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Worldwide populations have historically experienced serious issues from infectious diseases, requiring 
coordinated and inclusive prevention measures. HIV is one of the most hazardous of these as it attacks 
CD4 + cells, or T-cell lymphocytes, which are crucial to human immunity. To explore the variability 
of HIV/AIDS transmission, this study introduces a nonlinear stochastic mathematical model that 
incorporates a recovery compartment to account for hospitalized patients’ progression to complete 
recovery and to better capture the intricate dynamics of disease transmission. Fractional derivatives 
are used with a generalized Caputo operator to enhance the accuracy of the model, effectively mixing 
the memory and genes that exist in biological systems. The model’s validity is affirmed through 
considerations of positivity, boundedness, reproduction number, stability, and sensitivity analysis. 
Stability theory is employed to explore both local and global stabilities. Sensitivity analysis identifies 
parameters with a significant impact on the reproduction number. To establish the existence and 
uniqueness of solutions, the model is qualitatively examined via fixed-point theory. Apart from that, a 
new numerical technique for simulations focused on the predictor-corrector strategy is implemented 
and MATLAB is used to verify the results. By comparing the fractional-order and integer-order 
derivatives, it is noted that the fractional-order method is the more accurate and realistic depiction 
of the dynamics of the disease. The suggested technique unlocks the door for more effective 
interventions giving researchers a competitive edge in learning about and managing the complex 
mechanisms of HIV/AIDS transmission.
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HIV, the human immunodeficiency virus, progressively debilitates the immune system, eventually resulting 
in Acquired Immune Deficiency Syndrome (AIDS), where the immune system is significantly impaired. A 
condition triggered by a pathogen that assaults and assaults lymphocytes, ensuing in a lessened defense against 
contaminated aliment, is also referred to as HIV. The latter stage, dubbed AIDS, can take a patient anywhere 
from 2 to 15 years to manifest. AIDS can be marked by particular cancers, ailments, or other devastating clinical 
manifestations. It is generally thought that over 30 million people perished from HIV over the span of 30 years 
and that 7000 fresh instances of the virus are contracted abroad entire day. An estimated 44% of new pathogens 
in 2015 were thought to have emanated from substantial groups and their spouses. Around one-fourth of all 
fatalities annually are triggered by accessible aliment, leading to severe repercussions for civilization1. According 
to HIV/AIDS data in 2021, over 38.4 million [33.9–43.8 million] individuals around the world are HIV positive, 
1.5 million [1.1–2 million] individuals have been impacted with HIV, 650,000 [510,000–860,000] individuals 
expired from illness that associated with AIDS, and 28.7  million individuals are approaching antiretroviral 
therapy2.

Screening CD4 + lymphocytes is a frequently utilized approach to monitoring the immune system’s 
effectiveness. Various personal fluids, such as plasma, sperm, pre-coughing fluid, secretions from the genitals, 
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and infant milk, are capable of enacting HIV from an HIV-positive individual to an AIDS-negative adult. HIV 
cannot momentarily be curable or averted, but it may be regulated with adequate medical assistance. ART 
diminishes the probability of conveying HIV, prolongs frequently destiny, and enhances well-being3. Drug 
resistance (DR) could hamper the therapeutic effect of ART agents, yet they have proven productive in lessening 
the prevalence of HIV as well as the associated mortality and morbidity. HIV-DR is marked by a mutation in 
the genetic code of HIV which renders it attainable to safely prevent the replication of the virus with a particular 
medication or a mixture of pharmaceuticals4,5. A deep understanding of HIV transmission dynamics is crucial 
for developing operative prevention and treatment approaches. Mathematical modeling plays a vigorous role in 
examining viral epidemiology, evaluating interventions, predicting future trends, and addressing serious social 
challenges.

In recent years, fractional calculus has appeared as a dominant tool for modeling complex systems, allowing 
the calculation of derivatives and integrals of any positive real order. This ability has significantly improved 
models by integrating non-local physiognomies and memory effects6. Several fractional derivative methods, 
such as the Riemann-Liouville, Katugampola, Hadamard, and Caputo derivatives, have proved their efficacy in 
improving the precision of simulations for Real-life occurrences8,28. The idea of fractional derivatives was initially 
introduced by Riemann-Liouville in 1832 and far ahead refined by Caputo in 1967. Caputo’s devising comprised 
initial and boundary conditions, making it more pertinent for solving practical problems5,7,10. Each derivative 
operator is intended to cater to precise system dynamics and present varying degrees of flexibility based on the 
requirements. Numerical, iterative methods and computational techniques have been widely applied to study 
fractional-order mathematical models9,29.

Recent studies have progressive numerical approaches, for instance, the A–B Forth Moulton approach 
presented by Baleanu8, under the context of the generalized Caputo operator (GCO). Mathematical models are 
characteristically classified as either deterministic or stochastic. For example, Li et al.11 estimated the dynamic 
behavior of models using both the SFD and NSFD methods. An ensemble-based approach with a temporal 
lag, reflecting the delay in a virus’s ability to infect healthy T cells, was discovered by Roy et al.12. Wu et al.8 
examined the erratic conduct and permanency of fractional differential equations (FDEs) under a generalized 
Caputo derivative framework. Cai et al.13 examined a model that incorporated the phases of symptomatic and 
asymptomatic development for infected individuals, enabled by a variety of treatments. Goyal et al.14 evaluated 
disease dynamics using the fractal fractional derivative operators (FDOs) and the Caputo–Fabrizio. To study the 
spread of HIV/AIDS, Aslam et al.15 constructed an FDO with a Mittag–Leffler kernel. The concept of piecewise 
FDEs employing the Atangana–Baleanu derivative was introduced by Iqbal et al.16, and an integer-order 
nonlinear HIV/AIDS propagation model was constructed by Shaiful et al.17 as a modification of a non-integer 
model. Additional notable publications include Jan et al.18, who proposed a model explaining the dynamics 
of HIV/AIDS transmission between genders, and Naik et al.19, who evaluated novel HIV/AIDS models using 
Caputo fractional derivatives. Piqueira et al.20 developed a model that brought social network effects into 
account. Kumar et al.21 evaluated an HIV transmission model using fractional-order approaches.

Anjam et al.26 utilized fractal-fractional derivatives via the Caputo operator to investigate HIV transmission 
patterns across three infection levels. A TB-HIV co-infection model incorporating exogenous reinfection and 
recurrent TB was studied using a non-local operator with a Mittag–Leffler kernel27. New models have been 
developed to study disease transmission, including a reaction-diffusion model for HIV/AIDS, emphasizing its 
chronic nature and socioeconomic impacts34; a Chagas-HIV model with fractional operators35; and a reaction-
diffusion framework for SARS-CoV-2 to enhance public health strategies37. Additionally, an Artificial Neural 
Network (ANN)-based framework was introduced to model Ebola transmission dynamics and long-term 
outcomes38.

Further advancements include mathematical models for Monkeypox transmission in humans and rodents39, 
Hepatitis B using fractional-order dynamics with memory effects40, and malaria in Africa incorporating 
treatment and vaccination strategies via the Atangana–Baleanu fractional derivative41. The study also explores 
the complex joint dynamics of bovine tuberculosis (bTB) and rabies, highlighting the challenges posed by their 
differing transmission mechanisms42. The versatility of fractional calculus in dynamic modeling, particularly in 
epidemiology, demonstrates its potential to address complex scientific problems and advanced computational 
techniques.

Several studies also have explored the mathematical modeling of HIV/AIDS dynamics using real-world data. 
A temporal fractional HIV/AIDS model with fractal dimensions was developed to examine the influence of 
awareness on the transmission dynamics of HIV/AIDS in India, utilizing actual data from 1990 to 2016 to 
validate the proposed model30. Similarly, Ref32. employed mathematical models to forecast the outbreaks of HIV/
AIDS—one of the most critical public health challenges—in South Africa from 1990 to 2021, aiming to assess 
the country’s preparedness for combating the epidemic in the near future. Furthermore, a mathematical model 
was formulated to investigate the dynamics of HIV/AIDS in real-world scenarios, incorporating reported HIV/
AIDS statistics from Pakistan (1992–2020) to analyze its transmission patterns and conduct a comprehensive 
mathematical assessment33.

In order to accurately model the long-term dynamics, crossover behavior, and memory effects of HIV 
transmission, it is necessary to choose the proper fractional operator and kernel type. The Caputo operator 
is an important decision in this situation because of its power-law kernel, which is exceptionally equipped for 
preserving these memory effects and long-term interactions. These features serve as vital for accurately modeling 
the intricate dynamics of HIV transmission because they enable a realistic depiction of the various elements 
that contribute to the virus’s spread. These components include individual behavior, social attitudes, healthcare 
restrictions, and the efficacy of treatments, each of which is important for analyzing and preventing HIV spread. 
As a result of this awareness, the study has shifted its attention to the findings’ deeper implications.
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This research investigates the dynamics of HIV transmission by establishing a compartment for recovered 
persons, which accounts for the implementation of hospitalized patients to recovery. The model is dependent on 
a generalized Caputo fractional operator (CFO) with two fractional-order variables, considerably improving its 
potential to capture genetic and memory effects. Six different compartments are used to classify the population. 
The model’s dependability is verified by a thorough study that uses the fixed-point theory framework to verify 
the existence and uniqueness of solutions. The significance of the research is tackled by establishing a new 
numerical method for simulations based on the predictor–corrector approach, which is validated in MATLAB. 
Simulation results are graphically presented for various fractional orders, allowing for comparisons with integer-
order models. This study underscores the efficacy of the fractional approach, highlighting the model’s sensitivity 
to changes in fractional orders.

