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About 60% of the etiological agents of human infections are of animal origin, and the microorganisms 
causing them can be isolated not only from farmed and domestic animals, but also from wildlife. 
Enterococcus spp. may exhibit intrinsic or acquired resistance to many antibiotic groups, posing 
significant therapeutic challenges. The aim of this study was to identify and assess the antibiotic 
resistance and virulence genes of Enterococcus strains isolated from fecal samples of wild animals. The 
118 strains were obtained from deer (n = 38), wild boar (n = 29), hare (n = 19), roe deer (n = 12), fallow 
deer (n = 5), raccoon dog (n = 4), fox (n = 4), moose (n = 2), polecat (n = 2), rabbit (n = 1), wolf (n = 1) and 
marten (n = 1). Antibiotic resistance assessments were performed using the disk diffusion method 
following the recommendations of the European Committee on Antimicrobial Susceptibility Testing 
(EUCAST). The frequency of occurrence of vancomycin-resistant enterococci (VRE) phenotypes, 
high-level streptomycin resistance (HLSR), high-level gentamicin resistance (HLGR), and high-level 
aminoglycoside resistance (HLAR) was also determined. The PCR was used to detect virulence genes 
(VGs) (agg, gelE, EfaAfs, ace, pil, ebpA, ebpB, ebpC, srtA, hyl, asa, cylA and cylB). The study revealed 
a high species diversity of Enterococcus spp. Among the 118 strains collected, 70 were resistant to 
at least one antibiotic. The majority of strains exhibited resistance to eravacycline, while the least 
resistance was observed against ampicillin. Strains with VRE, HLSR, HLGR, and HLAR phenotypes 
were identified. Multidrug resistant (MDR) strains were detected. However, extensively drug-resistant 
(XDR) and pandrug-resistant (PDR) strains were not observed. The virulence factors were present in the 
tested strains, and the most frequently detected gene was agg encoding aggregation substance. We 
have provided evidence that healthy wild animals can be reservoirs of pathogenic Enterococcus strains, 
including MDR strains and with many VGs, which can be transmitted to humans.
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Approximately 60% of human infectious diseases are zoonotic1,2. Pathogens causing infections in humans can be 
sourced from both wild and domesticated animals. In Poland, the most prevalent wild animals include roe deer, 
red deer, hares, and wild boars3,4. Various environmental changes resulting from human activities, such as habitat 
destruction, ongoing urbanization, and crossbreeding of domestic and wild animals, have led to an increased 
frequency of human contact with animals inhabiting wild areas, consequently elevating the importance of these 
animals in the spread of diseases5.
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“One Health” is an initiative created and advocated by the World Health Organization (WHO). It is 
characterized by a balanced, integrated, and multisectoral approach to the health of humans, animals, and the 
environment. The main premise is the collaboration of public health, veterinary, ecological, and research sectors 
to predict, detect, and prevent global health threats. One of the primary actions defining the “One Health” 
initiative is the prevention, detection, and control of zoonotic diseases, as well as reducing the prevalence of 
Antimicrobial Resistance (AMR)6.

The Enterococcus genus comprises Gram-positive, non-spore-forming cocci characterized by low nutritional 
requirements7. They exhibit high adaptability, including resistance to desiccation, the ability to grow in 
the presence of high salt concentrations, and a wide range of pH and temperature tolerance, making them 
widespread in the natural environment. Enterococcus spp. tolerate high concentrations of bile salts, allowing 
them to colonize the digestive tracts of many animal species, including humans8. The most commonly isolated 
species from mammals are E. faecalis, E. faecium, E. hirae, and E. durans9. E. faecalis and E. faecium are of greatest 
clinical significance, often causing hospital-acquired infections such as endocarditis, urinary tract infections, 
and infections of soft tissues and postoperative wounds10. Infections with Enterococcus spp. have also been 
observed in animals, causing diarrhea in livestock species such as pigs and cattle and urinary tract infections in 
domestic cats and dogs11–13. In recent years, there has been an increase in microbial resistance to antibiotics. The 
resistance of Enterococcus spp. to antimicrobial agents is linked to the acquisition of antibiotic resistance genes 
by these microorganisms14.

