kegg.v2023.1.Hs.symbols.gmt from MSigDB ​(​​​h​t​t​p​s​:​/​
/​w​w​w​.​g​s​e​a​-​m​s​i​g​d​b​.​o​r​g​/​g​s​e​a​/​m​s​i​g​d​b​/​​​​​)​. In all samples of the TCGA-LIHC, firstly, DEGs between two risk cohorts 
were identified by DESeq2 package. Then, reliant on these DEGs, cor function was adapted for calculating the 
Spearman correlation coefficient, using the correlation coefficient as the sorting standard. Subsequently, GSEA 
was performed by clusterProfiler package (p < 0.05, false discovery rate (FDR) < 0.25, |normalized enrichment 
score (NES)| > 1). GSEA results were sorted in descending order based on the NES values and the top 5 pathways 
were selected for visualization.

Analyses of immune microenvironment
The ssGSEA algorithm was intended for determining the infiltration of 28 immune cell types35 between two risk 
cohorts in the TCGA-LIHC (excluding samples with p > 0.05). Differential immune cells obtained by comparing 
28 immune cell infiltrations (p < 0.05). Subsequently, the cor function was designated to analyze the correlations 
between the differential immune cells, as well as between prognostic genes, risk score and these immune cells 
(|cor| > 0.3 and p < 0.05).
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Drug sensitivity analysis
The relevant data on 138 standard chemotherapeutic drugs were collected to review the differences in responses 
between two risk cohorts by querying cancer drug sensitivity genomics (GDSC, ​h​t​t​p​s​:​/​/​w​w​w​.​c​a​n​c​e​r​r​x​g​e​n​e​.​
o​r​g​​​​​) database. Within TCGA-LIHC, pRRophetic package (v 0.5) was utilized to estimate the 50% inhibitory 
concentration (IC50) values for the drugs, and Wilcoxon test was applied to assess the differences in drug IC50 
between two risk cohorts (p < 0.05). Subsequently, the top 10 drugs with the most significant differences in two 
risk cohorts were selected for presentation.

RNA extraction and reverse transcription-quantitative PCR (RT-qPCR)
To confirm the reliability of the identified prognostic genes, RT-qPCR was conducted using clinical specimens 
from individuals with LIHC and those from healthy controls. A sum of 5 tissue samples from LIHC patients with 
verified diagnoses, along with an equal number of 5 samples from the control group, were gathered from the First 
Hospital of Lanzhou University. All participants had provided their written informed consent. Medical Ethics 
Committee of the First Hospital of Lanzhou University granted approval for this study (LDYYLL2024-759). Then, 
RNA from each sample was extracted with 1 ml TRIzol reagent and 300 ul chloroform, and its concentration 
was quantified with NanoPhotometer N50. The cDNA was reverse transcribed using the SweScript First Strand 
cDNA Synthesis Kit (Servicebio, Wuhan, China). RT-qPCR amplification was accomplished by the CFX96 Real-
Time Fluorescence Quantitative PCR Instrument (Bio-Rad, California, USA) for a total of 40 cycles. One cycle 
consisted of 1 min of pre-denaturation at 95  °C, denaturation at 95  °C for 20  s, annealing at 55  °C for 20  s 
and extension at 72 °C for 30 s. Finally, the amplification curve, melting curve, and Cq value were analyzed. 
The relative expression levels were determined by 2−△△CT method and statistical analysis and visualization 
were conducted using Graphpad Prism 5 (v 8.0)36. Within the scope of this research, GAPDH served as a 
housekeeping gene to validate the precision of our findings. Details regarding the RT-qPCR reaction mixture, 
the sequences of the primers, and the specific conditions for amplification were provided in supplementary 
Tables 1, 2, and 3, respectively.

Statistical analysis
Statistical analyses were conducted in R (v 4.3.2), with Wilcoxon test engaged to differentiate cohort pairs and 
p < 0.05 indicating significance.