The subsequent sections of the article are ordered as follows: “Essential preliminaries” offers a brief explanation 
of fractional-order calculus, whereas “Model construction” defines the model formulation and its fractional 
representation. “Qualitative analysis of model” concentrates on model analysis, and sensitivity analysis, and 
also discusses the stability aspects of the model under consideration. “Theoretical exploration of the FO HIV 
dynamics” provides the validation of the existence and uniqueness of the solution. “Numerical techniques for 
the devised model” offers specifics of the numerical simulations by using the novel predictor-corrector-based 
numerical technique and application to the proposed model. The numerical solutions are presented in “Results 
and discussion”, whereas the discussion of results is given. Finally, “Conclusion” offers a concise summary of the 
article.

Essential preliminaries
In this segment, the main definitions of generalized fractional operators from earlier research are reviewed, 
which will be applied in the study22–24.

Definition  The generalized fractional integral of a function z(p̂),is specified as δ ∈ (k − 1, k], while k ∈ N ( 
if remains integral)

	

Iδ,σ

a+ z(p̂) = σ(1−δ)

Γ(δ)

p̂∫

a

ξ(σ−1)(p̂σ − ξσ)δ−1z(ξ)dξ, p̂ > a,� (1)

 where σ > 0, and a ⩾ 0.

Definition  The parameter order δ of generalized Caputo derivative (GCD) for z(p̂) is specified that 
δ ∈ (k − 1, k], while k ∈ N  and σ > 0, a ⩾ 0,then

	

CDδ,σ

a+ z(p̂) = Ik−δ,σ

a+ (Xkz)(t̂) = σ(δ−k+1)

Γ(k − δ)

p̂∫

a

ξ(σ−1)(p̂σ − ξσ)k−δ−1Xkz(ξ)dξ, p̂ > a,� (2)

where X = (ξ(1−σ) d
dξ

), and approach the new derivative as an isolated case, when δ ∈ (0, 1) and a = 0,the 
new form GCD is given as follows:

	

CDδ,σ

a+ z(p̂) = σ(δ)

Γ(1 − δ)

p̂∫

0

(p̂σ − ξσ)−δz′(ξ)dξ, p̂ > 0.� (3)

Model construction
Analyzing the dynamics of HIV transmission and establishing effective preventative and treatment strategies 
are both enhanced by the incorporation of mathematical models. It is essential to construct such models 
using epidemiological strategies in order to provide insight into the basic mechanisms of HIV transmission. 
It is essential to determine important factors to mitigate HIV transmission. The development of prevention 
and treatment strategies has benefited tremendously from the construction and documentation of several HIV 
transmission models that depend on infectious mechanisms.

This research is centered on investigating the dynamics of HIV-AIDS transmission by presenting a 
compartment for recovered individuals, which accounts for the transition of hospitalized patients to recovery. 
The model construction distributes the whole populace of humanity into six distinct subsets those are outlined 
beneath: Susceptible uninformed populace (S̃u), the Susceptible informed populace (S̃i), the HIV-infected 
populace (Ĩ), the AIDS-afflicted people (Ã), the HIV-infected populace with ART medication (C̃), and the 
recovered individuals (R̃).Entirely population is indicated by Ẽp that is specified as:

	 Ẽp = S̃u + S̃i + Ĩ + Ã + C̃ + R̃.

The rate at which susceptible individuals acquire the infection through interacting with infectious individuals 
is the force of infection in our model. It depicts the dynamics of disease transmission by quantifying the risk of 
infection per capita and capturing the interplay between susceptible and infected populations.
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Moreover, the assumptions employed in formulating the mathematical model for the spread of HIV/AIDS 
are as follows:

•	 The individuals C̃  and Ã are assumed not to spread HIV due to their specific condition.
•	 The populationÃ is assumed not to spread HIV, as the AIDS population is considered too ill to transmit the 

virus (until isolated).
•	 Unaware individualsS̃u can transition to becoming awareS̃i, but the reverse is not possible.
•	 Individuals with AIDS who begin antiretroviral therapy (ART) will transition into the treated population and 

will remain in this group if they consistently adhere to the therapy.
•	 It is supposed that individuals suffering from HIV and AIDS have access to antiretroviral therapy (ART) 

treatment.
•	 The mortality rate due to HIV/AIDS is assumed to occur only among individuals affected by AIDS.

Based on the aforementioned principles, Fig. 1 illustrates the flow pattern of interaction between the different 
stages of infectious diseases. Thus, the integer-order model with a consciousness alter regarding HIV-AIDS 
propagation is specified as:

	
S′

u = X − S̃uĨγ1

Ẽp

− S̃u(ω∗
(1) + ρ1),

	
S′

i = S̃uρ1 − S̃iĨγ1

Ẽp

(1 − ξ1) − S̃iω
∗
(1),

Fig. 1.  Schematic flow of the proposed model.
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I ′ = (S̃i(1 − ξ1) + S̃u) Ĩγ1

Ẽp

+ C̃ϕ(1) + Ãθ1 − Ĩ(ω∗
(1) + ν1 + η(1)),� (4)

	 A′ = Ĩη(1) − Ã(φ1 + ω∗
(1) + θ1),

	 C′ = Ĩν1 − C̃(ω∗
(1) + ϕ(1)),

	 R′ = Ĩσ1 + C̃σ2 + Ãσ3 − R̃ω∗
(1)

Hence, the initial conditions are:

	 S̃u(0) = E1, S̃i(0) = E2, Ĩ(0) = E3, C̃(0) = E4, Ã(0) = E5, R̃(0) = E6.

This model (4) is constructed here using the newly introduced GCFD. The following is the apprised rendition 
of the proposed model:

	
CDδ,σ

0 S̃u = X − S̃uĨγ1

Ẽp

− S̃u(ω∗
(1) + ρ1),

	
CDδ,σ

0 S̃i = S̃uρ1 − S̃iĨγ1

Ẽp

(1 − ξ1) − S̃iω
∗
(1),

	
CDδ,σ

0 Ĩ = (S̃i(1 − ξ1) + S̃u) Ĩγ1

Ẽp

+ C̃ϕ(1) + Ãθ1 − Ĩ(ω∗
(1) + ν1 + η(1)),� (5)

	
CDδ,σ

0 Ã = Ĩη(1) − Ã(φ1 + ω∗
(1) + θ1),

	
CDδ,σ

0 C̃ = Ĩν1 − C̃(ω∗
(1) + ϕ(1)),

	
CDδ,σ

0 R̃ = Ĩσ1 + C̃σ2 + Ãσ3 − R̃ω∗
(1),

where the following is an outline of the model parameters mentioned above:

•	 X indicates the susceptible uninformed,
•	 γ1 For the HIV acquisition rate,
•	 ρ1 symbolizes the rapid rate at which Su changes into Si,
•	 ω∗

(1) signifies the frequency of natural mortality,
•	 ϕ(1) shows the number of people in class C who go to class I.
•	 θ1 symbolizes the clip at which A shifts to I.
•	 ν1 illustrates the rate of improvement in class I subsequent toward class C.
•	 η(1) depicts rapidity while A converts from I.
•	 φ1 reflects the mortality rate from AIDS.
•	 σ1,σ2,σ3 identify the extent of recurrence from infected people Su to Si and from hospitalized patients to 

recovered cases.
•	 ξ1 Indicates the proportion of Si those who get an infection.

Qualitative analysis of model
In the upcoming section, our study will emphasize the mathematical formulation encapsulated in the model (4). 
Our investigation will delve into the aspects of boundedness and positivity within the model. Additionally, we 
will determine the equilibrium points and compute the basic reproduction number. The sensitivity analysis and 
the local stability and global stability of the developed model at equilibrium points are also explored.

Positivity
Positivity constraints are imposed on both the initial conditions and parameters in the devised model, ensuring 
that their values remain non-negative or greater than zero throughout the modeling process. This imposition 
enhances the model’s reliability by minimizing the occurrence of unrealistic outcomes, thereby improving its 
applicability and making it more representative of real-world scenarios and behaviors.

Theorem 4.1  We assume a positive initial value for the problem specified in Eq. (4) and if the solutions to the model 
in Eq. (4) exist, they will be positive for all time t > 0.

Proof  Let us consider the first equation of the devised model (4) as

	

d
∼
Su

dt
= X −

∼
SuI

∼
r1

∼
Ep

−
∼
Su (ω ∗

1 + ρ 1) .

By constant formula of alternation provides the solution
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∼
Su (t) =

∼
Su (0) exp


−

t∫

0

(ω ∗
1 + ρ 1) dt − ω ∗

1t


 + exp


−

t∫

0

(ω ∗
1 + ρ 1) dt − ω ∗

1t


 X

	

(
X −

∼
Su

∼
I r1

∼
Ep

) ∫
exp




t∫

0

(ω ∗
1 + ρ 1) dt − ω ∗

1t


 dt.

Hence, 
∼
Su (t) ≥ 0 for all time t > 0.

Similarly, it can be shown that 
∼
Si ≥ 0,

∼
I≥ 0,

∼
A≥ 0,

∼
C≥ 0,

∼
R≥ 0.

Invariant region
We determined the invariant region where the solution of the proposed model is bounded. Now, consider the 
total population of the given model as:

	 Ẽp = S̃u + S̃i + Ĩ + Ã + C̃ + R̃.� (6)

Now, differentiate Eq. (6) provides

	
d

∼
Ep

dt
= d

∼
Su

dt
+ d

∼
Si

dt
+ d

∼
I

dt
+ d

∼
A

dt
+ d

∼
C

dt
+ d

∼
R

dt
.� (7)

Substituting all the state equations from the model (4) into Eq. (7) yields

	
d

∼
Ep

dt
= X − ω ∗

1
∼
Ep.� (8)

Taking integration on both sides of Eq. (8) with t → ∞ , one obtains 
∼
Ep ≤ X

ω *
1

.

Thus, 
∼
Ep (t) ≤ X

ω *
1

as t → ∞

	
Ω =

{
∼
Su,

∼
Si,

∼
I ,

∼
A,

∼
C,

∼
R∈ R6

+ :
∼
Su +

∼
Si+

∼
I +

∼
A +

∼
C +

∼
R≤ X

ω ∗
1

}
.

