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This study uses data from 1901 to 2023 to investigate the long-term spatiotemporal variations and 
trends in monsoon rainfall. It also looks at how these changes may affect Kharif Paddy production 
in the state’s agro-climatic zones from 2000 to 2022. The Pettitt test was used to identify sudden 
alterations in rainfall patterns, and the Mann–Kendall (MK) test was used to assess rainfall trends. The 
findings show that most districts in Odisha have no significant change in monsoon rainfall, indicating 
a generally consistent pattern over the past 123 years. Only Sundergarh in the North-Western Plateau 
Zone showed a significant negative trend (-2.51), highlighting potential localized vulnerabilities. 
Change detection analysis shows the probable change years vary by districts (under agro-climatic 
zones) ranging from 1919 to 2009, whereas inter-seasonal rainfall variability was recorded to increase 
after 1980. The relationship between GPP and rainfall revealed non-linear characterises. Meanwhile, 
the seasonal trend from 2000 to 2022 showed a favourable increase in Gross Primary Productivity 
(GPP), averaging 10.88 gC/m2 per year. Sensitivity analysis revealed that the GPP of forested areas 
in a region or district is more responsive to rainfall fluctuations than cropped areas within Odisha’s 
agro-climatic zones. Additionally, threshold analysis was conducted to identify the optimal range of 
monsoon rainfall that maximizes GPP for the studied districts across different agro-climatic zones. 
Understanding long-term rainfall variability is crucial for ensuring sustainable agricultural productivity, 
particularly in monsoon-dependent regions like Odisha, where shifting precipitation patterns can 
significantly affect Kharif paddy production.
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The rapid pace of anthropogenic climate change contrasts with the slower, natural climate variations observed 
over geological time scales. Increased greenhouse gas concentrations from human activities primarily drive 
this. The multiple indicators, such as rising global temperatures, sea level rise, ocean heat content, ice melt, and 
permafrost thaw, form a cohesive body of evidence showing the warming trend. A warming climate enhances 
the hydrological cycle because warmer air holds more moisture (following the Clausius-Clapeyron relation), 
leading to higher atmospheric water vapour levels, accelerated surface evaporation, and increased intensity of 
precipitation events under similar meteorological conditions, often resulting in heavier downpours or extreme 
rainfall. Significant changes in the hydrological cycle are anticipated due to climate change1,2. Altered rainfall 
patterns, such as less frequent but more intense storms, can profoundly affect ecosystem composition and 
productivity3. Intra-annual and inter-annual precipitation variability may have negative and positive impacts, 
depending on the ecosystem type4,5. Extreme wet or dry years are particularly detrimental to the productivity 
of crops like rice and grasslands, which rely on stable water availability6. Furthermore, research indicates that 
ecosystems respond to higher rainfall variability differently. Xeric habitats, which are adapted to arid conditions, 
tend to benefit more from such variability compared to mesic habitats, which rely on more consistent moisture 
availability5–8. Precipitation is important in regulating terrestrial carbon uptake because it influences ecosystem 
Gross Primary Productivity (GPP)9. GPP, defined as converting atmospheric carbon dioxide into organic matter 
by plant photosynthesis, emphasizes the complex relationship between the carbon and water cycles in terrestrial 
ecosystems10,11. Precipitation significantly influences vegetative productivity and ecological processes12. The 
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sensitivity of GPP to precipitation demonstrates the ecosystem’s flexibility to changes in water supply13,14. The 
relationship between GPP and precipitation frequently shows complicated nonlinear properties. While more 
significant precipitation can raise productivity in some years, it can also reduce GPP due to interactions with 
system states and other factors, including temperature and local water availability15,16. These dynamics underscore 
the intricate coupling between precipitation and ecosystem processes. As climate patterns continue to shift, 
changes in precipitation amount, timing, and spatial distribution are expected to influence GPP significantly. 
Altered rainfall regimes may lead to both positive and negative outcomes depending on regional ecosystem 
conditions, plant water-use efficiency, and the availability of supplementary resources like soil moisture and 
nutrients14,17. GPP refers to the total amount of solar energy plants capture through photosynthesis, which is 
converted into organic matter (biomass). It is a key measure of ecosystem productivity and carbon fixation. 
GPP is influenced by various factors such as temperature, sunlight, carbon dioxide concentration, soil quality, 
and rainfall. Water is a crucial input for plant growth. In agricultural systems, rainfall determines crop yields 
and ecosystem productivity. Adequate rainfall supports plant growth by providing water for photosynthesis, 
nutrient uptake and transpiration. In excess rainfall, water can lead to waterlogging, root damage and reduced 
oxygen availability in the soil, ultimately affecting plant health and GPP. In contrast, insufficient rainfall can 
lead to drought stress, limiting photosynthesis and biomass production. Reduced water availability also hinders 
nutrient uptake and can stunt plant growth. So, threshold analysis is necessary to identify the specific range of 
an environmental factor, such as rainfall, which maximizes or optimizes a particular outcome, that is, GPP. The 
idea is to find the point at which GPP reaches its highest value in terms of varying levels of rainfall. However, 
outside of this range, GPP begins to decline due to the limiting or damaging effects of either excess or insufficient 
rainfall. Using this concept, threshold analysis is made for 15 districts under different agro-climatic zones of our 
study separately, and districts under different agro-climatic zones are shown in Fig. 1.

While previous studies have analyzed rainfall trends in India, fewer have specifically examined century-long 
(1901–2023) monsoon rainfall trends in Odisha’s agro-climatic zones. The non-linear response of GPP to rainfall 
variations has not been well explored in the context of Odisha’s diverse agro-climatic zones. Prior studies have not 
established an optimal rainfall threshold that maximizes GPP in Odisha’s agricultural districts. These gaps have 
been addressed in this paper. Moreover, this article’s scientific contributions and novelty are listed as monsoon 
rainfall trends in Odisha during 123 years have been examined using robust statistical techniques to detect shifts, 
variabilities, and monsoon rainfall influencing GPP at a district level has been investigated, which reveals non-
linear relationships that have not been fully explored before. Besides these, by conducting threshold analysis, 
this study provides actionable insights for optimizing water resource management in agriculture. In addition, it 
demonstrates that forested regions show greater sensitivity to rainfall fluctuations than cropped areas, a finding 
with implications for climate adaptation strategies. Moreover, this research focuses on the variation in Kharif 
paddy output, considering the impacts of irregularities in the onset and duration of the rainy season. Key factors 
include the delayed arrival of potentially useful rains, the overall shortening of the rainy season, poor rainfall 
distribution, and the occurrence of floods18–21. So, our analysis of monthly and seasonal rainfall from 1901–2023 
during the monsoon season will be dealt with for finding the trend in rainfall using the Mann–Kendall test and 
detecting the abrupt change point in the time frame by the Pettitt test. Analysis of precipitation trends in Cuttack 
District, Odisha, revealed insignificant overall changes. However, it highlighted a rising trend in precipitation 
during some months and a decreasing trend in others22.