The Enterococcus genus is characterized by intrinsic resistance to a broad group of β-lactam antibiotics, 
including cephalosporins. This is related to two specific penicillin-binding proteins (PBPs), Pbp4(5) and 
PbpA(2b), exhibit low reactivity toward cephalosporins, allowing these PBPs to cross-link peptidoglycan in the 
presence of cephalosporins. Moreover, the CroS/R two-component signal transduction system (TCS) is also 
required for cephalosporin resistance. However, the specific genes regulated by CroS/R that are responsible for 
these resistance has not yet been fully characterized15–17. These bacteria also exhibit reduced susceptibility to 
penicillins18,19, especially among clinical E. faecium strains. Penicillin resistance in E. faecalis is due to Pbp4(5) 
overproduction and/or mutations20. Vancomycin-resistant enterococci (VRE) pose a particular threat by 
producing a different structure of peptidoglycan precursors, a component of bacterial cell walls14. High-level 
resistance to aminoglycosides (HLAR) is encoded by genes that modify the antibiotic. The HLGR phenotype 
(high-level gentamicin resistance) is characterized by a high level of resistance to all aminoglycosides, except 
streptomycin. High-level streptomycin resistance (HLSR) is reported as resistance only for streptomycin19,21,22.

Enterococcus virulence is associated with many virulence genes (VGs), of which two main groups can be 
distinguished: secreted virulence factors such as cytolysin (cylA), gelatinase (gelE) and hyaluronidase (hyl), 
which damage host tissues, and those associated with aggregation to the cell surface, such as aggregating 
substances (asa1), enterococcal surface protein (esp), endocarditis antigen (efaA) and collagen-binding protein 
(ace). Additionally, expression of pili (encoded by the ebpABC, srt, and pil locus) on the cell surface helps 
adhesion and biofilm formation23–26. In addition to antibiotic resistance, monitoring the occurrence of virulence 
factors among Enterococcus strains isolated from the natural environment is important in the context of the “One 
Health” trend.

The aim of this study was to identify and assess the antibiotic resistance and selected virulence genes of 
Enterococcus spp. strains isolated from fecal samples of wild animals.

Material and methods
Origin and collection of samples
Fecal samples from wild animals were collected from forested areas and ecotone zones in two forestry districts 
in the Kuyavian-Pomeranian Voivodeship, Poland (Table 1). Only fresh fecal samples were collected during 
the study. The freshness of the samples was assessed based on criteria such as color, sheen and consistency. The 
species identification of the animal from which the feces originated was determined by an experienced and long-

Species of animal Number of fecal samples (n = 98) (%) Number of isolated strains (n = 118)

Deer (Cervos) 31 (31.6) 38

Hare (Lepussaxatilis) 18 (18.4) 19

Wild boar (Sus scrofa) 17 (17.0) 29

Roe deer (Capreoluscapreolus) 15 (15.3) 12

Fox (Vulpes) 4 (4.1) 4

Fallow deer (Dama dama) 3 (3.1) 5

Moose (Alcesalces) 3 (3.1) 2

Raccoon dog (Nyctereutesprocyonoides) 3 (3.1) 4

Wolf (Wolf) 1 (1.0) 1

Rabbit (Oryctolaguscuniculus) 1 (1.0) 1

Marten (Murinisthorace) 1 (1.0) 1

Polecat (Mustelaputorius) 1 (1.0) 2

Table 1.  List of wild animal species, along with the number of fecal samples and isolates collected from each 
species.
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serving forestry employee. Fecal fragments were collected manually and transferred to sterile, appropriately 
labeled containers, which were then transported to the laboratory within approximately 1 h of collection.

Isolation of Enterococcus spp. from samples
All samples were mechanically homogenized, and approximately 0.5 g aliquots were placed in tubes containing 
4.5 ml Brain Heart Infusion (BHI) broth (Becton–Dickinson) and incubated at 37 °C for 24 h. After incubation 
in BHI (Becton–Dickinson), 0.5  ml of the mixture was transferred to a broth with sodium azide (Merck) 
(4.5 ml). The tubes were then incubated at 37 °C for 24 h. After incubation, 20 µl of the mixture was inoculated 
onto Enterococcosel Agar (Becton–Dickinson). The samples were incubated at 37 °C for 24 h. All presumptive 
Enterococcus colonies were select for identification.