Clearly, Ω  is positively invariant.

Equilibrium points
Equilibrium points indicate in stable condition in the progression of the disease, where the occurrence of new 
infections is offset by combined occurrences of recoveries and deaths. Equilibrium points have two important 
types disease disease-free and endemic equilibrium. Disease Free Equilibrium (DFE) represents when there is 
no disease in the population. To calculate DFE D0, we put d

∼
I

dt
, d

∼
A

dt
, d

∼
C

dt
, d

∼
R

dt
= 0. Expect the susceptible class 

∼
Su,

∼
Si, which we set to its initial values.

This point helps us to compare disease behavior in the presence and absence of disease.

	
D0 =

(∼
Su (0) ,

∼
Si (0) , 0, 0, 0, 0

)
,

	
D0 =

(
X

ω ∗
1 + ρ 1

,

∼
Suρ 1
ω ∗

1
, 0, 0, 0, 0

)

.
Now, the endemic equilibrium points are calculated as:

	
D∗ =

(∼
S

∗
u,

∼
S

∗
i ,

∼
I

∗
,

∼
A

∗
,

∼
C

∗
,

∼
R

∗)
,

where,

	

∼
S

∗
u = X

∼
Ep

∼
I r1 + (ω ∗

1 + ρ 1)
,
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∼
S

∗
i =

X
∼
E

2
pρ 1[∼

I r1 + (ω ∗
1 + ρ 1)

] [∼
I r1 (1 − ξ 1) − ω ∗

1
∼
Ep

] ,

	

∼
I

∗
=

∼
E p (ω ∗

1 + φ 1) (φ 1 + ω ∗
1 + θ 1) (ω ∗

1 + υ 1 + η 1) −
(∼

S
∗
i (1 − ξ 1) +

∼
S

∗
u

)
r1 + ν 1 + η 1(∼

Si (1 − ξ 1) +
∼
S vu

)
r1 + ν 1 + η 1

,

	

∼
A

∗
=

∼
I η 1

(φ 1 + ω ∗
1 + θ 1) ,

	

∼
C

∗
=

∼
I ν 1

ω ∗
1 + φ 1

,

	

∼
R

∗
= [σ 1 (φ 1 + ω ∗

1 + θ 1) + ν 1θ 1 + η 1]
∼
I

ω ∗
1 (φ 1 + ω ∗

1 + θ 1) .

The basic reproduction number
The threshold value, or basic reproduction number R0, is a widely employed statistic for evaluating a 
communicable disease’s transmissibility or contagiousness. In a vulnerable group, it represents the average 
amount of people infected by a single infectious person. Biologically, it reflects the contagiousness and 
transmissibility of a pathogen. If R0 > 1, it indicates that the disease has the potential to sustain transmission 
within the population, leading to an outbreak. Conversely, if R0 < 1, the infection is unlikely to establish a 
self-sustaining chain of transmission, and it may eventually die out in the population. Using the principle of the 
next-generation matrix, it is calculated as

	

F =




(
∼
S i(1−ξ 1)+

∼
Su

)
r1

∼
Ep

0 0

0 0 0
0 0 0




.

	

V =




(
ω *

1 + υ 1 + η 1
)

0 0
0

(
φ 1 + ω *

1 + θ 1
)

0
0 0 c

(
ω *

1 + φ 1
)


 .

Therefore, the reproduction number R0 for our devised model (5) is the spectral radius of the next generation 
matrix F V −1 and calculated as,

	

F V −1 =




(
∼
S i(1−ξ 1)+

∼
Su

)
r1

∼
Ep(ω *

1+υ 1+η 1)
0 0

0 0 0
0 0 0


 .� (9)

Therefore, from Eq. (9), the reproduction number R0 is calculated as:

	
R0 =

(∼
Si (1 − ξ 1) +

∼
S u

)
r1

∼
Ep

(
ω *

1 + υ 1 + η 1
) .

Now, by putting initial values yields

	
R0 = (E2 (1 − ξ 1) + E1) y1

∼
Ep (ω ∗

1 + υ 1 + η 1)
.

Sensitivity analysis
The degree of influence of input parameters over the dynamics of infectious model is assets through the launch 
of sensitivity analysis. The sensitivity indices of the infectious disease model given in (4) are deduced by using 
the approach of Chitnis. Now, the normalized forward sensitivity indices of a parameter x of R0 is calculated as

	
∆ R0

x = ∂ R0

∂ x

x

R0
.
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The estimated sensitivity projected in reproduction number with respect to various parameters is given as

	
∆ R0

y1 = ∂ R0

∂ y1
.
y1

R0
= 1,

	
∆ R0

ω ∗
1

= ∂ R0

∂ ω ∗
1

.
ω ∗

1

R0
= −0.0729,

	
∆ R0

υ 1 = ∂ R0

∂ υ 1
.
υ 1

R0
= 0.0017956,

	
∆ R0

ξ 1
= ∂ R0

∂ ξ 1
.
ξ 1
R0

= −0.165,

	
∆ R0

η 1 = ∂ R0

∂ η 1
.
η 1
R0

= 0.5585.

Table 1 comprehends the directional projection of the parameters involved in the considered model explaining 
the viral infectious disease transmission flow. This analysis also shows the significance of various factors in the 
transmission of disease. The sensitivity indices indicate the set of parameters S1 = {y1, ν 1, η 1} and R0 
have a direct relationship and the set of parameters S2 = {ω ∗

1, ξ 1} has an inverse relationship with R0. This 
illustrates that the greater the value of the parameters S1 greatly maximize the threshold value R0, but R0 
decreases by a greater value of S2.

The existence of a positive relationship is voted through the plus sign whereas the negative sign acknowledges 
the showing of the negative relationship between the parameters and the transmission rate.

Stability analysis
The system’s local and global stability are studied in this section. The eigenvalues of the Jacobian matrix at the 
equilibrium point are evaluated in order to ascertain local stability. The equilibrium is locally stable when all of 
the eigenvalues have negative real parts. On the other hand, global stability requires analyzing the behavior of 
the system across the entire domain, which frequently calls for advanced mathematical methods like Lyapunov 
analysis.

Local stability
The purpose of local stability analysis is to determine whether a small perturbation in the disease system 
will lead to disease persistence or eradication. Understanding local stability at equilibrium points is crucial 
in epidemiological modeling, as it provides insights into disease transmission dynamics and population-
level spread. To demonstrate the local asymptotic stability of both the endemic equilibrium and disease-free 
equilibrium, the following theorems are presented.

Theorem 4.2  The disease-free equilibrium D0 is locally asymptotically stable when R0 < 1, however, when 
R0 > 1, it is unstable.

Proof  The Jacobin matrix of disease-free equilibrium point for the proposed model is given as

Parameter Sensitivity indices

y1 +

ω ∗
1 −

υ 1 +

ξ 1 −

η 1 +

Table 1.  Sensitivity indices and parameters of the reproduction number R0
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J (F0) =




− (ω ∗
1 + ρ 1) −

∼
I r1

∼
E
p

0

ρ 1
−

∼
I r1
∼
E
p

(1 − ξ 1) − ω ∗
1

Ir1
∼
E
p

(1−ξ 1)
∼
I r1

∼
E
p

0 0
0 0

0 0 0
0 0 0(

∼
S
i

(1 − ξ 1) +
∼
S
u

)
r1
∼
E
p

− (ω ∗
1 + ν 1 + η 1) θ 1 φ 1

η 1 θ 1 0
ν 1 0 − (ω ∗

1 + φ 1)




The evaluation of the Jacobin at disease-free equilibrium provides

	

J (F0) =




− (ω ∗
1 + ρ 1) 0 0 0 0
ρ 1 −ω ∗

1 0 0 0
0 0

(∼
Si (1 − ξ 1) +

∼
Su

)
r1
∼
Ep

− (ω ∗
1 + ν 1 + η 1) θ 1 φ 1

0 0 η 1 − (φ 1 + ω ∗
1 + θ 1) 0

0 0 ν 1 0 − (ω ∗
1 + φ 1)


 .

	

|J (F0) − λ I| =




− (ω ∗
1 + ρ 1) − λ 0

ρ 1 −ω ∗
1 − λ

0 0
0 0
0 0

0 0 0
0 0 0(

∼
S
i

(1 − ξ 1) +
∼
S
u

)
r1
∼
E
p

− (ω ∗
1 + ν 1 + η 1) − λ

0 φ 1

η 1 − (φ 1 + ω ∗
1 + θ 1) − λ 0

ν 1 0 − (ω ∗
1 + φ 1) − λ




.

By using the Routh–Hurwitz Criterion, it is verified that each eigenvalue of the polynomial equation contains a 
non-positive real part when R0 < 1. As a result, the DFE point D0 is locally asymptotically stable.

Theorem 4.3  The endemic equilibrium point D∗ will be locally asymptotically stable if the value R0 > 1, howev-
er, when R0 < 1, it is unstable.

Proof 

J (F ∗) =




− (ω ∗
1 + ρ 1) −

∼
I r1
∼
Ep

0 0 0 0

ρ 1
−

∼
I r1

∼
Ep

(1 − ξ 1) − ω ∗
1 0 0 0

∼
I r1
∼
Ep

(1−ξ 1)
∼
I r1

∼
Ep

(∼
Si (1 − ξ 1) +

∼
Su

)
r1
∼
Ep

− (ω ∗
1 + ν 1 + η 1) θ 1 φ 1

0 0 η 1 − (φ 1 + ω ∗
1 + θ 1) 0

0 0 ν 1 0 − (ω ∗
1 + φ 1)




.