Results
Recognition DEGs and key module genes
Within TCGA-HCC, 8,945 DEGs were identified (7,011 genes up and 1,934 genes down) (p.adj < 0.05) (Fig. 1a 
and b). Subsequently, a gene co-expression network was established based on NETs-RGs through WGCNA. 
Initially, we scored NETs-RGs in both tumor and normal samples, and found a significant distinction in NETs-
RGs scores between the two cohorts (p = 0.024) (Fig. 1c). Then, based on the median NRGs-RGs score, high 
and low scoring cohorts were divided, K-M curve showed a significant survival difference between two scoring 
cohorts (p = 0.00049) (Fig. 1d). Next, hierarchical clustering analysis was performed on all samples and identified 
no obvious outliers (Fig. 1e). Subsequently, the optimal soft-thresholding power was determined to be β = 10 
(R² > 0.85) (Fig. 1f). Then, a hierarchical clustering dendrogram was constructed, dividing the genes into 11 
co-expression modules (Fig. 1g). Ultimately, MEbrown module (cor = -0.78, p = 7e-77) was selected as the key 
module (Fig. 1h), and the 1,870 genes within MEbrown module were designated as key module genes.

Recognition and functional annotation of candidate genes
By intersecting DEGs, IRGs and key module genes, 78 candidate genes were obtained (Fig. 2a, supplementary 
Table 4). The overlapping situations of these genes with NET-RGs were examined, identified 5 overlapping genes 
including MMP9, FPR1, IL1B, IL6 and FPR2 (Supplementary Fig. 1). This could help to highlight the potential 
role of NETs in hepatocellular carcinoma. GO analysis found that these candidate genes enriched in 316 terms, 
including 31 molecular functions (MF), 7 cellular components (CC) and 278 biological processes (BP), with the 
top 10 enriched terms comprising immunoglobulin production and leukocyte mediated immunity (p.adj < 0.05) 
(Fig. 2b). Additionally, KEGG enrichment identified 22 signaling pathways, including cytokine-cytokine receptor 
interaction and cytokine receptor (p.adj < 0.05) (Fig. 2c). Subsequent PPI results showed that 30 genes had no 
interaction relationships, while CETP, PTGER2, GBP2, and UTS2 each had only one interaction (interaction 
score > 0.4) (Fig. 2d). After removing these 30 genes without interaction relationships, 48 candidate genes were 
used for further research (supplementary Table 5).

Prognostic model development and evaluation
Based on all tumor samples with survival information in TCGA-HCC, five candidate prognostic genes were 
determined through univariate Cox regression analysis including HMOX1 (HR = 1.22, 95% CI: 1.07–1.40, 
p = 0.003), MMP9 (HR = 1.14, 95% CI: 1.03–1.26, p = 0.011), TNFRSF4 (HR = 1.33, 95% CI: 1.06–1.66, p = 0.01), 
MMP12 (HR = 1.16, 95% CI: 1.02–1.32, p = 0.02), FLT3 (HR = 0.23, 95% CI: 0.07–0.81, p = 0.02), among which 
only FLT3 was a protective gene (HR < 1) (Fig. 3a). Univariate Cox regression analysis was conducted to evaluate 
the association strength and statistical significance between each gene and the prognosis of HCC patients 
by calculating the HR values, their 95% CIs, and p-values. The p-values of these five genes were all less than 
0.05, indicating that there were statistically significant associations between them and the survival of HCC 
patients, and the null hypothesis of no association between gene expression and survival outcome was rejected. 
Meanwhile, the HR values of HMOX1, MMP9, TNFRSF4, and MMP12 were greater than 1, while the HR value 
of FLT3 was less than 1, and the 95% CIs of each did not contain 1, which further supported the correlations 
between these genes and the prognosis of HCC. This demonstrated that obtaining these five genes through 

Scientific Reports |        (2025) 15:19390 4| https://doi.org/10.1038/s41598-025-01335-1

www.nature.com/scientificreports/

https://www.cancerrxgene.org
https://www.cancerrxgene.org
http://www.nature.com/scientificreports


