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Individual characteristics, topic characteristics, and network structure factors are crucial for topic 
dissemination in social networks. However, existing models lack well integrated modelling of 
higher-order network structures with individual and topic characteristics. A new topic dissemination 
model based on hypernetwork (HSIRS for short) is proposed in this paper. We introduce an improved 
method of hypernetwork structure construction for online social networks. Each user’s dissemination 
probability and re-entry probability are defined based on topic attractiveness, user sensitivity to 
different topics, individual activity, and hyperedge size effect. Our experiments on three simulated 
networks and three real social networks reveal that topic dissemination in hypernetworks is faster 
and more extensive compared to two existing models, characterized by pronounced fluctuations and 
sustained influence. The hyperedge structure facilitates rapid and extensive topic dissemination, but 
the effects eventually diminish. Topics with intense attractiveness and those linked to individuals with 
high hyperdegree values and activity levels greatly enhance dissemination rates and volatility.
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With the rapid advancement of social media and online platforms, studying topic dissemination has become 
increasingly important, particularly for understanding public opinion, marketing strategies, and information 
flow in interpersonal networks1. Many scholars have explored topic dissemination using complex network theory 
and infectious disease models, formulating various paradigms, such as SIR, SIS, and SIRS2–4. However, these 
models primarily rely on simple networks, where edges represent only pairwise interactions between nodes. This 
simplification overlooks multi-way interactions commonly observed in real-world social systems5. For instance, 
on online social media platforms, users not only form pairwise connections through behaviors like following but 
also participate in group interactions centered around shared interests, topics, or needs. Therefore, traditional 
graph-based binary simple networks are no longer suitable for such systems. Higher-order network represents 
an emerging model that extends the traditional network by considering interactions among multiple entities 
rather than just simple pairwise connections. This extension transforms the dissemination paradigm from one-
to-one to one-to-many or even many-to-many interactions6.Multi-layer networks7, weighted networks8 and 
temporal networks9 are important tools for modelling complex networks, and there have been research advances 
in representing higher-order network data and topology, but they are not intuitive enough to express the higher-
order interactions of nodes. Hypernetworks provide a more sophisticated framework where hyperedges connect 
multiple nodes simultaneously10, overcoming the limitations of simple networks and enabling scholars to capture 
the complexity of topic dissemination more comprehensively.

Despite these advancements, existing research on hypernetwork-based dissemination models relies on the 
assumption of uniformly mixed population, where individuals have the same probability of interacting with 
others, leading to a uniform spread of infection. This assumption simplifies analysis but neglects real-world 
heterogeneities such as individual differences in infectiousness and structural complexity of hyperedges11,12. 
Individuals also adjust their participation dynamically across various topics based on the number of 
communicators and activity levels.

Individual characteristics, topic characteristics, and network structure are crucial factors that influence 
topic dissemination in social networks. Different individuals have unique characteristics in understanding 
and interpreting information13. Those who are highly influential and active can disseminate information more 
effectively. Topics impact the evolution of macro-level public opinion through characteristics such as information 
intensity and topic type14,15. Existing research results on topic propagation (e.g. CSIRS model) help to understand 
the propagation dynamics of topics, revealing that nodes are sensitive to topic characteristics, and that network 
structure plays an important role in topic dissemination process, but they have not been applied to hypernetwork 
structures. Bodó-SIS as one of the earliest hypernetwork propagation models, the constructed hypernetwork 
model assumes that all hyperedges are internally fully connected and the non-uniform propagation properties 
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of the nodes are not considered in its propagation model, limiting more complex and realistic propagation 
mechanisms.

In summary, we proposed an improved SIRS dissemination model based on hypernetwork (HSIRS model). 
The main contributions of this paper are as follows:

	(1)	 Constructing a hypernetwork structure by enhancing Bodó’s clique-structured hypergraph generation 
method which can represent users’ interaction more accurately in a given online social network.

	(2)	 Incorporating user activity levels, information sensitivity, and hyperedge size, thereby addressing the over-
simplifications in existing hypernetwork-based models.

	(3)	 By examining the effects of hyperedge size, topic content, and individual characteristics on topic dissemina-
tion, providing theoretical insights for predicting information dissemination and informing public opinion 
management strategies.

This paper comprises several sections that discuss topic dissemination model based on hypernetwork. Section 
“Related work” introduces the related work of topic dissemination process in complex networks. Section “Model 
description” focuses on the proposed hypernetwork generation method and HSIRS model. Section “Simulation 
and Experimental Analysis " shows the feasibility and effectiveness of the proposed model. Also, the influences 
of various factors on topic dissemination are explored.