	

J (F ∗) =




−µ 1 0 0 0 0
ρ 1 −µ 2 0 0 0
∼
I r1
∼
Ep

(1−ξ 1)I∼r1
∼
Ep

−µ 3 0 0
0 0 η 1 −µ 4 0
0 0 ν 1 0 −µ 5


 .
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where µ 1 = (ω ∗
1 + ρ 1) −

∼
I r1
∼
Ep

, µ 2 =
∼
I r1
∼
Ep

(1 − ξ 1) − ω ∗
1 , 

µ 3 =
(∼

Si (1 − ξ 1) +
∼
Su

)
r1
∼
Ep

− (ω ∗
1 + ν 1 + η 1), µ 4 = (φ 1 + ω ∗

1 + θ 1), µ 5 = (ω ∗
1 + φ 1).

It is clear that all eigenvalues of J (F ∗) have negative and real if R0 > 1.

Global stability
Global stability analysis in a disease model determines whether the system converges to a stable equilibrium 
across all possible initial conditions. This analysis is crucial for understanding long-term disease dynamics and 
overall infection prevalence within a population. The following theorem establishes the conditions for globally 
asymptotically stable endemic and disease-free equilibrium points.

Theorem 4.4  The disease-free equilibrium point F0 is globally asymptotically stable for R0 < 1, otherwise, un-
stable for R0 > 1.

Proof  The subsequent Lyapunov function is precise and satisfies the settings of being positive definite with a 
negative definite derivative. To establish this result, we first present the Lyapunov function defined as:

	 L = y1
∼
Su + y2

∼
Si + y3

∼
I +y4

∼
A +y5

∼
C.� (10)

where y1, y2, y3, y4, y5 are constants. Now, by differentiating Eq. (10), one obtains

	 L′ = y1
∼
S

′
u + y2

∼
S

′
i + y3

∼
I

′
+ y4

∼
A

′
+ y5

∼
C

′
.

Putting the values from the model and arranging them provides

	

L′ =




y1X − y1

∼
I r1

∼
E
p

− y1 (ω ∗
1 + ρ 1) + y2ρ 1 + y3

∼
I r1

∼
E
p




(S̃u − S̃◦
u)

+




y3 (1 − ξ 1)
∼
I r1

∼
E
p

− y2

∼
I r1

∼
E
p

(1 − ξ 1) − y2ω ∗
1




(S̃i − S̃◦
i )

+ {y4η 1 − y3 (ω ∗
1 + ν 1 + η 1)}

∼
I + {y3θ 1 − y4 (φ 1 + ω ∗

1 + θ 1)}
∼
A

+ {y3φ 1 + y5 (ω ∗
1 + φ 1)}

∼
C.

 where D0 =
(

X
ω ∗

1 +ρ 1
,

∼
Suρ 1

ω ∗
1

)
. It is observed that L′ (t) ≤ 0 when 

∼
Su >

∼
S

◦

u  and 
∼
Si >

∼
S

◦

i  and 
∼
R0 < 1

and L′ = 0 if and only if 
∼
Su =

∼
S

◦

u ,
∼
Si =

∼
S

◦

i .
The Lasalle’s invariance principle and 

∼
I=

∼
A=

∼
C= 0. The Lyapunov function is positive definite, its derivative 

is negative definite and all of the conditions for the Lyapunov function are positive definite. Consequently, the 
DFE is globally asymptotically stable.

Theorem 4.5  The endemic equilibrium point D∗ is globally asymptotically stable if the value R0 > 1, however, 
when R0 < 1, it is unstable.

Proof  To prove the global stability of the proposed model at the endemic equilibrium point D∗, the Castilo 
Chevez method is used. Further, we consider the model as

	

d
∼
Su
dt

= X −
∼
Su

∼
I r1
∼
Ep

−
∼
Su (ω ∗

1 + ρ 1) ,

d
∼
Si
dt

=
∼
Siρ 1 −

∼
Si

∼
I r1
∼
Ep

(1 − ξ 1) −
∼
Siω

∗
1,

d
∼
I

dt
=

(∼
Si (1 − ξ 1) +

∼
Su

) ∼
I r1
∼
Ep

+
∼
C φ 1+

∼
A θ 1−

∼
I (ω ∗

1 + υ 1 + η 1) .




� (11)

Taking the Jacobin and the additive compound matrix of order 2 for the Eq. (4.6), the following matrix is obtained

	
J =

[
−a11 0 0
a21 −a22 0
a31 a32 −a33

]
,

	
J |2| =

[
− (a11 + a22) a23 −a13

a32 − (a11 + a22) a12
−a31 a21 − (a22 + a33)

]
,� (12)
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Let Q (x) =
(∼

Su,
∼
Si,

∼
I

)
= diag

{
∼
Su
∼
Si

,
∼
Su
∼
Si

,
∼
Su
∼
Si

}
 and then Q−1 (x) = diag

{
∼
Si
∼
Su

,
∼
Si
∼
Su

,
∼
Si
∼
Su

}
, then the 

time derivative of the function Qf (x), suggests that

	
Qf (x) = diag

{ ∼̇
Su

Si
−

∼
Su

∼̇
Si

∼
S

2
i

,

∼̇
Su
∼
Si

−
∼
Su

∼̇
Si

∼
S

2
i

,

∼̇
Su
∼
Si

−
∼
Su

∼̇
Si

∼
S

2
i

}
.� (13)

Now, Qf Q−1 = diag

{
∼̇
Su
∼
Su

−
∼̇
Si
∼
Si

,
∼̇
Su
∼
Su

−
∼̇
Si
∼
Si

,
∼̇
Su
∼
Su

−
∼̇
Si
∼
Si

}

And QJ
|2|
2 Q−1 = J

|2|
2 .A = Qf Q−1 + QJ

|2|
2 Q−1, which can be described as

	
A =

[
A11 A12
A21 A22

]
,� (14)

	




A11 =
∼̇
Su
∼
Su

−
∼̇
Si
∼
Si

−
∼
I r1
∼
Ep

− (ω ∗
1 + ρ 1) −

∼
I r1
∼
Ep

(1 − ξ 1) − ω ∗
1, A12 = [ 0 0 ] ,

A21 =




(1 − ξ 1)
∼
I r1
∼
Ep

∼
I r1
∼
Ep


 , A22 =

[
x11 x12
x21 x22

]
, x11 =

∼̇
Su
∼
Su

−
∼̇
Si
∼
Si

− 2
∼
I r1
∼
Ep

− 2ω ∗
1 − ρ 1 −

∼
I r1
∼
Ep

ξ 1, x12 = ρ 1,

x21 =
∼̇
Su
∼
Su

−
∼̇
Si
∼
Si

−
∼
I r1
∼
Ep

(1 − ξ 1) − ω ∗
1 − (ω ∗

1 + ν 1 + η 1) , x22 =
∼̇
Su
∼
Su

−
∼̇
Si
∼
Si

−
∼
I r1
∼
Ep

(1 − ξ 1) − 2ω ∗
1 − ν 1 − η 1.

Let (b1, b2, b3) be a vector in R3 and ∥.∥ of (b1, b2, b3) is specified by

	 ∥b1, b2, b3∥ = max {∥b1∥ + ∥b2∥ + ∥b3∥}

,
Now we yield the Lozinski measure,

	 l (A) ≤ sup {h1, h2} = sup {l (A11) + ∥A12∥ , l (A22) + ∥A21∥} .

where hi = l (Aii) + ∥Aij∥ , for i = 1, 2 and i ̸= j, which implies that

	 h1 = l (A11) + ∥A12∥ , h2 = l (A22) + ∥A21∥ .� (15)

 where

	
l (A11) =

∼̇
Su
∼
Su

−
∼̇
Si
∼
Si

− 2
∼
I r1
∼
Ep

− 2ω ∗
1 − ρ 1 −

∼
I r1
∼
Ep

ξ 1

.

	
l (A22) = max

{ ∼̇
Su
∼
Su

−
∼̇
Si
∼
Si

−
∼
I r1
∼
Ep

(1 − ξ 1) − ω ∗
1 − (ω ∗

1 + ν 1 + η 1) , ρ 1

}
=

{ ∼̇
Su
∼
Su

−
∼̇
Si
∼
Si

−
∼
I r1
∼
Ep

(1 − ξ 1) − 2ω ∗
1 − ν 1 − η 1

}
,

	
∥A12∥ = 0 and ∥A21∥ = max

{
(1 − ξ 1)

∼
I r1
∼
Ep

,

∼
I r1
∼
Ep

}
= (1 − ξ 1)

∼
I r1
∼
Ep

.
Therefore, h1 and h2 becomes, such that

	
h1 =

∼̇
Su
∼
Su

− 2ω *
1 − ν 1 − η 1 and h2 =

∼̇
Su
∼
Su

− (1 − ξ 1) − min {r − rξ 1} .

This shows that 
l (A) ≤

{
∼̇
Su
∼
Su

− (1 − ξ 1) − min {r − rξ 1} − 2ω ∗
1

}
.

Hence, l (A) ≤
∼̇
Su
∼
Su

− (1 − ξ 1). Taking the integral of l (A), one gets

	

lim
t→ ∞

sup sup
1
t

∞∫

0

l (A) dt < −2ω ∗
1.

Scientific Reports |        (2025) 15:18212 11| https://doi.org/10.1038/s41598-025-01355-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

k = lim
t→ ∞

sup sup
1
t

∞∫

0

l (A) dt < 0.

Hence, the model is globally asymptotically stable.

Theoretical exploration of the FO HIV dynamics
In this section, a fixed-point theorem is applied to determine the existence and uniqueness of the devised 
fractional-order model (5). This approach provides insights into the likelihood of a solution’s existence. The 
relevant equation is derived by applying the generalized integral to one of the nodes in the model (5).