Fig. 1.  Screening for DEGs. (a) Volcano plot of DEGs in TCGA-HCC. (b) Heatmap of DEGs in TCGA-HCC. 
The numerical range was from − 1 to 3, representing values related to gene expression levels. The legend on 
the right side showed that colors corresponded to expression densities, with red indicating high expression 
density and blue indicating low expression density. The black lines represented different quantiles, such as 0%, 
25%, 50%, 75%, and 100%, and the data distribution was presented. (c) NETs-RGs scores between tumor and 
normal samples. (d) The survival probability of the two risk groups. Blue represents patients in low risk group 
and red represents patients in high risk group (p-value = 0.00049) LIHC = 374, control = 50, NETs-RGs = 87. (e) 
The hierarchical clustering analysis among all samples. (f) Determination of the soft thresholding power. The 
y-axis of the left panel represents the scale-free fit index and the y-axis of the right panel represents the mean 
connectivity. The x-axis represents power value. (g) Dendrogram of differentially expressed genes clustered. 
The colors represent the identified gene modules. (h) Correlations of gene modules with NETs-RGs scores.
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Fig. 2.  Acquisition and functional enrichment analysis of candidate genes. (a) Venn diagrams of candidate 
genes, DEGs = 8945, IRGs = 1793, and key module genes = 1870. (b) The GO outcomes are displayed with a 
histogram. (c) A histogram was constructed to illustrate the KEGG outcomes. GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; MF, molecular 
function. (d) Screening 48 candidate genes by PPI network.
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Fig. 3.  Construction of a prognostic model in TCGA-HCC. (a) Univariate Cox regression analysis in TCGA-
HCC. (b) Coefficient curve. Different colors represent different genes. No zero values were selected as a penalty 
coefficient (Left). The minimum lambda of the lasso model was selected via 10 folds of cross-validation. 
Lambda was determined when the partial likelihood deviance was smallest (Right). (c) The risk score of the 
different risk groups. (d) The survival probability of the different risk groups. Blue represents high-risk patients 
and red represents low-risk. The patients were divided according to their median risk score. (e) Prognostic 
genes in the TCGA-HCC dataset were analyzed using ROC curves.
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univariate Cox regression analysis was reasonable and statistically grounded. Subsequently, the PH assumption 
test was conducted for these five genes, and all five genes passed the test (supplementary Table 6). Then, LASSO 
analysis was performed on these five candidate prognostic genes, and it was found that when lambda = 0.002, 
the penalty values for all five candidate prognostic genes were not zero (Fig. 3b). The Bootstrap results showed 
that the mean value of the coefficient of HMOX1 was 0.2009, with the hazard ratio (HR) approximately equal to 
1.22 (exp(0.2009) ≈ 1.22), and the mean value of the coefficient of FLT3 was − 1.5377, with the HR approximately 
equal to 0.215 (exp(-1.5377) ≈ 0.215). The small standard deviations indicated that the coefficient estimations 
were stable. For example, the maximum standard deviation (SD) of TNFRSF4 was 0.124, which showed that the 
stability of its coefficient estimation was relatively low. The minimum SD of MMP9 was 0.05, suggesting that 
its coefficient estimation was relatively stable. The 95% confidence intervals (CIs) of all genes did not contain 
0, which was consistent with the result of the univariate Cox regression analysis with p < 0.05, verifying the 
significance(supplementary Table 7). Therefore, HMOX1, MMP9, TNFRSF4, MMP12, and FLT3 were retained 
as prognostic genes for further research.

Next, a risk model was established using the expression levels of these five prognostic genes and coefficients 
derived from LASSO analysis to determine the risk scores for LIHC patients: Risk Score = 0.20 × HMOX1 + 0.12 
× MMP9 + 0.154 × TNFRSF4 + 0.06 × MMP12–2.60 × FLT3. Then, the risk scores for tumor samples in TCGA-
HCC (0.94) and GSE14520 (-6.83) were calculated, and patients were categorized into two distinct risk cohorts 
based on the median risk score. The distribution pattern of risk scores and the associated survival outcomes 
were graphed based on the patients’ risk scores in ascending order, demonstrating that a higher risk score 
was significantly associated with a higher mortality rate (Fig.  3c and Supplementary Fig.  2a). K-M analysis 
revealed that the high-risk group had a markedly lower survival rate across both datasets (p < 0.05) (Fig. 3d and 
Supplementary Fig.  2b). In the TCGA-HCC, ROC analysis further confirmed its accuracy in predicting the 
survival rates at 1 (0.69), 3 (0.63) and 5 years (0.70) (for GSE14520, the values were 0.68, 0.68 and 0.63) (Fig. 3e 
and Supplementary Fig. 2c).

Nomogram construction and clinical characteristic analysis
Cox analysis and PH assumption test indicated that risk score emerged as the sole independent predictor of 
prognosis for LIHC (p < 0.05) (Fig.  4a and b and supplementary Table 8). Then, a nomogram was built via 
prognostic genes (Fig. 4c). The calibration plots exhibited that the nomogram’s predictions for 1, 3, and 5 year 
survival probabilities closely matched the actual outcomes, aligning well with the reference line, indicating a 
high level of predictive accuracy (Fig. 4d). Following that, the results from DCA portrayed a net benefit above 
zero for the nomogram, signifying its effective construction (Fig. 4e). Clinical characteristic analysis revealed 
significant differences in risk scores among stages and T stages (p < 0.05) (Fig. 4f). The risk score was higher 
in the T3/T3 group than in the T1/T2 group, and it was higher in the stage III/IV group than in the stage I/II 
group. This indicated that the risk score was closely associated with the tumor stage of LIHC. A higher risk score 
might have predicted a more advanced tumor stage. It was suggested that clinicians could incorporate the risk 
score into the disease assessment system for LIHC patients to assist in judging the disease progression degree of 
patients. This would enable timely adjustment of treatment regimens and adoption of more targeted intervention 
measures to improve patient prognosis.