Isolates identification
Species identification was performed using the Matrix-Assisted Laser Desorption/Ionization, Time of Flight 
(MALDI-TOF) system—Microflex (Bruker) according to the manufacturer’s instructions. To preserve the 
research material, single colonies of identified microorganisms were transferred to Eppendorf tubes with BHI 
broth (Becton–Dickinson) and 15.0% glycerol (Avantor) and frozen at − 80 °C.

Assessment of Enterococcus spp. strains susceptibility to antibiotics
The antibiotic susceptibility was assessed using the disk diffusion method with 14 antibiotics: streptomycin 
(300 µg), ampicillin (2 µg), tigecycline (15 µg), norfloxacin (10 µg), gentamicin (30 µg), teicoplanin (30 µg), 
eravacycline (20 µg), dalfopristin-quinupristin (15 µg), vancomycin (5 µg), nitrofurantoin (100 µg), levofloxacin 
(5 µg), ciprofloxacin (5 µg), linezolid (10 µg) and imipenem (10 µg) (Argenta). Susceptibility assessments for 
nitrofurantoin were only performed for E. faecalis, for dalfopristin-quinupristin only for E. faecium. The zones of 
growth inhibition, the presence of VRE, HLGR (high-level gentamicin resistance), HLSR (high-level streptomycin 
resistance), and HLAR (high-level aminoglycoside resistance) phenotypes were determined according to 
the EUCAST (European Committee on Antimicrobial Susceptibility Testing) v. 13.0 recommendations27. 
Vancomycin resistance was confirmed by determining the minimum inhibitory concentration (MIC) using MIC 
Test Strips (Liofilchem). The HLSR phenotype was identified when resistance to streptomycin was detected, 
HLGR in the case of gentamicin resistance, and the HLAR phenotype was identified in strains resistant to both 
gentamicin and streptomycin.

The plates were incubated at 35 °C for 18 ± 2 h. After the incubation period, the zone of inhibition around the 
antibiotic disks were measured. E. faecalis ATCC 29212 was used as a control.

Classification of strains (multidrug-resistant, extensively drug-resistant, pandrug-resistant)
The classification of each strain into three groups: multidrug-resistant (MDR), extensively drug-resistant 
(XDR), and pandrug-resistant (PDR), and thus the determination of the degree of resistance, was based on the 
guidelines established by Sweeney et al.28. Briefly, a strain was considered MDR when it was resistant to at least 
one antibiotic in three or more classes. Strain was XDR, when it was resistance to at least one antibiotics in all 
classes, expected for one or two. Finally, strain was PDR, when it was resistant to all available antibiotics from 
all chemical groups28.

Detection of virulence genes (VGs)
To detect VGs, isolation of DNA and multiplex PCR reactions were performed. DNA from the Enterococcus spp. 
strains was isolated using thermal method29. A single colony was suspended in 100 μl of 1 × Tris–EDTA buffer 
(pH 8.0) (Sigma-Aldrich). Next, it was incubated at 90 °C for 10 min. After this time, the mixture was cooled on 
ice for 2 min, and then the samples were centrifuged for 5 min (16,000×g, 4 °C). Purified DNA was placed in new 
tubes and stored at − 20 °C until further studies. The presence of genes encoding the following VFs: endocarditis 
and biofilm-associated pili (ebpA, ebpB, ebpC), pili (pil), pilus-associated sortase (srt), collagen-binding protein 
(ace), aggregation substance (agg, asa1), gelatinase (gelE), hyaluronidase (hyl), E. faecalis specific endocarditis 
antigen (EfaAfs), cytolysin activator (cylA), transport of cytolysin (cylB) was detected using a multiplex PCR, 
according to the Stępień-Pyśniak et al.30 with some modification (Supplementary Table S1 online). The E. 
faecalis ATCC 29212 strain was used as positive control. As a negative control, a reaction mixture without DNA 
was used.