Fig. 1.  Ten agro-climatic zones comprising 30 districts of Odisha. (Source: Liansangpuii, F., Panigrahi, B., & 
Paul, J. C. (2019). Assessment of meteorological drought by standardized precipitation index for coastal agro-
climatic zones of Odisha, India, Indian Journal of Soil Conservation, 47(3), pp 205–212).

 

Scientific Reports |        (2025) 15:17209 2| https://doi.org/10.1038/s41598-025-01346-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Temperature and rainfall play a pivotal role in crop germination, growth, reproduction, and yield in 
subsequent agricultural production23. It is evidenced that the amount of monsoon rainfall is the prime factor for 
crop productivity as compared to temperature in some of the districts such as Kalahandi, Koraput and Bolangir 
districts24,25. Moreover, higher amounts of rainfall have been recorded in coastal Odisha than the country’s 
average, but its distribution is uneven, especially during the cropping season26. Efforts have been made to 
establish the relationship between GPP and rainfall by threshold analysis for the 15 studied districts.

This study discusses the importance of Kharif paddy production during the monsoon season, as paddy is 
the major crop. Kharif paddy in Odisha is predominantly rainfed, relying heavily on monsoon rainfall for its 
water requirements. However, limited irrigation coverage is available in many areas of Odisha. Several studies 
have shown that variations in monsoon rainfall, such as delayed onset or deficits and excess flooding, have 
significantly affected crop yield. Rainfall variations influence sowing dates, crop growth stages, and overall yield. 
Moreover, previous studies have demonstrated the direct relationship between monsoon rainfall and paddy yield 
in India, particularly in Odisha. Some reported cases have indicated that a drought-like situation was envisaged 
in Odisha when deficit rainfall of about 63% was recorded by 15 August 2021. However, paddy cultivation 
dropped by 40% until mid-July in the year 2022 due to the late arrival of monsoon as well as scanty rainfall in the 
month of June, and a similar situation occurred in Kalahandi district due to 66% deficit rainfall by mid-July of 
2023. The influence of temperature on paddy growth is sensitive, as observed during break monsoon conditions 
due to scanty or lack of rain. Still, paddy is primarily a water-sensitive crop, and its response to temp is secondary 
to its water availability. Therefore, it is necessary to investigate the influence of rainfall in paddy production 
during monsoon season.

To visualize the status of agricultural productivity, mainly rice yield, an attempt was made to study the 
rainfall trend in selected districts under different agro-climatic zones using standard methods in climate change 
scenarios. One of the methods is the impact of rains in prior and post-change points of the year based on the 
Pettitt test and the role of GPP connected to rainfall using threshold analysis by selecting 15 districts from 
10 agro-climatic zones of Odisha as shown in Fig. 1. Moreover, the characteristics of 10 agro-climatic zones 
briefly stated below as Odisha’s agricultural landscape categorized into ten distinct agro-climatic zones, each 
characterized by unique climatic conditions and soil types. The zonal diversity reflects the interplay of climatic 
and soil factors shaping the agricultural patterns in Odisha.

	 1.	 A hot, moist climate with red and yellow soils marks the Northwestern Plateau.
	 2.	 The Northcentral Plateau is hot and moist, featuring red loamy soils.
	 3.	 The Northeastern Coastal Plateau experiences a hot, moist sub-humid climate dominated by alluvial soils.
	 4.	 East and Southeastern Plateau has a hot and humid climate with coastal alluvial soils that turn saline near 

the coastline.
	 5.	 A hot, moist sub-humid climate with laterite and brown forest soils characterizes Northeastern Ghat.
	 6.	 The Eastern Ghat and Highland feature a warm and humid climate with red and brown soils.
	 7.	 The Southeastern Ghat shares a similar warm and humid climate but has black and mixed red–black soils.
	 8.	 The Western Undulating Zone has a warm and moist climate, with black and mixed red–black soils pre-

dominating.
	 9.	 The West Central Tableland is hot and moist, with heavy-textured red soils.
	10.	 The Mid Central Tableland is defined by a hot and dry sub-humid climate with red loamy, laterite, and 

mixed red–black soils.

Study area
Odisha is located on the eastern coast of India, and agriculture is the main livelihood of people; a higher 
percentage of the population is either farmers or agricultural labourers involved in the agriculture sector. The 
location of Odisha is shown in Fig. 1. As a natural calamity-prone state, agriculture is significantly affected by 
cyclones, droughts, and floods with varying intensities, resulting in crop loss and poor productivity, as reported 
in some years. Agricultural production is strongly influenced by the variability and unpredictability of weather, 
including climate change, climate variability, and inherent biological uncertainties in crop management. Millions 
of farm households nationwide face significant yield uncertainty and risk due to factors like unpredictable rainfall 
patterns during the monsoon season (South-west monsoon, June to September), rising temperatures, recurrent 
climate-induced natural disasters like drought and floods, high variability in monsoon onset dates, prolonged 
dry spells, and unseasonal rain27–30. There are ten agro-climatic zones covering 30 districts. In this study, 15 
districts are chosen out of 30 districts under different agro-climatic zones, as shown in Table 1. Odisha state lies 
roughly between latitudes 22° 36’ N and 17o 49’ N and longitudes 81° 36’ E and 87o 18’ E. The state has an area 
of 1, 55,707 square km. It is bounded by the districts Ranchi, Singbhum (of Jharkhand state) and Medinapur (of 
West Bengal state) on the north, by the districts Raigarh, Raipur, Bastar (of Chattishgarh state) on the west, by 
the districts Khammam, East Godavari, Visakhapatnam and Srikakulam (of Andhra Pradesh state) on the South 
and by the Bay of Bengal on the east. The state’s climate is categorized by hot summer and cold winter in the 
interior but a moist and equable climate in the coastal region near the Bay of Bengal.