Enrichment, immune landscape and drug sensitivity in two risk cohorts
The DEGs in two risk cohorts were primarily enriched in retinol metabolism and drug metabolism cytochrome 
p450 (Fig.  5a). The heatmap of 28 different immune cells showed in the Supplementary Fig.  3 between two 
risk cohorts, with statistical difference in 16 immune cells, including regulatory T cells and MDSCs (Fig. 5b). 
Subsequently, Spearman’s correlation analysis indicated that regulatory T cells were statistically positively 
correlated with MDSCs (cor = 0.89, p = 9.13e-126) (Fig. 5c and supplementary Table 9). The correlation analysis 
between differential immune cells and prognostic genes showed that MDSCs had notable link to HMOX1 
(cor = 0.54), MMP9 (cor = 0.62), TNFRSF4 (cor = 0.48), MMP12 (cor = 0.43), and FLT3 (cor = 0.43) (Fig. 5d and 
supplementary Table 10).

In drug sensitivity analysis, 74 drugs showed substantial discrepancies between the two risk cohorts (p < 0.05). 
Axitinib and AS601245 had higher IC50 values in the high-risk cohort, while ABT.888 and A.443,654 had lower 
IC50 values (Fig. 5e).

Experimental validation of prognostic genes
As shown in Fig. 6, the results of RT-qPCR analysis indicated that the expression levels of HMOX1 (p < 0.01) 
and FLT3 (p < 0.05) in LIHC tissues were significantly decreased compared to the control, while the expression 
of MMP9 (p < 0.05) and TNFRSF4 (p < 0.0001) were the opposite. Although the expression of MMP12 (p > 0.05) 
was elevated in LIHC, there was no significant difference compared to the control group. In LIHC tissues, 
the expression levels of HMOX1 and FLT3 were significantly decreased compared to the control group. The 
significant changes in gene expression implied a close association with the disease state. When LIHC occurred 
in the body, the down - regulation of these two genes might have affected a series of key physiological processes 
within the cells. The expression of MMP9 and TNFRSF4 in LIHC tissues showed an opposite trend to that of 
HMOX1 and FLT3, and was significantly higher than that in the control group. The significantly up - regulated 
expression of these two genes in LIHC tissues reflected their active roles in the process of tumorigenesis and 
development. Therefore, they could be used as potential biomarkers for monitoring the progression of LIHC 
or evaluating the prognosis of patients. The expression of MMP12 was elevated in LIHC tissues, but there was 
no significant difference compared to the control group. However, its expression trend still indicated a certain 
connection with the LIHC state. Although the current results did not reach statistical significance, under a 
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Fig. 4.  Construction of nomogram and analysis of clinical characteristic with riskScore. (a) Univariate Cox 
regression and multivariate Cox regression (b) analyses of independent predictor of prognosis for LIHC. (c) 
Nomogram was constructed based on the expression of prognostic genes. (d) Calibration curves of nomogram 
for predicting OS at 1-year, 3-year and 5-year in the TCGA-HCC dataset. (e) DCA curves were constructed 
based on prognostic genes. (f) Box plots of clinical characteristic (age, T_stage, N_stage, M_stage, stage, and 
gender) between subgroup in the TCGA-HCC cohort. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns 
p > 0.05.
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Fig. 5.  Analysis of GSEA, immune microenvironment, and drug sensitivity. (a) Significantly enriched 
pathways in the KEGG gene sets between the two risk groups in TCGA-HCC cohort. (b) Box plot of the 
difference in immune cell content between two risk groups. (c) Correlations between infiltrating immune 
cells. Red and blue colors indicate positive and negative correlations, color intensity represents the degree of 
correlation. (d) Correlations between infiltrating immune cells and prognostic genes. (e) The differences of 
sensitivity of patients between two risk groups. Lower IC50 is equal to better sensitivity. *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001; ns p > 0.05.
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larger sample size or different research conditions, the changes in its expression might provide more information 
related to LIHC, and it still had the potential to be used as an auxiliary biomarker.