Related work
At the end of the 20th century, the emergence of small-world networks and scale-free networks advanced complex 
network theory16,17. Scholars began modeling infectious disease dynamics with networks where individuals are 
nodes and their interaction relationships are edges18. Given the similarity between public opinion dissemination 
and infectious disease dissemination, methods combining complex network theory with epidemiology have 
become essential in topic dissemination modeling. Current trends in topic dissemination research can be 
categorized mainly into two areas:

Firstly, traditional topic dissemination models are largely built upon graph-based frameworks, where 
the classical SIR (Susceptible-Infected-Removed) model serves as a foundational theoretical framework, 
increasingly applied to topic dissemination across complex systems19–21. Scholars have enhanced the SIR model 
by introducing additional states or incorporating topic-related factors. For instance, Enatsu et al.22 proposed the 
SIRS model, accounting for the possibility that immune nodes may revert to susceptible nodes due to certain 
external factors. Han et al.23 enhanced the SIRS model for simulating the spread of hot topics in social networks 
by considering node sensitivity to content and the influence of neighboring nodes on dissemination probability. 
Zhao Li et al.24 observed that participants vary in popularity and activeness, leading to different dissemination 
abilities, and they refined the information cascade dissemination model based on node popularity and activeness, 
providing a more detailed portrayal of each node’s role in the topic dissemination process. However, graph-based 
models exhibit several inherent limitations in modeling real-world topic dissemination. As noted by Lambiotte. 
R et al.25, empirical data reveal that the basic pairwise interaction units fail to capture the intricate dependencies 
inherent in real-world networks.

Secondly, hypergraph-based hypernetworks are studied for modeling complex social connections beyond 
simple pairwise relationships, given that real-world communication often involves multi-body interactions. 
The hypergraph is a generalized graph-relational structure that describes relationships between nodes and 
hyperedges. This representation has broad applications across disciplines such as physics, mathematics, and 
computer science, where complex relational data must be modeled26–28. Although there have been several 
research approaches in expressing higher-order networks, but compared to these approaches, hypergraph-based 
hypernetworks present a more direct representation of group-based propagation in the real world. Multilayer 
networks represent different types of interactions through different levels of networks and are commonly used 
for cross-platform research, but are still essentially binary relationships within layers. Weighted networks allow 
for different weights to be assigned to binary connections to represent different interaction strengths, which 
approximates some of the higher-order effects but does not allow for the direct modelling of the impact of 
multibody interactions. Temporal networks are mainly used for portraying the dynamic evolution of the network 
structure and need to be extended to support the representation of higher-order interactions. Hyperedges 
can encompass multiple nodes, effectively representing higher-order interactions. Wang et al. presented a 
heterogeneous hypergraph embedding models for efficient point of interest recommendation systems29. In 
location-based social networks, neural graph collaborative filtering combined with hypernetwork structures in 
the study of Acharya et al. has enhanced the accuracy of high-order spatial connection mining30. Furthermore, 
hypernetworks have been integrated into continual learning frameworks, enabling models to adapt to dynamic 
environments while retaining historical knowledge31. Peng et al. explored cross-platform relational alignment 
based on multi hypernetwork structure attributes, improving accuracy across different network layers32. Recent 
studies have demonstrated the distinct advantages of hypernetwork-based models over traditional graph-
based models. One of the first attempts to model dissemination on hypergraphs was made by Bodó. In 2016, 
Bodó33 introduced a method for generating hyperedges by detecting cliques in power-law random graphs. He 
proposed the first SIS infectious disease dissemination model on hypergraphs, considering community structure 
and the nonlinear dependence of infection probability on the number of infected neighbors. However, this 
method assumed full connectivity between nodes within each hyperedge, which limited its ability to represent 
dissemination processes in higher-order networks. Bodó-SIS didn’t take into account the dynamic adjustment 
of the probability of infection of an individual and is therefore less applicable to the evolution of opinion in the 
real world. Many scholars have explored topic dissemination models on hypernetworks, achieving preliminary 
progress in some areas. Suo et al.34 analyzed public opinion propagation in hypernetworks, proposing models 
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based on global and local propagation strategies respectively. Hu Feng et al.35 demonstrated the small-world 
characteristics and information propagation dynamics of hypernetworks by adapting the WS algorithm. Shen 
Wang et al.36 considered social network topology with both friend and groupmate relationships, incorporating 
behavioral diversity to enhance the SIR model. These studies employed various methods to construct 
hypernetwork structures, highlighting that topics in hypernetworks spread faster and reach more audiences. In 
2020, Nicholas W et al.37 introduced a hyperdegree-based SIS dissemination model, revealing that hyperedge 
heterogeneity facilitates discontinuous phase change behavior in infectious disease spread.

Based on existing research, the following considerations are still lacking in current studies focused on 
topic dissemination modeling on hypernetworks: (1) Most hypernetworks rely on synthetic networks for their 
construction, and the clique-structured hypernetworks initially proposed by Bodó are limited and identical to 
simple networks in certain respects. (2) Most current hypernetwork models employ overly simplistic rules for 
state transitions, neglecting comprehensive consideration of individual activity, topic sensitivity, and hyperedge 
heterogeneity factors on topic dissemination.

Methods
This section will provide a detailed introduction to HSIRS. The hypernetwork is constructed by enhancing Bodó’s 
clique-structured hypergraph generation method, and the rules for the state transition are formulated based on 
the hypernetwork by considering the topic characteristics, individual characteristics, and hyperedge size factors.