Data and methodology
Data collection and preprocessing
The month-wise rainfall data of 15 districts during the monsoon season from 1901 to 2023 are obtained from 
the National Data Centre, IMD, Pune and the website of the Special Relief Commissioner (SRC), Government 
of Odisha (www.srcodisha.nic.in). The inverse distance weight (IDW) method is used to the adjacent district’s 
known rainfall data to fill up the missing data of the concerned district. Month-wise rainfall data during the 
southwest monsoon season, June to September, and the whole monsoon season, about 15 districts, as shown in 
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Table 1, for the period 1901 to 2023, were used in this study. Utmost care has been taken to scrutinize the data 
for its accuracy and reliability. Each district comprises some blocks, and rainfall is calculated based on rainfall 
recorded at blocks. Rainfall distribution during the southwest monsoon season is characterized by monsoon 
systems such as low-pressure areas (monsoon lows), depressions or deep depressions forming in the Bay of 
Bengal. Moreover, rainfall distribution depends upon the system’s track and life span. However, widespread 
rainfall is realized by low-pressure systems as compared to Depression or Deep Depression or, in rare cases, 
cyclonic storms during monsoon season. In contrast, depression or its further intensification process measures 
the higher intensity rainfall over certain areas as most of the monsoon system generally moves in a northwest 
direction31. Given these rainfall characteristics, verification of rainfall of the specific block day-wise as well 
as the whole month is made concerning the rainfall amount of adjacent blocks falling within the district and 
adjacent districts. Besides these checks, district-wise rainfall calculations of IMD and SRC were also referred to 
for verification. In case of more significant discrepancy, the monsoon system along with the track was taken into 
consideration, and then the correct rainfall amount of either SRC or IMD was accepted in case a similar amount 
or near to that is recorded in adjacent blocks of the same district or nearby districts falling in the region. Similar 
checking procedures were adopted for break-in monsoon conditions or insitu phenomena by monsoon current 
as a higher amount of rainfall does not happen widespread but in isolated blocks (one or two blocks) and light 
rainfall in adjacent blocks. Data about the total geographical area of each of the 15 districts, forest cover, and crop 
area during the monsoon season from 2000 to 2022 are collected from the Odisha Agriculture Statistics manual 
published by the Department of Agriculture and Farmers Empowerment, Government of Odisha for the years 
2000 to 2022. The data is accessible at (http;//agri.odisha.gov.in).

District Gross Primary Productivity (GPP) of Odisha state was obtained from a Moderate Resolution Imaging 
Spectroradiometer (MODIS) GPP product with the help of the Google Earth Engine (GEE) platform. The 
MODIS GPP product, especially the MODI7 A2 dataset, provides vital information on vegetation productivity 
across various landscapes32. MODIS GPP dataset was filtered to encompass the desired temporal range relevant 
to this study. The dataset comprises images collected at a 1 km resolution expressed in gC/m2/day (grams 
of carbon per square meter per day). The shape file containing districts of Odisha was uploaded to the GEE 
platform, facilitating the clipping of the GPP dataset to focus exclusively on the area or district of interest. By 
applying the spatial filter, GPP values are extracted specifically for the districts of the Odisha region. To generate 
monthly GPP files, the dataset was aggregated by month, and then the GPP values were exported as GeoTIFF 
files, enabling future processing and analysis.

Homogenization process
The monthly rainfall data of 15 districts in Odisha are scrutinized for missing or incorrect entries. A district’s 
monthly rainfall is calculated using the number of block rain gauge stations. These rainfall data may be affected 
by non-meteorological factors such as instrumentation, growing trees near rain gauge stations, shifting of rain 
gauge sites and procedure of measuring rainfall every day using appropriate measuring glass and changes in 
the surrounding environment like urbanization as well as installation of rain gauge at a site33,34. These data may 
yield spurious results due to the influence of non-climatic factors obscuring the effects of climate change or 
variability35–38. Therefore, the month-wise rainfall data of the districts need homogenization to remove artificial 
discontinuities as homogeneous time series data of temperature or rainfall are used to study climate variability 
or trend because change patterns of observed data only by weather and climate39.

Each district’s monthly total rainfall from 1901 to 2023, from June to September, was homogenized separately 
using a homogenization software package known as RH tests V4 by relative homogeneity test. For the relative 
homogeneity test, a composite reference series will be created for the target time series (station or observatory 
data to be homogenized). The correlation coefficients were calculated for the time series data of the target 

Sl. No Name of the districts Geographical area (‘000 Ha) Agro-climatic zone

1 Angul 638 Mid-central table lands

2 Baragarh 584 Western central table lands

3 Bhadrak 250 North-eastern coastal plains

4 Cuttack 393 Mid-central table lands

5 Gajapati 433 North-eastern ghats

6 Ganjam 821 North-eastern ghats

7 Kalahandi 792 Western undulating lands

8 Kendrapara 264 East & South coastal plains

9 Keonjhar 830 North-central plateau

10 Khurda 281 East & South coastal plains

11 Koraput 881 Eastern ghats highland

12 Malkanagiri 579 South eastern ghats

13 Puri 348 East & South coastal plains

14 Sambalpur 666 Western central table lands

15 Sundergarh 971 North-western plateau

Table 1.  Districts with Agro-climatic zone for the study purpose. (Source: https://agri.odisha.gov.in).
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station, and the rainfall time series data for the district or station exhibited a significant correlation coefficient 
of 99%. The probability of the two-tailed test was used to determine whether to include or reject the station 
or district to calculate the composite reference series. The concerned districts’ sorted-out time series data will 
be used to create a composite reference series for the target station by averaging these selective or sorted-out 
districts40. To evaluate the homogeneity of the target series in comparison to the composite reference series, the 
RH tests V4 software program was utilized. There has been extensive usage of this software package in climate 
studies41–47. Utilizing the composite reference series, the relative test uses the penalized maximal T (PMT) test48 
to identify arbitrary shifts or sudden changes in the data. This approach addresses several change points and 
empirically takes into consideration the influence of the lag-1 auto-correlated noise by employing a recursive 
testing methodology49. (Wang, 2008b) states that the method lessens the impact of varying sample sizes before 
and after a specific time point by integrating an empirical function into each algorithm. The final homogenized 
rainfall time series data for each district, processed for monthly, seasonal, and annual periods, will be used in 
further research, including the Mann–Kendall, Pettitt, and GPP vs rainfall assessment. To further refine the 
analysis, the method minimizes the impact of unequal sample sizes before and after a specific time point using 
an empirical function embedded in each algorithm. The final homogenized rainfall time series data for each 
district, processed for monthly, seasonal, and annual periods, will be employed in subsequent analyses, including 
the Mann–Kendall, Pettitt, and GPP versus rainfall assessments.