Discussion
HCC is one of the most common cancers worldwide and represents a major challenge for healthcare worldwide37. 
Hundreds of thousands of people die from HCC globally each year, with most patients diagnosed at a late stage, 
missing the optimal window for treatment38. Effective and reliable prognostic biomarkers are crucial for clinical 
treatment. Currently, new studies have emphasized that NETs facilitated immune escape from HCC39. This study 
examined the expression levels of genes reported in the literature to be associated with NETs19 and immune in 
HCC and healthy samples and found that most of these genes were differentially expressed. Subsequently, a new 
prognostic model consisting of HMOX1, FLT3, MMP9, MMP12, TNFRSF4 and was constructed using univariate 
Cox and LASSO, followed by an in-depth analysis of the immune microenvironment.

In biological research, various molecules play diverse and crucial roles in different immune cell types, 
having a significant impact on aspects such as cell function, disease development, and immune responses. 
Specifically, HMOX1 is expressed in macrophages, where it assumes a pivotal role in intracellular oxidative stress 
responses and immune regulation, contributing to the maintenance of normal macrophage function40. FLT3 is 
predominantly expressed in dendritic cells, where it is closely associated with their development, maturation, 
and antigen - presenting functions, thus influencing the body’s immune response41. Neutrophils are capable of 
expressing MMP9, which is released during inflammation and tissue repair to degrade the extracellular matrix, 
facilitating the migration of inflammatory cells and tissue remodeling42. MMP12 is highly expressed in alveolar 
macrophages, where it takes part in lung inflammation and tissue repair by degrading the extracellular matrix 
of alveolar walls, and is related to the development of lung diseases such as chronic obstructive pulmonary 
disease43,44. Monocytes may also express MMP12 during their differentiation into macrophages, participating 
in inflammatory responses and immune regulation, and playing a part in the body’s innate immune defense45. 
Besides CD4 + T cells, other T - cell subsets, such as CD8 + T cells, can also express TNFRSF4, which is involved 
in T - cell activation, proliferation, and immune regulation, affecting the intensity and duration of T - cell - 
mediated immune responses46,47. Antigen - presenting cells like macrophages and dendritic cells also express 
TNFRSF4, where it interacts with T cells during antigen presentation to regulate the balance between immune 
activation and immune tolerance48.

Heme Oxygenase 1 (HMOX1) is a catalytic enzyme that facilitates the degradation of heme into iron, carbon 
monoxide and biliverdin, playing a significant role in cellular response to inflammation49. Studies have indicated 
that in HCC, the tumor microenvironment is marked by a high level of oxidative stress. The up-regulation of 
HMOX1 might change the activation pattern of neutrophils, thus promoting the release of NETs48,50. Nevertheless, 
the chronic and excessive release of NETs can result in an imbalance within the inflammatory microenvironment, 
creating conditions that are conducive to the proliferation and metastasis of tumor cells51. This could act as a 
double-edged sword in the progression of HCC, and the regulatory role of HMOX1 on NETs is one of the crucial 
factors affecting this balance. In our study, the results of the univariate Cox regression analysis indicated that the 
HR for HMOX1 was 1.225, with a p value of 0.003. Specifically, within a 95% confidence interval of 1.069–1.403, 
a one - unit increase in HMOX1 expression was significantly associated with a 22.5% increase in the risk of 
disease progression or death in HCC patients. Since HMOX1 has been identified as a risk factor for HCC, it is 
hypothesized that HMOX1 might be involved in the biological processes promoting the growth, invasion, or 
metastasis of HCC, thus playing a crucial role in the development and prognosis of HCC52. Park et al. found 
that HMOX1 expression was not associated with patient survival or recurrence, indicating that HMOX1 does 
not appear to play a role as a prognostic factor in HCC patients53. Nevertheless, Zheng et al. confirmed through 
chromosome conformation capture experiments that Donafenib and GSK-J4 synergistically induce ferroptosis 
in HCC by up-regulating HMOX1 expression, which represented a novel synergistic lethal interaction54. Over-
expression of HMOX1 reduced the proliferation of human HBV-HCC cells and inhibited their migratory and 

Fig. 6.  Relative mRNA expression of the prognostic genes was analyzed by qRT-PCR. *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001; ns p > 0.05, n = 6.
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invasive capabilities55. There were also suggested that HMOX1 may be regarded as a favorable prognostic factor 
in HBV-HCC patients undergoing liver resection56.