Results
The occurrence of Enterococcus spp. in fecal samples of wild animals
A total of 98 fecal samples from 12 species of animals were examined (Table 1). Enterococci were isolated 
from 92 (93.9%) samples, resulting in 118 strains belonging to nine species (Table 2). Some samples contained 
multiple isolates. Among the species, E. faecalis was the most frequently identified (38 strains; 38.2%), followed 
by the clinically significant E. faecium (7 strains; 7.6%). The least commonly detected species were E. avium and 
E. thailandicus, with one strain each (0.9%) (Table 2). The samples from deer showed the highest diversity of 
Enterococcus species, likely reflecting the larger number of fecal samples analyzed from this group (n = 31). Seven 
species were identified from deer, with E. hirae being the most common (26.0%) and E. avium the least frequent 
(2.0%). From rabbit feces (n = 1), only E. mundtii was identified, while E. faecium was the sole isolate from wolf 
feces (n = 1). Polecat feces (n = 1) yielded two species: E. mundtii and E. casseliflavus. For wild boars (n = 17), E. 
hirae was the most prevalent species (21.0%) (Table 1).
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Assessment of Enterococcus spp. strains susceptibility to antibiotics
Among the 118 tested strains, 70 (59.3%) were resistant to at least one antibiotic (Fig. 1). Resistance to eravacycline 
was most common (33.1%; 39 strains), whereas resistance to ampicillin was rare (0.8%; 1 strain). The highest 
percentage of strains resistant to antibiotics from different chemical groups was observed among E. faecalis and 
E. faecium, and the lowest among E. avium and E. thailandicus.

For E. faecalis (n = 38), most strains were resistant to eravacycline (50.0%), while resistance to nitrofurantoin, 
imipenem, and norfloxacin was low (5.3% each). In E. hirae (n = 22), resistance to eravacycline was also dominant 
(31.8%), with resistance to imipenem and norfloxacin limited to one strain each (4.6%). For E. mundtii (n = 19) 
and E. casseliflavus (n = 17), also most strains were resistance to eravacycline. Notably, E. thailandicus showed 
no resistance to any of the antibiotics, while the one strain of E. avium showed resistance only to eravacycline.

Resistance was identified in strains from 9 of the 12 animal species examined. No resistant strains were found 
in moose, rabbit, or wolf samples (Table 3).

Fig. 1.  Susceptibility of Enterococcus spp. (n = 118) strains to antibiotics. AMP—ampiciline, CIP—
ciprofloxacin, ERV—eravacycline, F—nitrofurantoin, IMP—imipenem, LEV—levofloxacin, LZD—linezolid, 
NOR—norfloxacin, QD—quinupristin-dalfopristin, TEC—teicoplanin, TGC—tigecycline, VA—vancomycin, 
I- susceptible, increased exposure, R—resistant, S—susceptible.

 

Enterococcus species Number of strains (n = 118) (%)

faecalis 38 (32.2)

hirae 22 (18.6)

mundtii 19 (16.1)

casseliflavus 17 (14.4)

faecium 9 (7.6)

gallinarum 6 (5.1)

durans 5 (4.2)

avium 1 (0.9)

thailandicus 1 (0.9)

Table 2.  Species composition of the Enterococcus population obtained from wild animals along with the 
number of isolates.
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Detection of phenotypes: VRE, HLAR, HLSR, HLGR
The VRE phenotype was detected in two (1.7%) strains of E. faecalis isolated from roe deer and wild boar 
feces. The HLSR phenotype was detected in six (5.1%) of all strains (three E. hirae, one each of E. durans, E. 
casseliflavus, E. faecalis). Meanwhile, HLGR was observed in 10 strains (five E. durans, three E. hirae, one each 
of E. casseliflavus and E. faecalis). The highest percentage of strains resistant to streptomycin occurred in hares—
two (10.5%), wild boars—two (6.9%), and deer—two (5.3%).

HLAR phenotype was demonstrated in five (4.2%) of all strains. This phenotype was detected in one (20.0%) 
strain of E. durans, three (13.6%) strains of E. hirae, and one (2.6%) strains of E. faecalis. The presence of the 
HLAR phenotype was detected in two (5.3%) strains from deer, two (6.9%) strains from wild boars, and one 
(5.3%) strain isolated from a hare.