S̃u(p̂) − S̃u(0) = Iδ,σ

0+ {X − S̃u Ĩγ1
Ẽp

− S̃u(ω∗
(1) + ρ1)},

S̃i(p̂) − S̃i(0) = Iδ,σ

0+ {S̃uρ1 − S̃i Ĩγ1
Ẽp

(1 − ξ1) − S̃iω
∗
(1)},

	
Ĩ(p̂) − Ĩ(0) = Iδ,σ

0+ {(S̃i(1 − ξ1) + S̃u) Ĩγ1

Ẽp

+ C̃ϕ(1) + Ãθ1 − Ĩ(ω∗
(1) + ν1 + η(1))},� (16)

	 Ã(p̂) − Ã(0) = Iδ,σ

0+ {Ĩη(1) − Ã(φ1 + ω∗
(1) + θ1)}

,

	 C̃(p̂) − C̃(0) = Iδ,σ

0+ {Ĩν1 − C̃(ω∗
(1) + ϕ(1))}

,
R̃(p̂) − R̃(0) = Iδ,σ

0+ {Ĩσ1 + C̃σ2 + Ãσ3 − R̃ω∗
(1)}

For clarity, the kernel is assumed as follows:
F1(p̂, S̃u) = X − S̃u Ĩγ1

Ẽp
− S̃u(ω∗

(1) + ρ1),

F2(p̂, S̃i) = S̃uρ1 − S̃i Ĩγ1
Ẽp

(1 − ξ1) − S̃iω
∗
(1),

	
F3(p̂, Ĩ) = (S̃i(1 − ξ1) + S̃u) Ĩγ1

Ẽp

+ C̃ϕ(1) + Ãθ1 − Ĩ(ω∗
(1) + ν1 + η(1)),� (17)

	 F4(p̂, Ã) = Ĩη(1) − Ã(φ1 + ω∗
(1) + θ1),

	 F5(p̂, C̃) = Ĩν1 − C̃(ω∗
(1) + ϕ(1)),

	 F6(p̂, R̃) = Ĩσ1 + C̃σ2 + Ãσ3 − R̃ω∗
(1).

Thus,

	

S̃u(p̂) − S̃u(0) = σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1F1(ξ, S̃u)dξ,

	

S̃i(p̂) − S̃i(0) = σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1F2(ξ, S̃i)dξ,

	

Ĩ(p̂) − Ĩ(0) = σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1F3(ξ, Ĩ)dξ,� (18)

	

Ã(p̂) − Ã(0) = σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1F4(ξ, Ã)dξ,

	

C̃(p̂) − C̃(0) = σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1F5(ξ, C̃)dξ,

	

R̃(p̂) − R̃(0) = σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1F6(ξ, R̃)dξ.
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Theorem 5.1  The kernel’s F1, F2, F3, F4, F5 and F6 fulfil the subsequent inequality exists if the contraction and 
Lipschitz condition accomplished as

	 0 ⩽ ∆1, ∆2, ∆3, ∆4, ∆5, ∆6 < 1.

Proof  Since S̃u and S̃∗
u for kernel F1, yields

	
∥ F1(p̂, S̃u) − F1(p̂, S̃∗

u) ∥ = ∥ −( Ĩγ1

Ẽp

+ (ω∗
(1) + ρ1))(S̃u − S̃∗

u) ∥,� (19)

	
∥ F1(p̂, S̃u) − F1(p̂, S̃∗

u) ∥⩽ (∥ Ĩ ∥ γ1

Ẽp

+ ω∗
(1) + ρ1) ∥ S̃u − S̃∗

u ∥,

	
⩽ (m3γ1

Ẽp

+ ω∗
(1) + ρ1) ∥ S̃u − S̃∗

u ∥,� (20)

	 ⩽ ∆1 ∥ S̃u − S̃∗
u ∥ .

Here, it is supposed ∆1 = k3γ1
Ẽp

+ ω∗
(1) + ρ1 < 1 and ∥ Ĩ ∥⩽ k3be the bounded function. Therefore, one 

obtains

	 ∥ F1(p̂, S̃u) − F1(p̂, S̃∗
u) ∥⩽ ∆1 ∥ S̃u − S̃∗

u ∥ .� (21)

The kernel F1 fulfills the Lipschitz conditions (LC) then 0 < ∆1 < 1, so the criterion for contraction F1 is also 
valid. Additionally, inequality for subsequent kernels is obtained as:

∥ F2(p̂, S̃i) − F2(p̂, S̃∗
i ) ∥⩽ ∆2 ∥ S̃i − S̃∗

i ∥ .

	 ∥ F3(p̂, Ĩ) − F3(p̂, Ĩ∗) ∥⩽ ∆3 ∥ Ĩ − Ĩ∗ ∥ .� (22)

	 ∥ F4(p̂, Ã) − F4(p̂, Ã∗) ∥⩽ ∆4 ∥ Ã − Ã∗ ∥,

	 ∥ F5(p̂, C̃) − F5(p̂, C̃∗) ∥⩽ ∆5 ∥ C̃ − C̃∗ ∥ .

	 ∥ F6(p̂, R̃) − F6(p̂, R̃∗) ∥⩽ ∆6 ∥ R̃ − R̃∗ ∥ .

Now implement the recursive formula on Eq. (8), one gets.

	

S̃ul (p̂) = S̃u(0) + σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1F1(ξ, S̃u(l−1) )dξ,

	

S̃il (p̂) = S̃i(0) + σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1F2(ξ, S̃i(l−1) )dξ,� (23)

	

Ĩl(p̂) = Ĩ(0) + σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1F3(ξ, Ĩ(l−1))dξ,

	

C̃l(p̂) = C̃(0) + σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1F4(ξ, C̃(l−1))dξ,

	

Ãl(p̂) = Ã(0) + σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1F5(ξ, Ã(l−1))dξ,

	

R̃l(p̂) = R̃(0) + σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1F6(ξ, R̃(l−1))dξ,

So, the initial conditions are given as per:

	 S̃u(p̂0) = S̃u(0), S̃i(p̂0) = S̃i(0), Ĩ(p̂0) = Ĩ(0), C̃(p̂0) = C̃(0), Ã(p̂0) = Ã(0), R̃(p̂0) = R̃(0).

Furthermore, by computing the difference between successive terms, the following lexes are obtained:
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ψl(p̂) = S̃ul (p̂) − S̃u(l−1) (p̂) = σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1(F1(ξ, S̃u(l−1) ) − F1(ξ, S̃u(l−2) ))dξ,

	

ξl(p̂) = S̃il (p̂) − S̃i(l−1) (p̂) = σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1(F2(ξ, S̃i(l−1)
) − F2(ξ, S̃i(l−2) ))dξ,

	

ϕl(p̂) = Ĩl(p̂) − Ĩ(l−1)(p̂) = σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1(F3(ξ, Ĩ(l−1)) − (F3(ξ, Ĩ(l−2)))dξ,� (24)

	

χl(p̂) = Ãl(p̂) − Ã(l−1)(p̂) = σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1(F4(ξ, Ã(l−1)) − F4(ξ, Ã(l−2)))dξ,

	

θl(p̂) = C̃l(p̂) − C̃(l−1)(p̂) = σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1(F5(ξ, C̃(l−1)) − F5(ξ, C̃(l−2)))dξ,

	

φl(p̂) = R̃l(p̂) − R̃(l−1)(p̂) = σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1(F6(ξ, R̃(l−1)) − F6(ξ, R̃(l−2)))dξ.

	
S̃ul (p̂) =

l∑
i=1

ψi(p̂),S̃il (p̂) =
l∑

i=1

ξi(p̂),Ĩl(p̂) =
l∑

i=1

ϕi(p̂),Ãl(p̂) =
l∑

i=1

χi(p̂),C̃l(p̂) =
l∑

i=1

θi(p̂),R̃l(p̂) =
l∑

i=1

φi(p̂).

Using the triangle inequality and Eq. (24) in norm form, after that, Eq. (24) is transformed into

	

∥ ψl(p̂) ∥=∥ S̃ul (p̂) − S̃u(l−1) (p̂) ∥

≤ σ(1−δ)

Γ(δ) ∥

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1(F1(ξ, S̃u(l−1) ) − F1(ξ, S̃u(l−2) ))dξ ∥ .
� (25)

With the kernel LC, one attains;

	

∥ S̃ul (p̂) − S̃u(l−1) (p̂) ∥⩽ ∆1σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1 ∥ S̃u(l−1) (p̂) − S̃u(l−2) (p̂) ∥ dξ.� (26)

Therefore, the following result is obtained: ∥ ψl(p̂) ∥⩽ ∆1σ(1−δ)

Γ(δ)

p̂∫
0

ξ(δ−1)(p̂σ − ξσ)δ−1 ∥ ψ(l−1)(ξ) ∥ dξ.( 27)

In a similar manner, the subsequent expressions are obtained: 

∥ ξl(p̂) ∥⩽ ∆2σ(1−δ)

Γ(δ)

p̂∫
0

ξ(δ−1)(p̂σ − ξσ)δ−1 ∥ ξ(l−1)(ξ) ∥ dξ.

	

∥ ϕl(p̂) ∥⩽ ∆3σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1 ∥ ϕ(l−1)(ξ) ∥ dξ.� (27)

	

∥ χl(p̂) ∥⩽ ∆4σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1 ∥ χ(l−1)(ξ) ∥ dξ.

	

∥ θl(p̂) ∥⩽ ∆5σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1 ∥ θ(l−1)(η) ∥ dη.
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∥ φl(p̂) ∥⩽ ∆6σ(1−δ)

Γ(δ)

p̂∫

0

ξ(δ−1)(p̂σ − ξσ)δ−1 ∥ φ(l−1)(ξ) ∥ dξ.

Theorem 5.2  The considered system (5) has a solution if there exists a value tσmax such that

	
∆1

Γ(δ + 1)( tσmax
σ

)δ < 1.