Fms-like tyrosine kinase 3 (FLT3) is a significant member of the class III receptor tyrosine kinase (RTK) 
family, playing a crucial role in the proliferation of hematopoietic cells and lymphocytes57. Although current 
research regarding the direct connection between FLT3 and NETs is scarce, considering that neutrophils are 
derived from hematopoietic stem cells, abnormal FLT3 signaling might change the differentiation pathway of 
hematopoietic stem cells58. Consequently, this could impact the quantity and functional status of neutrophils, 
thus indirectly affecting the generation of NETs. Aydin discovered that FLT3 is pivotal in the initiation and 
progression of HCC. Targeting FLT3 may represent a promising strategy for combating this tumor59. In our 
study, the HR for FLT3 was 0.231, with a p value of 0.022, suggesting that FLT3 is a protective gene in HCC. 
An increase in FLT3 expression is associated with a decreased risk of HCC. The 95% confidence interval of 
0.066–0.809 further validates this finding. Thus, FLT3 might be involved in pathways that inhibit the growth 
of HCC, induce apoptosis of cancer cells, or enhance the immune response against HCC cells60. Lai found that 
novel FLT3 / AURK multikinase inhibitors were effective against sorafenib-resistant HCC57. Further studies have 
shown that sorafenib can slow down the progression of tumors in HCC patients who exhibit high levels of FLT3 
expression61. In this study, the expression of HMOX1 and FLT3 in the HCC group was notably lower compared 
to healthy groups, signifying its positive factors in the prognosis of HCC.

Matrix metalloproteinase-9 (MMP9) is a crucial mediator of tumor initiation and progression62. In our study, 
univariate Cox regression analysis demonstrated that the HR for MMP9 was 1.140, with a p value of 0.011. 
This finding suggests that MMP9 serves as a risk factor for HCC. An elevated level of MMP9 expression is 
correlated with an increased risk of HCC and might facilitate the biological processes related to its growth, 
invasion, or metastasis63In HCC, MMP9 expression is significantly elevated in the gain of function (GOF) 
CTNNB1 mutations (CTNNB1 GOF). so CTNNB1 GOF mutations promoted the formation of an inhibitory 
tumor micro-environment by triggering MMP9 secretion64. In HBV-infected HCC patients, Chen et al. found 
that HBV stimulated peripheral blood mononuclear cells (PBMCs) and macrophages to express MMP-9. More 
interestingly, MMP9 in turn promotes HBV replication by inhibiting the effects of IFN-α65. Meanwhile, previous 
studies have suggested that VEGFA signal could activate tumor-associated macrophages (TAM) _ SPP1-derived 
MMP9 to promote the invasion and metastasis of HCC, which may provide new insights into the clinical 
treatment of HCC patients66. Moreover, targeted drug studies have revealed that indocurcumin effectively 
combats metastatic HBV-positive HCC by inhibiting the activity of MMP967.

Matrix metalloproteinase-12 (MMP12), also known as macrophage metalloelase, was first identified in 
human alveolar macrophages68. Univariate Cox regression analysis disclosed that the HR for MMP12 was 1.163, 
with a p - value of 0.02. This finding implies that MMP12 is a risk factor for HCC. An elevated expression of 
MMP12 is associated with an increased risk of HCC and may be implicated in biological processes promoting 
the growth, invasion, or metastasis of HCC69. Many studies have shown that the over-expression of MMP12 
is associated with the poor prognosis of HCC, which may be an important factor affecting the efficacy of 
TACE70–72. Furthermore, He et al. found that MMP12 expression was associated with tumor FOXP3 regulatory 
T cell infiltration and poor prognosis in HCC68. However, some studies have proposed that blood MMP-12 
has good sensitivity and higher accuracy but poor specificity in the diagnosis of HCC69. MMP9 and MMP12 
might degrade the extracellular matrix around NETs, thus influencing the structural stability and distribution of 
NETs69. In HCC, the heightened levels of MMP9 and MMP12 secreted by tumor cells not only facilitate tumor 
cell invasion and metastasis by breaking down the basement membrane but also potentially modify the existence 
of NETs in the tumor microenvironment73. During the invasion and metastasis process in HCC, the interaction 
among MMP9, MMP12, and NETs seems to be especially intricate and significant74.