Antibiotic resistance profiles
A total of 41 different resistance profiles were observed (Fig. 2). The most common profiles indicated susceptibility 
to imipenem with increased exposure (profile I, 41.5%), resistant to gentamicin, susceptible, increased exposure 
to imipenem (profile II, 6.8%), and III resistant to eravacycline; susceptible, increased exposure to imipenem 
(profile III, 5.1%). These profiles were most common in Enterococcus spp. isolates from deer, hare, and wild boar 
samples. The strain of E. faecalis isolated from roe deer feces exhibited resistance to seven antibiotics (profile 
XXXII). Overall, MDR was detected in 22.9% of strains, of which most strains were isolated from deer (18.4%). 
No PDR or XDR strains were found.

Prevalence of virulence genes (VGs)
Among the virulence genes (VGs) tested, agg, encoding aggregation substance, was the most common, found in 
64.7% of strains (Table 4). Also, hyl and gelE genes were frequently detected in tested strains, at 43.7% and 42.0%, 
respectively. Other VGs, including ebpC, srt, EfaAfs ace, ebpB, ebpA, were present in 16.0–30.0% of strains, 
whereas cylA and cylB were absent in all isolates (Table 4).

The greatest number of VGs were found in E. faecalis strains. The tested strains were classified into 35 different 
virulence profiles (Table 5). The largest number of strains had the agg and hyl genes (20; 16.8%) and the agg gene 
(18; 15.1%). Only in nine (7.6%) strains none of the tested VGs were detected.

Discussion
Wild animals serve as a natural reservoir of microorganisms, some of which may prove to be potentially 
pathogenic not only for themselves but also for domestic animals and humans. The significant increase in the 

Species of animal Antibiotic Percentage of resistant strains (%)

Deer Eravacycline 39.5

Fallowdeer Norfloxacin 80.0

Roedeer

Gentamicin 33.3

Linezolid 33.3

Eravacycline 33.3

Moose – –

Hare Eravacycline 36.8

Rabbit – –

Fox Tigecycline 50.0

Wolf – –

Raccoon dog

Ampicillin 25.0

Norfloxacin 25.0

Nitrofurantoin 25.0

Levofloxacin 25.0

Ciprofloxacin 25.0

Imipenem 25.0

Eravacycline 25.0

Marten

Tigecycline 100.0

Gentamicin 100.0

Linezolid 100.0

Eravacycline 100.0

Polecat

Norfloxacin 50.0

Vancomycin 50.0

Eravacycline 50.0

Wild boar Linezolid 27.6

Table 3.  A list of antibiotics to which strains isolated from particular animal species most often showed 
resistance.
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transfer of microorganisms, including pathogens, between these two niches has been observed due to human 
economic activities and the urbanization of forested areas. There are several diseases that can be transmitted 
between animals and humans through direct contact with an infected individual, as well as through contact 
with their feces or consumption of animal products31–33. The increasing prevalence of bacterial resistance to 
antibiotics is also becoming a significant problem34,35.

The aim of the study was to identify and evaluate the antibiotic resistance of Enterococcus spp. strains that 
could be a zoonotic pathogenic factor. A total of 12 species of animals (98 collected samples) were examined, 
resulting in the isolation of nine species of enterococci (118 strains). The occurrence of enterococci in wild 
animals is not well-described in the literature, as it is in the case of farm animals such as poultry. There is limited 
research on Enterococcus spp. strains isolated from wild animals.

In this study, the number of fecal samples from which Enterococcus spp. strains were isolated was 92 (93.9%). 
In a study conducted by Cagnoli et al.36 on Italian wild avifauna species, Enterococcus spp. were isolated from all 
103 fecal samples. In a study conducted by Kemper et al.37 on semi-domesticated cervid populations, enterococci 
were isolated from 92.9% (2224 out of 2243) of samples. Similar results were obtained by Dias et al.34, who 
recovered Enterococcus spp. isolates from 89.0% of the Red Fox (Vulpes vulpes) fecal samples.