Proof  It is acknowledged that the functions S̃u(t̂), S̃i(t̂), Ĩ(t̂), C̃(t̂), Ã(t̂) and R̃(t̂) are bounded then kernels 
fulfill the LC as well. Therefore, the following relations may be found by using provided Eq. (5.12) and (5.13)

	
∥ ψl(p̂) ∥⩽∥ S̃u(0) ∥ [ ∆1

Γ(δ + 1)( p̂σmax
σ

)δ]l,

	
∥ ξl(p̂) ∥⩽∥ Si(0) ∥ [ ∆2

Γ(δ + 1)( p̂σmax
σ

)δ]l,

	
∥ ϕl(p̂) ∥⩽∥ Ĩ(0) ∥ [ ∆3

Γ(δ + 1)( p̂σmax
σ

)δ]l,� (28)

	
∥ χn(p̂) ∥⩽∥ Ã(0) ∥ [ ∆4

Γ(δ + 1)( p̂σmax
σ

)δ]l,

	
∥ θl(p̂) ∥⩽∥ C̃(0) ∥ [ ∆5

Γ(δ + 1)( p̂σmax
σ

)δ]l,

	
∥ φl(p̂) ∥⩽∥ R̃(0) ∥ [ ∆6

Γ(δ + 1)( p̂σmax
σ

)δ]l.

Consequently, the model’s solution is real and continuous. To demonstrate that the function represents the 
system’s solutions, the assumption is made.

	 S̃u(p̂) − S̃u(0) = S̃un (p̂) − H1
l (p̂),

	 S̃i(p̂) − S̃i(0) = S̃il (p̂) − H2
l (p̂),

	 Ĩ(p̂) − Ĩ(0) = Ĩl(p̂) − H3
l (p̂),� (29)

	 Ã(p̂) − Ã(0) = Ãl(p̂) − H4
l (p̂),

	 C̃(p̂) − C̃(0) = C̃l(p̂) − H5
l (p̂),

	 R̃(p̂) − R̃(0) = R̃l(p̂) − H6
l (p̂).

Since our purpose is to demonstrate that while l → ∞ the factor ∥ H1
l (t) ∥ turns to zero. Taking the standard 

LC for the kernel F1, provides,

	

∥ H1
l (p̂) ∥⩽∥ σ(1−δ)

Γ(δ)

p̂∫

0

ξ(σ−1)(p̂σ − ξσ)δ−1(F1(ξ, S̃u) − F1(ξ, S̃u(l−1) ))dξ ∥,

⩽ σ(1−δ)

Γ(δ)

p̂∫

0

ξ(σ−1)(p̂σ − ξσ)δ−1 ∥ (F1(ξ, S̃u) − F1(ξ, S̃u(l−1) ) ∥ dξ,

⩽ ∆1

Γ(δ + 1)( p̂σ

σ
)δ ∥ S̃u − S̃u(l−1) ∥ .

� (30)

Then, by repeating the same steps once more, the following result is obtained:

	
∥ H1

l (p̂) ∥⩽∥ S̃u(0) ∥ [ 1
Γ(δ + 1)( p̂σ

σ
)δ](l+1)∆l

1E,� (31)

 at p̂max, yields

	
∥ H1

l (p̂) ∥≤∥ S̃l(0) ∥ [ 1
Γ(δ + 1)( p̂σ

max

σ
)δ](l+1)∆l

1E.� (32)
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Taking the limit l → ∞, on Eq.  (33), yields ∥ H1
l (p̂) ∥→ 0. Correspondingly, the following result can be 

attained: ∥ H2
l (p̂) ∥, ∥ H3

l (p̂) ∥, ∥ H4
l (p̂) ∥, ∥ H5

l (p̂) ∥, and ∥ H6
l (p̂) ∥ tend to 0.

Another crucial component is proving that model solutions are unique. Because of this, it is inferred from the 
contradiction that alternative forms exist, S̃∗

u(t̂), Ĩ∗(t̂), C̃∗(t̂), S̃∗
a(t̂), Ã∗(t̂) and R̃∗(t̂) then

	

S̃u(p̂) − S̃∗
u(p̂) ≤ σ(1−δ)

Γ(δ)

p̂∫

0

ξ(σ−1)(p̂σ − ξσ)δ−1(F1(ξ, S̃u) − F1(ξ, S̃∗
u))dξ.� (33)

By applying the norm to Eq. (34), the following result is gained:

	

∥ S̃u(p̂) − S̃∗
u(p̂) ∥⩽ σ(1−δ)

Γ(δ)

p̂∫

0

ξ(σ−1)(p̂σ − ξσ)δ−1 ∥ (F1(ξ, S̃u) − F1(ξ, S̃∗
u) ∥ dξ,� (34)

By extending LC to kernels, the following result is attained:.

	
∥ S̃u(p̂) − S̃∗

u(p̂) ∥⩽ ∆1

Γ(δ + 1)( p̂σ

σ
)δ ∥ S̃u(p̂) − S̃∗

u(p̂) ∥,� (35)

	
∥ S̃u(p̂) − S̃∗

u(p̂) ∥ [1 − ∆1

Γ(δ + 1)( p̂σ

σ
)δ] ⩽ 0,� (36)

	 ∥ S̃u(p̂) − S̃∗
u(p̂) ∥= 0, → S̃u(p̂) = S̃∗

u(p̂).� (37)

Thus, the uniqueness of the devised system’s solution is established. Consequently, it is shown that

	 S̃u(p̂) = S̃∗
u(p̂), S̃i(p̂) = S̃∗

i (p̂), Ĩ(p̂) = Ĩ∗(p̂), Ã(p̂) = Ã∗(p̂), C̃(p̂) = C̃∗(p̂),� (38)

	 R̃(p̂) = R̃∗(p̂).

Numerical techniques for the devised model
When all other existing analytical methods fail, numerical techniques are employed to find a solution. Numerical 
approaches are considered the most suitable method for representing solutions to models using fractional-order 
calculus. In this section, the newly adaptive Predictor–Corrector (P–C) approach is presented, anticipated by4 
beneath the Generalized Caputo Operator (GCO), which extends the P–C method outlined in5. Consider the 
initial value problem (IVP) stated as:

	

CDδ,σ

a+ z(p̂) = f(t, Z(p̂)), p̂ ∈ [0, T ],

Zl(a) = Zl
0, l = 0, 1, ., [δ].

� (39)

 where δ ∈ ((k − 1), k], a ⩾ 0, and σ > 0. Through applying the generalized integral, Eq. (40) can be stated as 
a Volterra integral equation:

	

Z(p̂) = q(p̂) + σ(1−δ)

Γ(δ)

p̂∫

a

ξ(σ−1)(p̂σ − ξσ)δ−1f(ξ, Z(ξ))dξ.� (40)

 where, q(p̂) =
(k−1)∑
r=0

1
σrr! (p̂

σ − aσ)r[(x1−σ d
dx

)rZ(x)]|x=a.

Based on the theory, the first stage in our method is where the function Z such that there is a unique 
solution on a certain interval [a, P̂ ], comprises of splitting the interval [a, P̂ ] into N subintervals {[p̂l, p̂l+1], 
l = 0, 1, . . . , N − 1} integrating the mesh points:

	

p̂0 = a,

p̂l+1 = (pσ
l + h)

1
σ , l = 0, 1, . . . , (N − 1),

� (41)

 where h = (P̂ (σ)−a(σ))
N  and natural number is N. To solve our devised initial value problem numerically, Now, 

the approximation will be extended Zl, l = 0, 1, . . . , N. The fundamental behavior, assuming that the previous 
investigation of the estimation has been conductedZw ≈ Z(p̂w), w = 1, 2, . . . , n, is that an estimate solution 
needs to be obtained Z(l+1) ≈ Z(p̂(l+1)) with an integral equation 
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Z(p̂(l+1)) = q(p̂(l+1)) + σ(1−δ)

Γ(δ)

p̂(l+1)∫

a

ξ(σ−1)(p̂σ
l+1 − ξσ)δ−1f(ξ, Z(ξ))dξ,� (42)

By substitution ησ = λ, one get

	

Z(p̂(l+1)) = q(p̂(l+1)) + σ(−δ)

Γ(δ)

p̂σ
(l+1)∫

aσ

(p̂σ
l+1 − λ)δ−1f(λ

1
σ , Z(λ

1
σ ))dλ,� (43)

	

Z(p̂(l+1)) = q(p̂(l+1)) + σ(−δ)

Γ(δ)

l∑
j=0

p̂σ
(j+1)∫

tσ
j

(p̂σ
l+1 − λ)δ−1f(λ

1
σ , Z(λ

1
σ ))dλ.� (44)

Then, if the weight function-related trapezoidal quadrature rule is utilized (p̂σ
(l+1) − λ)δ−1 to replace the 

function with an approximation integral on the right-hand sides of (6.6)f(λ
1
σ , Z(λ

1
σ )) using its piecewise linear 

interpolator and suitable nodes at the p̂σ
w(w = 0, 1, . . . , (l + 1)), then one obtain,

	

p̂σ
(w+1)∫

tσ
w

(p̂σ
(l+1) − λ)(δ−1)f(λ

1
σ , Z(λ

1
σ ))dλ ≈ h(δ)

δ(δ + 1){((l − w)(δ+1) − (l − w − δ)

(l − (w + 1))δ)f(p̂(w), Z(t̂(w))) + ((l − w + 1)δ+1

−(l − (w) + δ + 1)(l − (w))δf(p̂(w+1), Z(p̂(w+1)))}.