Trend analysis: Mann- Kendall test and Sen’s slope estimator
Mann- Kendall (MK) test is a widely used non-parametric statistical method for detecting trends in time series 
data50,51. This test is particularly suitable for analyzing climatic and hydrological data as it does not assume a 
specific distribution for the data and is robust against missing values and outliers. Moreover, its use is more 
prevalent in environmental and climate data series to detect monotonic trends in long-term time series data 
that are either increasing or decreasing for parameters like temperature, rainfall, etc. In climatological research, 
the environmental variables, such as temperature, rainfall, etc., change over time due to natural variability or 
anthropogenic influences like climate change. Moreover, some climatological time series data do not follow 
a normal distribution so that this test will be applicable52. The Mann–Kendall (MK) test is based on a null 
hypothesis (H0), which assumes no trend, and an alternative hypothesis (Ha), which posits the existence of a 
trend53. The actual slope or rate of change per unit of time is estimated using Sen’s slope (SS) estimator54. To 
account for autocorrelation in the results of the MK test, serial correlation was assessed before applying the MK 
test. The lag-1 serial correlation coefficient r1 was computed for a two-tailed test at a 5% significance level using 
the following equation55,56:

	
r1 =

∑n−1
i=1 (xi − x) (xi+1 − x)∑n

i=1 (xi − x)2

where,
xi= Value of an observation in the time series.
x = Mean of the sample.
n = Sample size.
The calculated autocorrelation co-efficient r1 was compared against the confidence interval defined by the 

following equation:

	
r1 (95%) = −1 ± 1.96

√
n − 2

n − 1

Suppose the lag-1 serial correlation coefficient (r1) falls outside the upper and lower bounds of the confidence 
interval; the time series is considered not serially correlated, and the MK test can be applied directly. However, if 
r1 falls within the bounds, the trend-free pre-whitening (TFPW) approach, a modified version of the MK test, is 
applied to remove the effects of serial correlation and ensure reliable trend detection57.

Mann–Kendall test statistic (S) can be computed to evaluate the trend S for each pair of data points xj  and 
xi for i < j, then the sign of the difference between the values can be computed using the following expression:

	
S =

∑n−1

i=1

∑n

j=i+1
sgn(xj − xi)

where sgn(xj − xi) is the sign function, which is written as

	
sgn(xj − xi) =

{
1 if xj > xi

0 if xj = xi

−1 if xj < xi

The value of S indicates the overall direction of the trend. The + ve value of S suggests an upward trend, and the 
–ve value of S suggests a downward trend.

If there are tied values in the dataset, then the variance of S is calculated using the following expression:

	
V ar (S) =

n (n − 1) (2n + 5) −
∑m

i−1 ti(ti − 1)(2ti + 5)
18
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where ti = represents the number of ties of length ‘i’ (data points with equal values), m is the number of tied 
groups and ‘n’ is the total number of observations.

The Z-score is evaluated to standardize S, and then the statistical significance of the trend can be determined:

	

Z =




S−1√
V ar(S)

, if S > 0
0, if S = 0

S+1√
V ar(S)

, if S < 0

The trend can be interpreted as increasing or decreasing based on the positive or negative values of Z statistic. A 
Z value of 0 indicates no trend, suggesting that the data are typically distributed with no significant trend.

To know the magnitude of the trend, Sen’s slope is applied, where the median slope is calculated for all pairs 
of data points (xj , xi)

	
β̂ = Median =

(
xj − xi

j − i

)
For all 1 ≤ i < j ≤ n

where xj  and xi are data points at times j and i and j > i, the final estimate of the trend is the median of these 
slopes, providing a robust measure of the rate of change in the data.

Change point detection: Pettitt test
The Pettitt test is non-parametric, and it is used in hydrology and climatological series data to detect a single 
change point, especially for temperature, rainfall or streamflow. It is based on the data’s rank order and identifies 
when a significant shift occurs58–60. It is based on the rank order of data and identifies when a significant shift 
occurs in the time series.

Let a time series x1, x2, –––, xn consist of ‘n’ observations and ‘k’ is the potential change point in the time series 
data. So, there are two groups: one before ‘k’ (i.e. x1, x2, –––, xk) and one after ‘k’ (i.e. xk+1, xk+2, ––––, xn).

The Pettitt test statistics Uk is computed for each potential change point k as follows

	
Uk =

∑k

i=1

∑n

j=k+1
sgn(xj − xi)

where sgn(xj − xi) is the sign function, which is

	

sgn(xj − xi) = 1 if xj > xi

0 if xj = xi

−1 if xj < xi

The test statistic ‘K’ is the point where the absolute value of Uk  is maximized

	

K =Max |Uk|
k

If any exists, K represents the most likely point where the change occurs. Under the null hypothesis (no change 
point), K does not exceed specific critical values determined by approximate probability values or significance 
levels, typically derived using Monte Carlo simulations or asymptotic approximations. The significance of the 
change point is tested by calculating the p-value associated with the test statistics.

	
p ≈ 2exp

(
−6k2

n3 + n2

)

where ‘n’ is the total number of data points in the series. The null hypothesis is rejected if the p-value is less than 
the significance level ‘α’, indicating a significant change point in the series.

Gross primary productivity (GPP) and rainfall analysis
Gross Primary Productivity (GPP) represents the total amount of organic carbon assimilated by vegetation 
through photosynthesis per given unit of time and area. It is the most significant carbon flux in the carbon 
budget and plays a vital role in the global carbon cycle. The variation of GPP might intuitively represent the effect 
of climate and environmental change on plants and ecosystems. Water is a crucial input for plant growth. In 
agricultural systems, rainfall plays a vital role in determining crop yields and ecosystem productivity. Adequate 
rainfall supports plant growth by providing water for photosynthesis, nutrient uptake, and transpiration. While 
rainfall is essential, excess water can lead to waterlogging, root damage, and reduced oxygen availability in the 
soil, ultimately affecting plant health and GPP. On the other hand, too little rainfall can lead to drought stress, 
limiting photosynthesis and biomass production. Reduced water availability also hinders nutrient uptake and 
can stunt plant growth.
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Threshold analysis
Threshold analysis is used to identify an ecological factor’s specific range; in our case, rainfall, which optimizes a 
particular outcome, is GPP61,62. Our purpose is to find the point at which GPP reaches its highest value in terms 
of varying levels of rainfall during the monsoon season concerning each district in our study. Outside this range, 
GPP begins to decline due to the limiting or damaging effects of either excess or insufficient rainfall.