Fig. 2.  Heatmap with antibiotic resistance profiles of Enterococcus spp. strains.
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The most clinically relevant species of the Enterococcus genus are E. faecalis and E. faecium24,38. In our study, 
E. faecalis was the most frequently isolated species among the obtained enterococci. On the other hand, E. 
faecium was isolated from 7.6% of samples. In a similar study conducted by García et al.39, E. faecalis was isolated 
in 37.6%, and E. faecium in 17.5%. These authors also used MALDI TOF MS for identification similarly to 
ours. We obtained the highest number of strains from deer, which is related to the largest number of deer fecal 
samples included in our study. Nine species of Enterococcus bacteria were isolated from deer fecal samples, with 
E. hirae (26.0%) and E. mundtii (21.0%) being the most prevalent. In comparison, Liliehaug et al.40 isolated 
only five strains of E. faecalis and three strains of E. faecium from 50 fecal samples from red deer. For wild boar 
feces, they reported a much higher percentage of E. faecalis at 93.8%. But they identified enterococci based on 
PCR. Concerning samples from foxes in our study, the presence of three Enterococcus spp. was detected, with E. 
faecium constituting 50.0% of all strains of this genus and E. faecalis 25.0%. In a study by Dias et al.34, E. faecalis 
constituted 49.0% of all Enterococcus species, which is a higher percentage than in our study. In the same study, 
E. faecium was isolated less frequently at 39.0%, but this result is lower than in our study34. The differences may 
be related to the different identification method used by the authors who used PCR. In another study conducted 
in Brazil with 50 strains isolated from wild foxes, identified using MALDI-TOF MS 64.0% E. faecalis and 22.0% 
E. faecium41. For other animals, species diversity was lower than for deer or foxes in our study.

In our study, it was demonstrated that 59.3% (70/118) of the tested Enterococcus spp. strains were resistant 
to at least one antibiotic. In a study Lillehaug et al.40, resistance to one or more antibiotics was found in all 
Enterococcus spp. strains isolated from cervids. Similarly, in a study Oliveira de Araujo et al.41, 98.0% of all 
Enterococcus spp. strains isolated from foxes were resistant to at least one antibiotic. In our study, enterococci 
were least resistant to ampicillin (0.8%), a result that is low compared to the literature. In a study by Nocera et 
al.33, as much as 75.0% of the tested strains were resistant to ampicillin. In another study, 7.2% of Enterococcus 
spp. strains were resistant to ampicillin, which is still a high result compared to our findings39. In our study, the 
highest percentage of strains resistant to antibiotics from different chemical groups was found among E. faecalis 
and E. faecium, and the lowest among E. avium and E. thailandicus.

The detection of resistance phenotypes (VRE, HLAR, HLGR, and HLSR) in Enterococcus spp. isolated 
from the feces of wild animals is a poorly understood issue, and there is a lack of relevant data in the available 
literature. However, databases contain studies related to farm animals. In an experiment conducted by Kim et 
al.21, out of 345 strains of Enterococcus bacteria, 8.7% of the strains exhibited the HLAR phenotype. In our study, 
this percentage was 4.2% of the tested strains. In this study, the VRE phenotype was detected in only two out of 
38 E. faecalis samples (5.3%), which constitutes 1.7% of all Enterococcus spp. strains. Dec et al.38 obtained three 
out of 52 isolates with high level of resistance (minimal inhibitory concentration ≥ 1,024 μg/mL) to vancomycin 
and teicoplanin. Other authors39,41 did not detect vancomycin-resistant strains derived from wild animals.

Strains that are resistant to multiple antibiotics (MDR, PDR, and XDR) pose a particular danger and 
therapeutic challenge. Bacteria are increasingly acquiring resistance not only to one group of antibiotics but to 
several or even all groups. In our study, multidrug-resistance was detected in 22.9% of Enterococcus spp. strains. 
No PDR or XDR strains were found, but an E. faecalis strain from deer was resistant to at least one antibiotic 
from 5 different chemical groups. For comparison, in a study on wild birds conducted in Italy by Cagnoli et 
al.36, as much as 77.0% of Enterococcus spp. strains exhibited multidrug-resistance, almost 20.0% were PDR, and 
about 3.0% were XDR. In our study, the percentage of MDR strains in Enterococcus spp. isolated from wild deer 
feces was 20.69% (6/29). In a study by Oliveira de Araujo et al.41 on foxes in Brazil, 66.0% of strains exhibited 
multidrug-resistance. In the present study 13 different VGs were detected. The most frequently detected genes 
were agg, hyl and gelE, which play an important role in the pathogenesis process. Similar results were obtained by 
Pillay et al.42, who detected the presence of the gelE gene in more than 50% of Enterococcus strains isolated from 