� (45)

The corrector formulae for the function Z(p̂(l+1)), l = 0, 1, . . . , N − 1, are attained from (46) and (47) and are 
documented as follows:

	
Z(p̂(l+1)) ≈ q(p̂(l+1)) + σ(−δ)h(δ)

Γ(δ + 2)

(l)∑
j=0

∇j,(l+1)f(p̂w, Z(p̂w))+σ(−δ)h(δ)

Γ(δ + 2) f(p̂(l+1), Z(p̂(l+1))).� (46)

When the weight function appears ∇w,(l+1) is described as:

	
∇w,(l+1) = l(δ+1) − (l − δ)(l + 1)δ

(l − w + 2)(δ+1) + (l − w)(δ+1) − 2(l − w + 1)(δ+1),
if w = 0

1 ⩽ (w) ⩽ l. � (47)

Now, utilizing our approach on the quantity Z(p̂(l+1)) provides the quantity ZP (p̂(l+1)) in (47) which is known as 
predictor value. It is also attainable from (44) using the Adams-Bashforth approach. In this regard, f(λ

1
σ , Z(λ

1
σ )) 

substituted by f(p̂(w), Z(p̂(w))) in (45) on every integral, then the predictor value ZP (p̂(l+1)) ≈ ZP p̂(l+1) is 
obtained as per:

	

ZP
(l+1) ≈ q(p̂(l+1)) + σ−δ

Γ(δ)

l∑
w=0

p̂σ
(w+1)∫

tσ
(w)

(p̂σ
l+1 − λ)(δ−1)f(p̂(w), Z(p̂(w)))dλ,

= q(p̂(l+1)) + σ(−δ)h(δ)

Γ(δ + 1)

(l)∑
w=0

Πw,(l+1)f(p̂(w), Z(p̂(w))).

� (48)

 where.
Πw,(l+1) = [(l + 1 − (w))δ − (l − w)δ]0 ⩽ w ⩽ l.
Consequently, the Adaptive-P-C method for assessing estimation Z(l+1) ≈ Z(p̂(l+1)) is completely indicated 

by the formula

	
Z(l+1) ≈ q(p̂(l+1)) + σ(−α)h(α)

Γ(α + 2)

(l)∑
w=0

∇w,l+1f(p̂(w), Z(p̂(w)) + σ(−α)h(α)

Γ(α + 2) f(p̂(l+1), ZP
(l+1)).� (49)

Diethelm et al.25 offered where σ = 1,the A-P-C technique is dropped to decrease to P-C approach.
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Adaptive P–C approach for modeling HIV/AIDS propagation within a fractional-order 
framework
The estimation of the corrected values is now implemented S̃u(l+1) , S̃i(l+1) , Ĩ(l+1), Ã(l+1), C̃(l+1) in the 
implied model (4) to perform the Adaptive-P-C approach:

	

S̃u(l+1) ≈ E1 + σ(−δ)h(δ)

Γ(δ + 2)

(l)∑
w=0

∇w,(l+1)B1(p̂(w), S̃u(w) , S̃i(w) , Ĩ(w), Ã(w), C̃(w), R̃(w))

+σ(−δ)h(δ)

Γ(δ + 2) B1(p̂(l+1), S̃P
u(l+1) , S̃P

i(l+1) , ĨP
(l+1), ÃP

(l+1), C̃P
(l+1), R̃P

(l+1)),

	

S̃i(l+1) ≈ E2 + σ(−δ)h(δ)

Γ(δ + 1)

(l)∑
w=0

∇w,(l+1)B2(p̂(w), S̃u(w) , S̃i(w) , Ĩ(w), Ã(w), C̃(w), R̃(w))

+σ(−δ)h(δ)

Γ(δ + 1) B2(p̂(l+1), S̃P
u(l+1) , S̃P

i(l+1) , ĨP
(l+1), ÃP

(l+1), C̃P
(l+1), R̃P

(l+1)),

	

Ĩ(l+1) ≈ E3 + σ(−δ)h(δ)

Γ(δ + 1)

(l)∑
w=0

∇w,(l+1)B3(p̂(w), S̃u(w) , S̃i(w) , Ĩ(w), Ã(w), C̃(w), R̃(w))

+σ(−δ)h(δ)

Γ(δ + 1) B3(p̂(l+1), S̃P
u(l+1) , S̃P

i(l+1) , ĨP
(l+1), ÃP

(l+1), C̃P
(l+1), R̃P

(l+1)),

� (50)

	

Ã(l+1) ≈ E4 + σ(−δ)h(δ)

Γ(δ + 2)

(l)∑
w=0

∇w,l+1B4(p̂(w), S̃u(w) , S̃i(w) , Ĩ(w), Ã(w), C̃(w), R̃(w))

+σ(−δ)h(δ)

Γ(δ + 2) B4(p̂(l+1), S̃P
u(l+1) , S̃P

i(l+1) , ĨP
(l+1), ÃP

(l+1), C̃P
(l+1), R̃P

(l+1)),

	

C̃(l+1) ≈ E5 + σ(−δ)h(δ)

Γ(δ + 2)

l∑
w=0

∇w,(l+1)B5(p̂(w), S̃u(w) , S̃i(w) , Ĩ(w), Ã(w), C̃(w), R̃(w))

+σ(−δ)h(δ)

Γ(δ + 1) E5(p̂(l+1), S̃P
u(l+1) , S̃P

i(l+1) , ĨP
(l+1), ÃP

(l+1), C̃P
(l+1), R̃P

(l+1)),

	

R̃(l+1) ≈ E6 + σ(−δ)h(δ)

Γ(δ + 2)

(l)∑
w=0

∇w,(l+1)B6(p̂(w), S̃u(w) , S̃i(w) , Ĩ(w), Ã(w), C̃(w), R̃(w))

+ σ−δhδ

Γ(δ + 2)B6(p̂(l+1), S̃P
u(l+1) , S̃P

i(l+1) , ĨP
(l+1), ÃP

(l+1), C̃P
(l+1), R̃P

(l+1)).

So, predictor values S̃P
u(l+1) , S̃P

i(l+1)
, ĨP

(l+1), ÃP
(l+1), C̃P

(l+1), and R̃P
(l+1) are indicated as:

	
S̃P

u(l+1) ≈ E1 + σ(−δ)h(δ)

Γ(δ + 1)

(l)∑
j=0

Πj,(l+1)E1(p̂(w), S̃u(w) , S̃i(w) , Ĩ(w), Ã(w), C̃(w), R̃(w)),

	
ĨP

(l+1) ≈ E3 + σ(−δ)h(δ)

Γ(δ + 1)

(l)∑
w=0

Πw,l+1B3(p̂(w), S̃u(w) , S̃i(w) , Ĩ(w), Ã(w), C̃(w), R̃(w)),� (51)

	
ÃP

(l+1) ≈ B4 + σ(−δ)h(δ)

Γ(δ + 1)

(l)∑
w=0

Πw,(l+1)B4(p̂(w), S̃u(w) , S̃i(w) , Ĩ(w), Ã(w), C̃(w), R̃(w)),

	
C̃P

(l+1) ≈ E5 + σ(−δ)h(δ)

Γ(δ + 1)

(l)∑
w=0

Πw,(l+1)B5(p̂(w), S̃u(w) , S̃i(w) , Ĩ(w), Ã(w), C̃(w), R̃(w)),

	
R̃P

(l+1) ≈ E6 + σ(−δ)h(δ)

Γ(δ + 1)

(l)∑
w=0

Πw,(l+1)B6(p̂(w), S̃u(w) , S̃i(w) , Ĩ(w), Ã(w), C̃(w), R̃(w)).

 where B1, B2, B3, B4, B5 and B6 are given as:
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B1(p̂, S̃u, S̃i, Ĩ, C̃, Ã, R̃) := X − S̃uĨγ1

Ẽp

− S̃u(ω∗
(1) + ρ1),

	
B2(p̂, S̃u, S̃i, Ĩ, C̃, Ã, R̃) := S̃uρ1 − S̃iĨγ1

Ẽp

(1 − ξ1) − S̃iω
∗
(1),

	
B3(p̂, S̃u, S̃i, Ĩ, C̃, Ã, R̃) := (S̃i(1 − ξ1) + S̃u) Ĩγ1

Ẽp

+ C̃ϕ1 + Ãθ1 − Ĩ(ω∗
(1) + ν1 + η(1)),� (52)

	 B4(p̂, S̃u, S̃i, Ĩ, Ã, C̃, R̃) := Ĩη(1) − Ã(φ1 + ω∗
(1) + θ1),

	 B5(p̂, Su, Si, I, A, C, R) := Iν1 − C(ω∗
(1) + ϕ1),

	 B6(p̂, S̃u, S̃i, Ĩ, Ã, C̃, R̃) := Ĩσ1 + C̃σ2 + Ãσ3 − R̃ω∗
(1).

Results and discussion
In this section, the graphical representation of the dynamic behavior of an HIV-
AIDS model is evaluated. The initial values taken in the simulation are defined as: 
E1 = 129, 789, 089, E2 = 1 × 108, E3 = 7195, E4 = 3716, E5 = 0, E6 = 0.

Moreover, the solution behavior of the dynamic model (5) for S̃u, S̃i, Ĩ, Ã, C̃  and R̃ are simulated via 
fractional Adaptive-P-C technique against the real data given in Table  2, corresponding varying values of 
fractional order δ. The following values of the model parameters are considered as α1 = 0.3465, α2 = 0.4865,
α3 = 0.5465, α4 = 0.6165 and the initial conditions are S̃u(0) = 129, 789, 089, S̃i(0) = 1 × 108, 
Ĩ(0) = 7195, Ã(0) = 3716, C̃(0) = 0and R̃(0) = 0, and h = 0.01.

The numerical results shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 indicate the numerical simulation 
of the model relating to time T = 50 years and E = 675 for values of σ = 0.9, 1.2 and various values of 
δ = 0.70, 0.80, 0.90, 1. The dynamic behavior of different class subpopulations of the model (5) with σ = 0.9 
for distinct values δare shown in Figs. 2, 3, 4, 5 and 7.

The dynamical behavior of the varying subpopulation classes in the proposed model (5) with σ = 1.2 for 
distinct values of δ as shown in Figs. 8, 9, 10, 11, 12 and 13.

A spectrum of subpopulation behavior of the model with σ = 1.2 for significant measures δ is depicted in 
the following Fig. 13 below.