The range of rainfall is divided into bins of equal width. Each rainfall point is categorized into a corresponding 
bin, and for each bin, the mean GPP is calculated by the formula63:

	
Mean GPP in Binj = [

∑nj

i=1
GP P i]/nj

nj : Number of rainfall observations in the jth bin.
GPPi: GPP value for the ith observation in that bin.
The bin with the highest mean GPP is identified, and the formula extracts the rainfall range for the optimal 

bin.

	 Optimal Bin = arg max (Mean GPP Bins)

Then, bar charts are plotted with rainfall bins on the X-axis and the mean GPP of each bin on the Y-axis.
Rainfall data are grouped into bins (e.g., 50 mm) to create categories for analysis. The monsoon seasonal 

rainfall of 15 districts and corresponding GPP data are generated. For each bin or rainfall range, the mean GPP 
value is calculated. It summarises how GPP responds to different levels of rainfall17,64. The rain range is identified 
to generate the maximum mean GPP. To visualize these things, bar charts are prepared to know the optimal 
rainfall range where GPP is maximized. Once the optimal range is created, interpret the findings to understand 
the rainfall conditions that best support plant growth and ecosystem productivity.

Results and discussions
Homogeneity of rainfall
Initially, homogeneity testing was made for monthly time series data from June to September of the Southwest 
monsoon season from 1901 to 2023 for 15 districts falling under different agro-climatic zones. Eighty percent 
of rainfall mainly occurs during the southwest monsoon season, the only season favourable for maximum rain. 
Our interest is to understand the variation of Kharif rice production year to year, so we will study the rainfall 
pattern during the monsoon season. Accordingly, an attempt has been made for homogenisation along with an 
analysis of rainfall for the months during the monsoon season. These homogenised rainfall data have been used 
in our study for the MK test, Pettitt test, GPP analysis and threshold value analysis in subsequent sub-sections.

Trend analysis-Mann–Kendall test
This section analyses the rainfall trend in districts across different agro-climatic zones by examining the intensity 
of Z values and trends at a 0.05 significance level. The analysis is based on the Mann–Kendall (MK) test applied 
to monsoon rainfall and monthly rainfall during the monsoon period. Mann- Kendall test was used to detect a 
monotonic trend in the 123-year rainfall series, and Sen’s slope estimator quantified the rate of change.

No serial correlation is observed in any of the individual months or the whole monsoon season of the 
respective districts. The trend with Z-score values of the MK test from June to September and for the entire 
monsoon period concerning 15 districts of Odisha are shown in Table 2.

On verifying the data, there is decreasing trend of rainfall in July of Angul with Z = −2.7, or at p = 0.01 at 
95% significance level and rate of change = −0.75 mm per year whereas increasing trend of rainfall in August 
of Cuttack with Z = 2.22, p = 0.03 and rate of change 0.63 mm per year. However, analysis of rainfall in July of 
Sambalpur shows decreasing trend of rainfall with Z = −1.97, p = 0.05, rate of change = −0.7 mm per year. The 
decreasing trend of monsoon rainfall in Sundergarh with Z = −2.5, p = 0.01, rate of change = −1.30 mm per year 
and decreasing trend in July of Sundergarh with Z = −2.68, p = 0.01, rate of change = −0.83 mm per year. No trend 
observed in the rest of the months and monsoon period of the districts concerned in this study. During June 
month, most of the districts under study show a decreasing trend (varies from −0.007 to −0.303 mm/year) except 
Baragarh, Keonjhar, and Sambalpur, with an increasing tendency (varies from 0.106 to 0.179 mm/year). In July, 
a decreasing tendency was observed in most of the districts (varies from −0.007 to −0.829 mm/year) except 
Baragarh, Gajapati, Ganjam and Kalahandi, with an increasing tendency (varies from 0.024 to 0.505 mm/year). 
In the case of August month, the increasing tendency is realised in Angul, Bhadrak, Cuttack, Ganjam, Kalahandi, 
Kendrapara, Keonjhar, Khurda and Puri (varies from 0.012 to 0.628 mm/year). In contrast, a decreasing tendency 
noticed in the districts of Baragarh, Gajapati, Koraput, Malkanagiri, Sambalpur, and Sundergarh (varies from 
−0.079 to −0.650 mm/year). During the last month of the monsoon season in September, most of the districts 
indicate an increasing tendency of rainfall (varies from 0.008 to 0.315 mm/year) except Keonjhar, Koraput, 
Malkanagiri and Sambalpur (varies from −0.05 to −0.199 mm per). After taking into consideration of whole 
monsoon season, decreasing in rainfall has been observed in the districts of Angul, Bhadrak, Gajapati, Keonjhar, 
Koraput, Malkanagiri, Sambalpur and Sundergarh (varies from −0.194 to −1.364 mm per year) whereas rising 
tendency noticed in the districts of Baragarh, Cuttack, Ganjam, Kalahandi, Kendrapara, Khurda and Puri (varies 
from 0.04 to 0.8 mm per year).

The increasing trend in rainfall at Cuttack suggests a possible shift in regional climate pattern with a steady 
increase of precipitation in August over the last century. Moreover, it raises concerns about potential flooding 
or shifts in agricultural conditions due to water availability. If the trend continues, there might be a significant 
increase in August average rainfall, implying higher average annual rainfall over the next few decades. In a 
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similar context, the decreasing trend of rainfall indicates a drought-like situation in July and the monsoon season 
in the districts. In case of decrease in monsoon rainfall as well as average annual rainfall, paddy production in 
respective districts has been affected, as rainfall in July and August is crucial for good harvesting of paddy crop in 
Odisha. Mann- Kendall test results suggest no significant trend in monthly and whole monsoon period rainfall 
in most of the districts, and this stability implies that regional rainfall patterns have not shown an upward or 
downward trajectory, which may be attributed to balancing natural variability. So, minimal long-term climate-
driven shifts in precipitation. Districts with increasing rainfall trends in July and August indicate the growth of 
paddy, whereas there are potential risks for water availability in the districts with decreasing trends.