Tumor Necrosis Factor Receptor Superfamily Member 4 (TNFRSF4), named OX40, is an important 
costimulatory molecule for T cell proliferation and survival, plays a key role in regulating the immune response, 
cell survival and the inflammatory response75. Research findings indicate that the activation of the TNFRSF4 
signaling pathway can impact neutrophil function, thereby influencing the generation of NETs76. In HCC, 
tumor cells may disrupt the normal functioning of neutrophils and modulate the release and activity of NETs 
by regulating the TNFRSF4 signaling pathway77. Univariate Cox regression analysis revealed that the HR for 
TNFRSF4 was 1.327, with a p-value of 0.014. This indicates that TNFRSF4 is a risk factor for HCC. Elevated 
expression of TNFRSF4 is associated with an increased risk of HCC and may be involved in biological processes 
that promote the growth, invasion, or metastasis of HCC77. Interestingly, Yan et al. found that the expression of 
TNFRSF4 in HCC was significantly higher than in normal tissues, which was identified as a risk factor for overall 
survival in male patients77. Notably, Wang et al. found that the over-expression of TNFRSF4 affected the immune 
cell infiltration in HCC76. Studies have proposed the combined intratumoral administration of CpG and anti-
TNFRSF4 antibodies as a promising immunotherapy approach for HCC78. In this study, we also observed that 
the expression of TNFRSF4 and MMP9 in the HCC group was notably higher compared to the healthy group, 
which confirmed that their high expression was associated with poor prognosis.

Furthermore, the enrichment analysis revealed that those DEGs in two risk groups were primarily enriched 
in ‘drug metabolism cytochrome p450’ signaling pathway. Cytochrome P450, a group of enzymes predominantly 
expressed in the liver, plays a pivotal role in numerous biochemical processes79. One study suggested that 
cytochrome P450 2E1 plays a dynamic role in the pathogenesis of HCC, which could serve as a potential 
therapeutic target for liver carcinogenesis80. In this study, we hypothesized that the expression of these five 
biomarkers affects the progression of HCC by participating in ‘drug metabolism cytochrome p450’ signaling 
pathway. Additionally, we found that Axitinib had higher IC50 values in the high-risk cohort, which confirmed 
that the combination of Axitinib proposed by Yang et al. was well tolerated in the treatment of advanced HCC81.

The role of the tumor TME was receiving heightened attention due to its substantial impact on clinical outcomes 
and therapeutic responses82. In this study, 28 different types of immune cells were specifically selected for analysis. 
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This is because these cells represent multiple key aspects of the tumor immune response. For example, Tregs, as 
crucial regulators of the immune response, can inhibit the activity of effector T cells, thereby impeding the body’s 
immune surveillance and killing of tumor cells83,84. MDSCs also play a central role in immunosuppression. They 
can inhibit the functions of immune cells through various mechanisms, creating conditions for the immune 
escape of tumor cells85. We found that MDSC (myeloid derived suppressor cell) had notable link to HMOX1, 
MMP9, TNFRSF4, MMP12 and FLT3. Higher infiltration of MDSCs in HCC compared to controls86. Li et al. 
proposed that MDSC- targeted therapy may be the best choice for HCC patients with higher neutrophil counts87. 
In detail, MDSCs exhibit a positive correlation with HMOX1 (cor = 0.54). This correlation indicates that MDSCs 
may up-regulate the expression level of HMOX1, assisting HCC cells in withstanding oxidative stress, thereby 
enhancing their survival ability and promoting tumor progression88. MMP9 has the function of degrading the 
extracellular matrix, creating conditions for the migration and invasion of HCC cells89,90. Meanwhile, there is a 
strong correlation between MDSCs and MMP9 (cor = 0.62), suggesting that MDSCs may enhance the invasion 
and metastasis ability of HCC cells by promoting the expression of MMP9, exerting a crucial impact on the 
malignant development process of HCC91. TNFSRF4 is involved in the regulation of immune cell activation 
and proliferation, and MDSCs are associated with it (cor = 0.48). MDSCs may inhibit the functions of immune 
cells by interfering with the TNFSRF4 related immune-regulatory signaling pathways, thus helping HCC cells 
achieve immune escape92. MMP12 is also associated with MDSCs (cor = 0.43). Its function is similar to that 
of MMP9 and can promote the metastasis of HCC cells by degrading the extracellular matrix93. FLT3 plays 
an important role in the proliferation and differentiation of hematopoietic stem cells. In HCC, when FLT3 is 
abnormally activated, it can promote the growth and survival of tumor cells94. The association between MDSCs 
and FLT3 (cor = 0.43) implies that MDSCs may be involved in regulating the proliferation and survival signaling 
pathways of HCC cells95. Therefore, we believed that these five biomarkers may influence the occurrence of HCC 
by regulating the expression of MDSC to regulate the immune microenvironment of HCC. This finding further 
supports our belief that HMOX1, MMP9, TNFRSF4, MMP12 and FLT3 have potential as biomarkers in HCC 
and we remain keenly interested in exploring their specific molecular mechanisms.

