Table 2 Performance metrics for six algorithms that do not use Smote to handle data imbalance.

From: Machine learning for grading prediction and survival analysis in high grade glioma

Feature class

AUC (95% CI)

ACC

Recall rate

F1 score

Specificity

Logistic

0.74(0.65–0.83)

0.73

0.44

0.51

0.86

XGBoost

0.75(0.67–0.83)

0.74

0.49

0.54

0.86

Decision tree

0.66(0.59–0.75)

0.72

0.51

0.53

0.82

Random forest

0.76(0.69–0.83)

0.72

0.32

0.42

0.90

Adaboost

0.71(0.64–0.79)

0.72

0.44

0.50

0.85

GBDT

0.75(0.68–0.81)

0.73

0.49

0.53

0.84

  1. AUC Area under the ROC curve, ACC Accuracy.