In the coastal state of West Bengal, the researchers have shown a similar rainfall pattern. Some districts 
exhibit an increasing trend, whereas others record a decreasing trend in the monsoon season65,66. Analysis of the 
MK test indicates that the overall rainfall pattern has remained relatively stable over the 123 years for most of the 
districts under study, and this finding aligns with studies in similar regions or districts that report stable rainfall 
patterns, suggesting minimal long-term climate-driven shifts in precipitation.

Change point analysis (Pettitt Test)
The selection of change points for monsoon rainfall in each of the 15 districts, determined based on the p-value 
performance of these tests, is presented in Table 3.

This table describes the presence of the change point (true or false), the p-value (P), the probable change 
year, and the mean rainfall before and after the detected change point. In the Angul district, the change point is 
marked as accurate with a p-value of 0.04, indicating statistical significance. The probable change year is 1944, 
with a decrease in mean rainfall from 1175.01 mm to 1073.30 mm. It suggests a long-time decline in rainfall after 
1944. In a similar context, the p-value of 0.00 in the Koraput district shows a highly significant change point in 
1947 with a decrease in rainfall from a pre-change mean of 1470.13 mm to a post-change mean of 1152.37 mm, 
resulting in a substantial shift in rainfall patterns. While analysing Sundergarh district parameter, the p-value of 
0.005 also points to a significant change with a year of probable change being 1963 indicating decrease in rainfall 
from 1286.91 mm before 1963 to 1134.78 mm after the year. Moreover, p-values are above 0.05 for Baragarh and 
Bhadrak with 0.36 and 0.55, respectively, suggesting no statistically significant change point, although probable 
change year and mean values are listed.

From the table, it is inferred that the probable change years vary by district, ranging from 1919 to 2009, 
suggesting that the different districts experienced shifts in rainfall at other times, possibly due to localised 
environmental changes or geographical factors affecting rainfall distribution. The districts with statistically 
significant changes showing shifts in rainfall patterns could affect water resource planning, agricultural practices 
and flood management strategies. Keeping in view the probable change year of all 15 districts, it is observed that 
the total mean rainfall increased after the change point in districts such as Cuttack (133.39 mm), Ganjam (52.38 
mm), Kalahandi (179.11 mm), Kendrapara (95.60 mm) and Puri (69.30 mm) whereas a decrease in rainfall after 
post change point is observed in remaining districts. The shifts in rainfall patterns can be attributed to climate 
change and human impact, including land use changes in the region. In case rainfall increased or became more 
erratic after the change point, it might imply greater variability or risk for agriculture, flood control, or water 
management.

The Pettitt test successfully identified significant change points in rainfall across different districts from the 
districts under study (e.g., Angul in 1944, Koraput in 1947, and Sundergarh in 1963). The pre-and post-change 
rainfall means to confirm a shift in monsoon rainfall patterns, with some districts experiencing increased and 
others decreasing rainfall after the change point. The p-values were checked for statistical significance, ensuring 
the reliability of detected change points. The findings align with previous studies on climate variability and 

District h p Probable change year Mean previous (mm) Mean post (mm)

Angul True 0.04 1944 1175.01 1073.30

Bargarh False 0.36 1964 1182.80 1104.87

Bhadrak False 0.55 1973 1097.13 1037.30

Cuttack False 0.38 2000 1140.17 1273.56

Gajapati False 0.58 1919 990.42 894.84

Ganjam False 0.16 1977 833.61 885.99

Kalahandi False 0.27 1989 1180.41 1359.52

Kendrapara False 0.36 1983 1013.44 1109.04

Keonjhar False 0.33 1964 1155.32 1091.81

Khurda False 1.08 2009 1131.50 1058.89

Koraput True 0.00 1947 1470.13 1152.37

Malkanagiri False 0.17 1958 1389.40 1263.98

Puri False 0.41 1983 1051.43 1120.73

Sambalpur False 0.06 1964 1425.38 1279.22

Sundergarh True 0.005 1963 1286.91 1134.78

Table 3.  The Results of the Pettitt test for change point analysis of monsoon rainfall from 1901 to 2023 
summarized.
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human-induced changes in land use, supporting the validity of the detected change points. By applying the 
Pettitt test, researchers indicated a shift in Kolkata of the coastal state of West Bengal during the monsoon season 
while analysing rainfall data from 1901 to 201967. The identified years coincide with major climate pattern shifts 
(e.g., post-1940 s monsoon weakening in India, early 1960 s El Nino episodes).

Gross primary productivity (GPP) analysis
The variation of GPP during the monsoon season in Odisha during the period 2000- 2022 is illustrated in Fig. 2.

The peak of monsoon GPP in the past 23 years was 1026.67 gC/m2 per season in 2015, and the state was 
566.45 gC/m2 per season in 2001. It may happen due to global warming causing increased CO2 concentration 
and other persistent global climate changes resulting in vegetation growth68. Regression analysis was applied to 
understand the linear trend for the period from year 2000 to 2022. The GPP increased at a rate of 10.8764 gC/m2 
during the monsoon season, and the correlation coefficient is 0.65. Trend analysis of GPP during the monsoon 
period indicates a gradual increase in rainfall from 2000 to 2022, but the coefficient of correlation is −0.45. The 
increasing trend with a negative correlation coefficient is attributed to the variability of rainfall distribution 
during the monsoon season, followed by occasional heavy rainfall.

The linear positive trend is attributed to the forest cover consistently enhancing rainfall efficiency, favouring 
increased GPP. Also, it may be additionally due to high-yielding paddy varieties, better irrigation facilities, and 
fertiliser use that might have favoured increasing GPP.

An attempt has also been made to understand the trend of GPP concerning rainfall for a month and the whole 
monsoon season separately for each district. The analysis reveals that the regression analysis trend of GPP shows 
an increase in rainfall, barring no change or insignificant trend in September for Gajapati, Koraput, Malkanagiri, 
and Sambalpur, while a decreasing trend was observed in Sambalpur in June. However, the coefficient of 
correlation during the whole monsoon months June to September between GPP and rainfall is almost negative 
or insignificant, barring positive for Koraput and Malkanagiri (0.27 and 0.20 respectively) and also positive CC 
for Baragarh, Gajapati, Ganjam, Koraput and Malkanagiri (0.26, 0.29, 0.09, 0.11 and 0.21 respectively) in June.