Gene

Number of strains

Total no. (%)EFA EHI EMU ECA EFM EGA EDU EAV ETH

agg 18 20 11 11 0 2 5 1 1 77 (64.7)

hyl 10 18 8 6 5 4 1 0 0 52 (43.7)

gelE 36 12 1 0 0 1 0 0 0 50 (42.0)

ebpC 35 0 0 0 0 0 1 0 0 36 (30.3)

srt 32 1 0 0 0 0 1 0 0 34 (28.6)

EfaAfs 28 0 0 0 0 0 0 0 0 28 (23.5)

ace 14 1 2 4 0 0 2 0 0 23 (19.3)

ebpB 22 0 0 0 1 0 0 0 0 23 (19.3)

ebpA 19 0 0 0 0 0 0 0 0 19 (16.0)

pil 8 0 0 0 0 0 0 0 0 8 (6.7)

asa 4 0 0 0 0 0 0 0 0 4 (3.4)

cylA 0 0 0 0 0 0 0 0 0 0 (0.0)

cylB 0 0 0 0 0 0 0 0 0 0 (0.0)

Table 4.  Prevalence of VGs of Enterococcus spp. strains. EFA, Enterococcus faecalis; EHI, Enterococcus hirae; 
EMU, Enterococcus mundtii; ECA, Enterococcus casseliflavus; EGA, Enterococcus gallinarum; EDU, Enterococcus 
durans; EAV, Enterococcus avium; ETH, Enterococcus thailandicus.
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chicken cloacal samples. Until now, the presence of VGs in strains isolated from wild animals has not been well 
known. Our study significantly expands the state of knowledge in this area and proves that Enterococcus strains, 
especially E. faecalis, isolated from this material may contain a number of VGs.

To sum up, it can be stated that Enterococcus spp. strains identified in this study demonstrated a moderate level 
of antibiotic resistance and virulence compared to findings from other studies on wild animals. Approximately 
59.3% of the strains were resistant to at least one antibiotic, which is lower than some studies, such as Lillehaug 
et al.40 and Oliveira de Araujo et al.41, where nearly all tested strains exhibited resistance to multiple antibiotics. 
Additionally, the prevalence of MDR strains in our study was 22.9%, considerably lower than the 66–77% MDR 
rates reported in other research. Virulence factors were detected in a significant proportion of strains, but the 
diversity and frequency were generally comparable or slightly lower than in studies focusing on wild avifauna 

Profile number Virulence genes Total no. (%)

I agg, hyl 20 (16.8)

II agg 18 (15.1)

III hyl 10 (8.4)

IV No VGs 9 (7.6)

V gelE, agg, hyl 7 (5.9)

VI gelE, agg 5 (4.2)

VII ace, agg 4 (3.4)

VIII ace, agg, hyl 3 (2.5)

IX EfaAfs, gelE, ebpA, ebpB, agg, srtA 3 (2.5)

X EfaAfs, gelE, ebpA, ebpB, srtA 3 (2.5)

XI EfaAfs, gelE, ebpA, ebpB, ebpC, srtA, hyl 2 (1.7)

XII EfaAfs, gelE, pil, ebpB, ebpC, srtA 2 (1.7)

XIII ace 1 (0.8)

XIV ebpB, ace, agg, srtA 1 (0.8)

XV agg, srtA, hyl 1 (0.8)

XVI gelE 1 (0.8)

XVII gelE, ace, agg, hyl 1 (0.8)

XVIII ebpC, hyl 1 (0.8)

XIX gelE, ebpB, ebpC 1 (0.8)

XX EfaAfs, gelE, srtA 1 (0.8)

XXI gelE, srtA, hyl 1 (0.8)