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 illustrate the graphical depiction of the transmission of the 
HIV disease model via our considered numerical scheme, along with a comparison between fractional and 
integer orders. Now, Fig. 2 demonstrates in what manner the number of susceptible uninformed individuals 
decreases over time, and this decrease is influenced by the fractional order parameter δ . For the small value of 
δ , the decline in the susceptible uninformed population occurs more gradually. This could imply a slower rate 
of transition from susceptible to informed or infected states. A gradual decline might suggest that interventions 
or information dissemination are affecting the uninformed population slowly.

Figure 3 signifies the dynamics of the susceptible informed population. This figure shows that the number of 
susceptible informed individuals S increases and then stabilizes after a few years. The initial rise in the susceptible 
informed population could be due to a period of increased information dissemination or initial exposure to 
preventive measures. This could imply that more individuals are becoming informed and thus moving into 
this category. After some years, the number of susceptible informed individuals reaches a stable level. This 
stability might indicate that the population of susceptible informed individuals has reached an equilibrium, 
where the rate of becoming informed equals the rate of leaving this category. The pattern of growth followed 
by stabilization suggests that the system is approaching a new steady state after an initial period of change. This 
could be reflective of a successful information campaign reaching saturation or a balance being struck between 
new information and other dynamics. Fig. 4 displays that the number of HIV-positive individuals declines as 
the value of δ  decreases. The decline in the HIV-positive population with decreasing fractional order suggests 
that the dynamics of the HIV-positive population are less aggressive or more stable when the system has less 
memory or inertia. This could mean that interventions or changes in behavior might have a more gradual or 

Parameters Values Source Parameters Values Source

X 229, 800, 000/67.39 34 ω∗
(1) 1/67.39 33

γ1 0.3465 Fitting ξ1 0.3243 Estimated

ρ1 0.2351 Fitting ϕ(1) 0.2059 Fitting

θ1 0.7661 34 ν1 3.6523 − e04 Fitting

η(1) 0.1882 Fitting φ1 0.7012 33

σ2 0.2day−1 34 Ẽp 229,800,000 Estimated

σ1 0.1day−1 34 σ3 0.01day−1 34

Table 2.  Parameters and their values.
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less pronounced impact in systems with smaller fractional order parameters. A smaller value of δ  might imply 
a slower or less pronounced response to treatment or intervention, potentially leading to a slower decline in the 
HIV-positive population compared to a system with a higher fractional order.

As Fig. 5 demonstrates, as the value of the fractional order decreases, correspondingly falls the number of 
people with AIDS. As lower the fractional order in the proposed model influences the rate of decline of AIDS-
afflicted individuals, exactly as it does for the HIV-positive population. In systems with lower values of δ, the 
dynamics controlling the progression or transition to AIDS may be less aggressive or more stable, as shown by 
the drop in AIDS-afflicted persons with smaller fractional order.

Figure 6 depicts how the fractional order decreases when the proportion of HIV-positive people taking ART 
drops. Less memory or inertia in the system is usually represented by a drop in fractional order. In the context 
of ART, this might suggest that the system’s response to ART is slower or less impactful with a lower fractional 
order. As the system becomes less responsive, the effectiveness or uptake of ART may become less obvious, 
as seen by the steady throw in the ratio of HIV-positive people getting ART with decreasing fractional order. 
This may arise from softer dynamics during the transition to treatment or from a slower rate of adaptation to 
treatment. The finding indicates a system with a smaller fractional order could not see as much continuous 
growth in the number of people using ART. Improved ART distribution strategies and more responsive medical 
treatments may be created with an understanding of these dynamics.

Figure 7 demonstrates that the number of recovered persons drops with time. A decreasing number of 
recovered individuals may indicate that recovery rates are not keeping pace with new infections or that the 
duration of recovery is limited. This might represent an instance where patients do not remain in a recovered 

Fig. 2.  Dynamical numerical simulation of susceptible uniformed.
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condition for long or if recovery rates are inadequate relative to the number of new cases. If the model incorporates 
fractional order, this decline might be influenced by the δ . For instance, a lower value of δ  might mean slower 
or less pronounced recovery dynamics, leading to a slower accumulation of recovered individuals. This result 
highlights the need for continuous and effective interventions to ensure that more individuals transition to a 
recovered state. If the decline is significant, it may indicate the need for revisiting treatment or intervention 
strategies to improve recovery rates and ensure sustainable health outcomes.

Similarly, when with σ = 1.2 Fig. 8 shows the susceptible uninformed populace increased slowly with a 
smaller fractional order. According to Fig. 9, the number of susceptible informed populace increases for the 
different fractional order. Figure  10 shows the populace with HIV infected gradually increasing over time. 
Figure  11 displays the number of AIDS-afflicted people increased with a smaller fractional order. Figure 12 
illustrates that the populace receiving ART gradually increased over time and it indicates the great impact on 
society. Figure 13 shows that the recovered individual increased with a smaller fractional order. The numerical 
simulation, shown in Figs. 8, 9, 10, 11, 12 and 13, demonstrates that early detection and treatment are effective 
in eradicating the disease. Public awareness about HIV-AIDS prevention has increased, and the use of 
contraception and microbicides has been explored as additional control measures. As a result, more people are 
aware of the disease, and receiving ART, and the number of AIDS patients recovering has increased. The study 
could be further expanded by considering a hypothetical vaccine and the reduction of intimate activities by some 
individuals with AIDS. It was observed that varying the value of δ leads to different trajectories, and the graphs 
indicate that the system’s dynamic behavior is modified by a fractional derivative of order two. Understanding 
these dynamics through the figures provides valuable insights into how mathematical models can inform public 
health strategies and improve the management of HIV/AIDS.

Fig. 3.  Dynamical numerical simulation of susceptible informed.
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Conclusion
Mathematical modeling plays an important role in understanding and handling infectious diseases such as 
HIV. Comparing nonlinear compartmental models to traditional models, the first offers a more sophisticated 
understanding of disease transmission. In order to investigate numerical insights into the transmission dynamics 
of the HIV disease, a fractional order model by incorporating antiretroviral treatment (ART) is introduced. 
The rate at which the infected population getting ART transitions to recovered persons (R) and the frequency 
of hospitalized patients’ recovery progress are specifically measured via the devised model. We applied the 
fractional derivative operators to capture more natural phenomena of the proposed model. A more realistic and 
exact understanding of how procedures impact different populations and how recovery dynamics change over 
time is also made possible by this model.

Throughout the investigation, a comprehensive analysis is conducted, covering key aspects such as positivity, 
boundedness, equilibrium points, the basic reproduction number, stability, and sensitivity. The model ensures 
boundedness and positivity by incorporating constraints and selecting appropriate functional forms, preventing 
unrealistic variable growth, and aligning the model with real-world constraints. This precautionary approach 
enhances the model’s reliability and applicability, providing policymakers with an accurate representation that 
supports well-informed decision-making within practical limitations.

The analysis of stability in the model indicates that when R0 < 1, the system is both locally and globally 
asymptotically stable at the disease-free equilibrium D0. Conversely, if R0 > 1, the system exhibits an endemic 
equilibrium D∗, at which point it is locally and globally asymptotically stable. Furthermore, a sensitivity analysis 
is conducted to assess the impact of various compartmental parameters on the basic reproduction number. The 
existence and uniqueness of the fractional-order model are established using the framework of fixed-point theory. 

Fig. 4.  Dynamical simulation of HIV infected.
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To solve the nonlinear differential equations, a modified fractional Caputo operator is employed alongside an 
adaptive predictor-corrector approach. A quantitative study is performed to compare the effects of integer-order 
and fractional-order models, and numerical results are obtained using the adaptive predictor-corrector strategy. 
The graphical results demonstrated that the outcomes are significantly influenced by the fractional order 
parameters σ and δ . Numerical simulations at different fractional orders, along with a comparative analysis 
against integer-order models, further illustrate the model’s predictive capability. The numerical implementation 
using a predictor-corrector scheme in MATLAB enhances computational efficiency, improving the validation 
of theoretical findings. The results suggest that both susceptible informed and susceptible ignorant individuals 
significantly impact the number of infected individuals. The overall infection rate exhibits smoother transitions 
and prolonged peaks in the infected population due to the interplay between fractional-order dynamics in 
susceptible and ignorant individuals. Additionally, individuals who recover from the virus or transition through 
antiretroviral therapy (ART) are classified as recovered. The process of recovery is influenced by infection rates 
and interactions between compartments which leads to a more gradual increase in the recovered population 
and potentially longer periods of recovery dynamics. Moreover, the extended compartment 

∼
R(t) demonstrates 

that the infected population under ART progresses toward recovery, reinforcing the importance of treatment 
interventions in managing disease spread.

This model offers a more precise and realistic depiction of disease transmission, the impact of interventions 
on different populations, and the evolution of recovery dynamics over time. The existing analysis can be extended 
by integrating various fractional operators that integrate non-local and non-singular kernels, enhancing the 
mathematical modeling of HIV/AIDS and improving future predictions and intervention strategies. Moreover, 
future directions for a temporal fractional HIV/AIDS model with fractal dimensions comprise refining parameter 
estimation, incorporating socioeconomic factors, and leveraging machine learning to enhance forecasting 

Fig. 5.  Dynamical simulation of AIDS afflicted.
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accuracy. Expanding the model to multiple locations, enabling real-time monitoring, and exploring different 
intervention scenarios can further increase its effectiveness. The model’s adaptability allows for customization 
based on regional needs, and its implementation in public health education can contribute to raising awareness. 
This research advances the field of fractional epidemiology, paving the way for similar methodologies to be 
applied in studying other infectious diseases.

Fig. 6.  Dynamical simulation of ART medication.
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Fig. 7.  Dynamical simulation of recovered individuals.
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Fig. 8.  Dynamical simulation of susceptible uninfected.
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Fig. 9.  Dynamical simulation of susceptible informed.
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Fig. 10.  Dynamical simulation of HIV infected.
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Fig. 11.  Dynamical simulation of AIDS afflicted.
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Fig. 12.  Dynamical simulation of ART medication.
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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