The lower value of the coefficient of correlation may be due to excess rainfall associated with cloud cover, 
causing reduced solar radiation available for photosynthesis and impacting GPP value as GPP depends on 
sunlight. Moreover, advanced agricultural practices, such as high-yielding paddy varieties, better irrigation 
facilities, and fertilisers, are favoured to boost GPP. Moreover, a negative correlation indicates that rainfall may 
not be a direct positive contributor to GPP in many cases. Instead, extreme rainfall might be detrimental, causing 
stress in paddy crops. Effective water management practices such as drainage systems and supplementary 
irrigation can mitigate these issues. Moreover, threshold analysis can help identify the optimal rainfall ranges 
for GPP in each district by examining the relationship between rainfall and GPP across varying ranges (“Gross 
primary productivity (GPP) and rainfall analysis” and “Threshold analysis”). As shown in Fig. 3, the intercept 
values increase progressively with each subsequent month, highlighting the impact of cumulative rainfall on 
GPP.

The intercept values in districts such as Kalahandi, Sambalpur, and Gajapati are higher due to their excellent 
forest cover, which contributes to higher GPP values. Extensive forests enhance carbon assimilation through 
photosynthesis, leading to a more significant impact on GPP in these regions. However, the crop area percentage 
is higher in the Kendrapara and Bhadrak districts. It shows that GPP may not always respond linearly to rainfall. 
A high intercept could mean that factors other than rainfall, such as temperature, solar radiation and nutrient 
availability, substantially drive productivity, particularly at lower rainfall levels. Therefore, a higher intercept 
implies that external inputs (e.g. irrigation, fertilisers) significantly support productivity even in low rainfall 
conditions, that is, efficient agricultural practices and better adaptation to rainfall variability.

Fig. 2.  Trend of GPP from 2000 to 2022 during monsoon season for the state of Odisha.
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A region or district with high intercept values shows that irrigation or alternative water sources effectively 
maintain productivity. By comparing intercepts across regions or districts, someone can identify better or worse 
areas equipped to handle rainfall deficits. Higher forest cover (e.g., Gajapati, Koraput and Malkanagiri) enhances 
GPP, while excessive rainfall can reduce solar radiation and affect photosynthesis.

In Fig. 4, the positive correlation in June regarding Baragarh, Gajapati, Ganjam, Koraput, and Malkanagiri 
signifies that soil moisture from pre-monsoon showers or irrigation might sustain baseline GPP even before 
significant rainfall. The negative correlation may be due to uneven rainfall distribution in subsequent months, 
even with adequate total rainfall, which can stress crops during critical growth stages (e.g. tillering in July or 
flowering in August). The misalignment of rainfall timing and crop water demand reduces the positive impact of 
rainfall on GPP. Regions or districts with a low coefficient of correlation (CC) might be less sensitive to rainfall 
variability due to alternative water sources (e.g. irrigation), so irrigation systems can mitigate the impact of poor 
monsoons.

GPP trends show increasing productivity despite inconsistent rainfall correlations and negative correlations 
suggest that extreme rainfall impairs paddy growth, emphasizing the need for efficient water management. In 
Odisha, excess rainfall, especially during the monsoon, can lead to waterlogging in paddy fields. This can reduce 
GPP due to oxygen stress in the soil, impairing root respiration and nutrient uptake. Waterlogged conditions 
may also favour pest infestations and diseases, further impacting productivity. Variability in rainfall distribution 

Fig. 4.  r- value for June, July, August and September for 15 districts of Odisha.

 

Fig. 3.  Comparison of intercept values on Bar Charts from the regression between GPP and Rainfall during 
monsoon season for specific districts of Odisha.
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within the monsoon season might lead to periods of drought stress followed by heavy rainfall. This can disrupt 
crop growth stages, lowering overall GPP.

The plotting of r-values for the whole monsoon of 15 districts with the percentage of forest area and r-values 
versus the rate of crop area in Fig. 5(a) and 5(b), respectively, indicate the sensitivity of individual land use classes 
during the monsoon period.

The linear trend line indicates that the GPP was more sensitive to forest area than to the crop area region. 
The r-value concerning forest area is more than 0.6 (= 0.73). In contrast, the crop area shows 0.32 because forest 
areas exhibit higher photosynthetic activity due to dense forest cover, significantly contributing to GPP. The 
forest area also increases yearly. In contrast, photosynthetic activity is limited by seasonal cropping patterns. 
Moreover, monsoon rain vigorously enhances the photosynthetic effect in forest areas compared to seasonal 
crop areas. Forests absorb and retain water, reducing runoff and ensuring consistent soil moisture availability. 
This moderates the impact of rainfall variability on GPP.

If forest cover consistently enhances the efficiency of rainfall in driving GPP, the graph will show a linear 
trend. Beyond a certain level of forest cover, the rainfall-GPP correlation might saturate, leading to a plateau in 
the graph. Districts with low forest cover may depend more on agricultural land for GPP, making the correlation 
between rainfall and GPP stronger in such districts. In contrast, forest-dominated districts may exhibit 
relationships that are more complex. It may be due to the ecological buffering provided by forests. Higher forest 
cover (e.g., Gajapati, Koraput and Malkanagiri) enhances GPP, while excessive rainfall can reduce solar radiation 
and affect photosynthesis.

The increasing GPP trend (2000–2022) with a correlation coefficient 0.65 suggests a significant positive trend 
in vegetation productivity, aligning with previous MODIS-based GPP studies. The correlation analysis between 
GPP and rainfall showed mixed relationships, indicating the complexity of rainfall impacts on productivity. 
The negative correlation in some districts suggests excessive rainfall and cloud cover may reduce available solar 
radiation, affecting photosynthesis. The variation in r-values with land use (forest vs cropped areas) confirms 
that forested regions are more sensitive to rainfall changes than cropped areas, validating the ecological role of 
forests in carbon assimilation.