XXII EfaAfs, gelE, ebpB, ace 1 (0.8)

XXIII gelE, ebpB, agg, srtA 1 (0.8)

XXIV EfaAfs, gelE, ebpB, srtA, hyl 1 (0.8)

XXV EfaAfs, gelE, ebpB, ace, agg, srtA 1 (0.8)

XXVI EfaAfs, gelE, ebpA, ebpB, ebpC, ace, srtA 1 (0.8)

XXVII EfaAfs, gelE, ebpA, ebpB, ace, agg, srtA, asa 1 (0.8)

XXVIII gelE, ebpB, ebpC, ace, agg, srtA 1 (0.8)

XXIX EfaAfs, gelE, ebpA, ebpB, hyl 1 (0.8)

XXX EfaAfs, gelE, ebpB, agg, srtA 1 (0.8)

XXXI gelE, ebpA, ebpB, ebpC, agg, srtA, hyl 1 (0.8)

XXXII EfaAfs, gelE, ebpB, ebpC, srtA 1 (0.8)

XXXIII EfaAfs, gelE, ebpB, ebpC, ace, agg, srtA, hyl, asa 1 (0.8)

XXXIV EfaAfs, gelE, ebpB, ebpC, ace, srtA 1 (0.8)

XXXV EfaAfs, gelE, pil, ebpA, ebpB, ebpC, ace, srtA, hyl 1 (0.8)

XXXVI EfaAfs, gelE, pil, ebpA, ebpB, ebpC, agg 1 (0.8)

XXXVII EfaAfs, gelE, ebpA, ebpB, ebpC, agg, srtA 1 (0.8)

XXXVIII gelE, ebpA, ebpB, ebpC, srtA 1 (0.8)

XXXIX EfaAfs, gelE, pil, ebpB, ebpC, agg, srtA, hyl 1 (0.8)

XL gelE, pil, ebpA, ebpB, ebpC, ace, srtA 1 (0.8)

XLI ebpA, ebpB, ebpC, ace, agg, srtA, hyl 1 (0.8)

XLII EfaAfs, gelE, pil, ebpB, ebpC, ace, agg, srtA, asa 1 (0.8)

XLIII gelE, ebpB, ebpC, ace, agg, srtA, asa 1 (0.8)

XLIV EfaAfs, gelE, ebpA, ebpB, ebpC, srtA 1 (0.8)

XLV EfaAfs, gelE, pil, ebpB, ebpC, ace, agg 1 (0.8)

Table 5.  Profiles of VGs in Enterococcus spp. strains.
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or other mammals. Overall, while this study highlights important public health risks, the strains studied appear 
less resistant and virulent than those reported in certain other contexts, particularly in environments with higher 
antibiotic pressure.

The findings of this study align with the One Health framework by illustrating the interconnectedness 
of human, animal, and environmental health through the investigation of antibiotic-resistant and virulent 
Enterococcus spp. strains in wild animals. They provide valuable insights into how wildlife serves as reservoirs 
of multidrug-resistant pathogens with zoonotic potential, thus emphasizing the need for integrated surveillance 
to prevent the spread of AMR. These results are critical for understanding the environmental reservoirs of AMR 
and for developing strategies to control zoonotic risks, directly supporting One Health’s goal of collaborative, 
cross-sectoral approaches to global health challenges.

Conclusion
In all fecal samples from wild animals, the presence of potentially pathogenic bacteria from the Enterococcus 
genus was detected. This study revealed that 23.0% constituted MDR strains. The assessment of resistance to 
the applied antibiotics, as well as the low proportion of strains with VRE and HLAR phenotypes, indicates 
overall low antibiotic resistance among Enterococcus spp. strains isolated from fecal samples of wild animals. 
This work has contributed to enhancing the current understanding of the complexity and antibiotic resistance of 
the gut microbiota of wild animals. The results, particularly the surprisingly high percentage of strains resistant 
to eravacycline, may serve as a basis for further comprehensive analyses. The study shows the occurrence of 
many VGs among the tested strains, of which the gene encoding the aggregation substance was detected most 
frequently.

Data availability
The data sets used and/or analyzed during the current study available from the corresponding author on rea-
sonable request.
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