Table 3 Performance metrics of six algorithms after using Smote to handle data imbalance.
From: Machine learning for grading prediction and survival analysis in high grade glioma
Feature class | AUC | ACC | Recall rate | F1 score | Specificity | P |
---|---|---|---|---|---|---|
Logistic | 0.81(0.77–0.84) | 0.73 | 0.72 | 0.72 | 0.74 | < 0.001 |
XGBoost | 0.84(0.78–0.88) | 0.78 | 0.79 | 0.77 | 0.77 | < 0.001 |
Decision tree | 0.77(0.66,0.84) | 0.74 | 0.74 | 0.74 | 0.74 | < 0.001 |
Random forest | 0.86(0.82,0.92) | 0.76 | 0.73 | 0.75 | 0.80 | < 0.001 |
Adaboost | 0.84(0.80,0.87) | 0.76 | 0.74 | 0.75 | 0.77 | < 0.001 |
GBDT | 0.85(0.80,0.90) | 0.76 | 0.76 | 0.76 | 0.76 | < 0.001 |
Stacking | 0.95(0.92–0.99) | 0.85 | 0.84 | 0.85 | 0.87 |