Threshold analysis
The optimal rainfall range is generated during monsoon season for 15 districts of our study, and the corresponding 
maximize GPP is also sorted out from bar chart Fig. 6(a) to 6(o). This signifies the ideal crop growth or ecosystem 
condition in the concerned district. Too little or too much rainfall outside the optimal range leads to reduced 
GPP. Rainfall deficits can cause drought stress, while excess rain can result in excess rainfall, water logging, or 
flooding. The threshold value of GPP against the optimal rainfall range is shown in Table 4. The highest GPP 
threshold values are generated for Gajapati, Ganjam, Kalahandi, Koraput and Malkanagiri. However, the optimal 
rainfall range is higher for Kalahandi, Koraput and Malkanagiri, whereas the low range is for Gajapati and 
Ganjam. This is attributed to the higher percentage of forest area in Gajapati. As it is observed that the coefficient 
of correlation is negative for rainfall versus GPP, threshold analysis can identify any increasing trends where GPP 
rises with rains up to the optimal range. These are reflected in Table 4. and bar charts of each of the 15 districts 
in Figs. 6 (a) to 6 (o).

The threshold value provides a guideline for optimal agricultural practices, identifying ideal conditions for 
farming and crop yield predictions. Depending on soil, crop, and farming practices, different districts may have 
varying thresholds. The optimal rainfall range for GPP indicates that districts experiencing the optimal rainfall 
range are likely to exhibit peak agrarian productivity. Based on this information, agricultural planning and 

Fig. 5.  Regression outputs of coefficient of correlation between Gross Primary Productivity (GPP) and rainfall 
with land use class (%) for the whole of Odisha (based on 15 districts). 5.(a). r values for monsoon months and 
forest area (%) and 5.(b). r values for monsoon months and cropped area (%).
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climate adaptation strategies can be considered for prospects, particularly in monsoon-dependent districts. As 
rainfall varies across regions and years, periodic reassessment of these thresholds is essential to ensure sustainable 
land and water management practices. Figure 7 shows the GPP value for the optimal range of rainfall during 
the monsoon season for Odisha using only 15 districts’ data. This analysis identified the rainfall range 950–1000 
mm as optimal for maximizing GPP, with a peak mean GPP of 903.63 during the monsoon season for Odisha.

Fig. 6.  The Bar Chart highlights how GPP varies across different rainfall ranges.
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Identifying optimal rainfall-GPP relationships helps in climate adaptation strategies. Efficient irrigation, 
drainage, and precision farming can mitigate risks from extreme rainfall variations. Periodic reassessment of 
threshold values is necessary for sustainable water and land management.

The threshold analysis identified optimal rainfall ranges for maximizing GPP, confirming that excess and 
deficit rainfall reduces GPP. The highest GPP values in forested districts like Gajapati, Koraput and Malkanagiri 
suggest a strong rainfall-driven productivity response in natural ecosystems. The statistical approach using 
rainfall bins and mean GPP values ensures an objective method to determine threshold values. The findings 
align with global studies on non-linear GPP responses to precipitation, supporting their validity.

Conclusion
This study highlights the intricate relationship between monsoon rainfall and GPP in Odisha’s diverse agro-
climatic zones. While most of the districts exhibit stable rainfall trends. Some show significant declines, 
emphasizing the need for adaptive water resource planning. Higher intercept values in regression analysis of 
rainfall versus GPP indicate efficient agricultural practices. Better adaptation to rainfall variability and a low 
coefficient of correlation (r) imply that these regions are less sensitive to rainfall variability due to alternative 
water sources (e.g. irrigation). Threshold analysis identified optimal rainfall ranges for maximizing GPP across 
districts based on forest cover and crop type. Presumably, excessive rainfall diminishes GPP due to waterlogging, 
while deficit causes drought stress. The findings emphasize the importance of localized agricultural strategies 
tailored to rainfall thresholds for sustainable productivity. Future studies could integrate additional climatic 
factors such as temperature and CO2 concentration to refine the understanding of ecosystem productivity under 
changing climate conditions.

Fig. 7.  Bar chart highlights the variation of GPP across different optimal ranges of rainfall.

 

Name of the region/state/district Optimal range of rainfall (mm) GPP (gC/m2)

Odisha 950–1000 903.63

Angul 850–900 944.64

Baragarh 900–950 904.13

Bhadrak 850–900 745.63

Cuttack 1000–1050 947.64

Gajapati 850–900 1137.92

Ganjam 950–1000 1037.19

Kalahandi 1050–1100 1056.05

Kendrapara 800–850 769.73

Keonjhar 800–850 1046.86

Khurda 900–950 973.63

Koraput 1900–1950 1001.66

Malkanagiri 1900–1950 1181.16

Puri 1000–1050 810.32

Sambalpur 900–950 945.87

Sundergarh 1000–1050 925.46

Table 4.  Threshold Analysis of highest GPP based on Optimal Rainfall Range for 15 districts of Odisha.
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June rainfall sets the stage for the rest of the monsoon season. A significant departure (deficit or excess) 
in June affects soil moisture availability, sowing schedules, and early crop vigour, creating a cascade of effects 
throughout the growing season. For example, if there is a deficit of rainfall in June, then late sowing or poor 
establishment leads to shorter crop duration, reduced tillering, and lower overall productivity. While good 
rainfall in subsequent months can partially compensate for an early-season deficit, it often cannot fully recover 
the lost potential due to the critical role of June rainfall in establishing optimal growing conditions. Adaptive 
water resource planning is needed for districts with decreasing rainfall trends. GPP monitoring and forecasting 
tools should be developed to improve agricultural resilience. Long-term climatic land-use studies should be 
integrated to develop better climate adaptation policies.

Identifying the optimal range that maximises GPP helps make informed decisions for agricultural 
practices, resource management, and climate adaptation. This study contributes to scientific knowledge such 
as providing long-term spatiotemporal rainfall trend analysis (1901–2023) using robust statistical methods 
(Mann–Kendall and Pettitt tests), and establishing a direct link between monsoon rainfall variability and 
Gross Primary Productivity (GPP), offering insights into ecosystems responses to climate variability. Moreover, 
the optimal rainfall thresholds for maximising GPP can be identified, which is crucial for climate-adaptive 
agricultural strategies in Odisha and demonstrates how forested and cropped areas respond differently to rainfall 
fluctuations, highlighting the role of land use in climate resilience. Besides these advantages, it offers validated 
methodological approaches, including crosschecking data with ERA5 and in-situ observations, ensuring 
accuracy and applicability in future climate studies.

Further studies could explore the combined effects of rainfall, temperature and other climatic variables, to 
provide a more comprehensive understanding of their interactions and impacts on paddy yield.

Data availability
The datasets used during the current study are available from the corresponding author upon reasonable request.
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