Drug - sensitivity analysis showed that 74 drugs exhibited significant differences between the two risk groups 
(p < 0.05). The IC50 value, a key indicator of drug potency, varied significantly for specific drugs across different 
risk cohorts. Specifically, Axitinib and AS601245 had higher IC50 values in the high - risk group, indicating that 
patients in the high-risk group require higher concentrations of these two drugs to achieve 50% cell - growth 
inhibition96. This suggests that tumor cells in the high-risk group may have stronger drug-resistance mechanisms, 
such as enhanced drug efflux pump activity or altered drug targets97. For these patients, conventional doses of 
Axitinib and AS601245 may not be effective. Clinicians may need to consider increasing the drug doses, which 
may lead to more severe side effects, or explore combination - drug regimens to enhance the efficacy of these 
two drugs using other agents98. In contrast, ABT.888 and A.443,654 had lower IC50 values in the high - risk 
cohort, indicating that the high - risk group is more sensitive to these two drugs. ABT.888, as a poly (ADP-
ribose) polymerase (PARP) inhibitor, can specifically act on tumor cells with DNA damage repair defects99. It is 
speculated that tumor cells in the high - risk group may have abnormal DNA repair pathways, making ABT.888 
and A.443,654 more effective, so low - dose administration can be used to enhance efficacy and reduce side 
effects. Based on the above findings, targeted therapy has broad prospects. For example, high - risk patients who 
are resistant to Axitinib but sensitive to ABT.888 can try ABT.888 targeted therapy. Similarly, the low-risk cohort 
can also select drugs according to IC50 values and tumor characteristics. Looking ahead, clinical research should 
conduct large-scale trials for different patient subgroups, use techniques such as whole - genome sequencing 
to clarify the associations between drug sensitivity and genetic and clinical characteristics, establish prediction 
models, and study the dynamic changes during treatment to optimize treatment strategies and improve the 
clinical outcomes of cancer patients.

Currently, the samples used in this study were sourced from bulk RNA-sequencing samples in public 
databases, and it may not be possible to precisely distinguish the signals of each cell type. In follow-up research, 
single-cell RNA sequencing or other cell-isolation techniques will be employed to further validate which cell 
types these signals specifically originate from. In addition, the small sample size of RT-qPCR may lead to large 
result deviations and insufficient representativeness, making it difficult to reflect the overall real situation. 
Clinical samples will be increased for research in the future. Moreover, research on 28 types of immune cells also 
lacks experimental support. Techniques such as flow cytometry and immunohistochemical experiments should 
be used to verify their characteristics and functions. The role network of HMOX1, MMP9, TNFRSF4, MMP12 
and FLT3 in the progression of HCC requires further constructed in cell experiments and animal models for 
functional exploration. In future research, specific markers can be employed to sort neutrophils, and cell - 
lines can be utilized to investigate the expression patterns of TNFRSF4 in different immune cells. Meanwhile, 
experiments should be conducted to verify the types of immune cells. Moreover, the dataset used in this study 
lacks treatment history and comorbidity data. Future research should collect more of such data and carry out in 
- depth investigations into treatment history and comorbidities, so as to provide more evidence for personalized 
treatment. We plan to further explore these mechanisms through molecular approaches in the future.

Conclusion
The risk model constructed by the signature composed of HMOX1, MMP9, TNFRSF4, MMP12 and FLT3 
can predict the prognosis of HCC patients, and these biomarkers were related to tumor immunity. This study 
provides a novel direction, theoretical foundation and potential target therapy for HCC. Our findings confirm 
the up-regulation of MMP9, TNFRSF4 and down-regulation of HMOX1, FLT3 in HCC patients, which presents 
a fresh perspective for the treatment of HCC.
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Data availability
The datasets analysed during the current study are available in the GEO database ​(​h​t​t​p​s​:​/​/​w​w​w​.​n​c​b​i​.​n​l​m​.​n​i​h​.​g​o​
v​/​g​e​o​/​) and TCGA database (https://portal.gdc.cancer.gov).
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