Hypernetwork construction for online social networks
A hypergraph is a generalization of a graph, whereas the network represented by a hypergraph 
is referred to as a hypernetwork. A hypergraph on a finite vertex set V  is denoted as 
H = (V, E), where V = {v1, v2, . . . , vn} is the vertex set, and E = {e1, e2, . . . , em} is the set of 
hyperedges. A hyperedge ei = {vi1, vi2, . . . , vij}(i = 1,2, . . . , m)(1 ≤ j ≤ n) is a subset of V  that must 
satisfy ei ̸= Φ (i = 1,2, . . . , m) and 

∪
m
i=1ei = V. The hyperdegree of a node vi denoted dH (i) is defined 

as the number of hyperedges containing that node. The degree of a hyperedge ei denoted k (ei) is defined as the 
number of vertices contained within the hyperedge and is used to measure hyperedge size. If a node vi(i ≤ n) 
and a node vj(j ̸= i, j ≤ n) belong to the same hyperedge, then nodes vi and vj  are considered neighbors.

In this paper, we will extend the method of constructing clique-structured hypernetworks33. Given a 
simple network N ( e.g., a power-law randomized network), the clique-structured hypernetwork construction 
method converts the simple network into a clique-structured hypernetwork defined on the same set of nodes 
by identifying all the complete subgraphs (cliques) as hyperedges. However, since the cliques rely on the 
original links between nodes, the node relationships expressed by cliques fail to break the limitation of the 
simple network structure. The clique-structured hypernetwork is prone to form a larger number of small-size 
hyperedges that are scattered and cluttered. Therefore, we adopt the method of merging cliques to simplify the 
hyperedge. Once all cliques in the simple network are identified, a merging process based on overlap ratios is 
initiated. The overlap ratio between clique C1 and clique C2 is given by: |C1∩ C2|

|C1∪ C2| . Each pair of cliques with 
overlap ratio exceeding a specified threshold is merged into a new hyperedge. This process continues until no 
pairs exceed the threshold or the target number of hyperedges is reached. Pairs of cliques with high overlap ratios 
indicate strong interconnections among their nodes, suggesting that these nodes likely belong to the same social 
group. By merging these cliques into a single hyperedge, the hypernetwork captures the underlying community 
structures more effectively. This method preserves original node relationships while disrupting conventional 
information pathways, including those formed by interest groups or platform recommendations. As a result, it 
offers a more nuanced understanding of node interactions and improves analytical capacity for dissemination 
modelling. In this way, we construct the desired hypernetwork H = (V, E) from a simple network N . The 
node set V  denotes the users in the online social network and the edge set E consists of hyperedges connecting 
the user nodes.

Figure 1 illustrates two types of hypernetworks constructed from a simple network containing 10 users and 
10 edges. Simple edges and cliques represent similar node-connected edge relationships, while hyperedges can 
represent node relationships that are not captured by simple edges and cliques. For example, in Fig. 1b, node 5 
is directly connected to nodes 3, 8, and 9. It is also connected to nodes 3, 4, and 7 by hyperedge e2, as well as to 
nodes 6, 8, and 9 by hyperedge e3. Thus, even though node 5 is not directly connected to nodes 4, 7, and 6 in the 
simple network, it interacts with these nodes through the hyperedges.

Assuming that M  is the size of current clique sets, it is necessary to traverse all M(M−1)
2  clique pairs with 

a time complexity of O(M2). In the worst case, the merge process needs to be performed M times, so the 
overall time complexity is about O

(
M3)

. This method is suitable for small clique sets (smaller M ). For larger 
graphs, a combination of heuristic strategies or approximation algorithms is required to reduce the complexity. 
The merging threshold determines the level of clique aggregation. As seen in Table 1, we evaluate the sensitivity 
of this parameter by varying merging threshold across multiple values and examining its impact on hyperedge 
statistics. A lower threshold indicates a lower merging requirement, resulting in larger hyperedges but fewer total 
hyperedges. A higher threshold preserves smaller hyperedges. When the merging threshold = 0.7, the hyperedge 
structure agrees with the original cluster number. Moreover, to evaluate the computational scalability, we test the 
model on networks of varying sizes (500, 1 K, 10 K, 30 K, 50 K, 100 K nodes) and measure runtime efficiency. 
Results indicate that while moderate-sized networks complete within seconds, larger networks require optimized 
implementations, such as approximate merging heuristics or parallel computing, to maintain scalability. At 
50 K nodes, the computational burden escalates, and for 100 K nodes, computation time exceeds 12 h, making 
efficiency optimizations crucial. Fewer cliques are merged at higher thresholds, resulting in less computation 
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time. Therefore, adjusting the merging threshold allows control of the balance between the granularity of the 
hypernetwork and computation cost, adapting it to the size and complexity of different networks.

Hypernetwork-based topic dissemination model for online social network
Individual state transition process
This subsection introduces a Hypernetwork-Based SIRS model (HSIRS), which includes three states: Susceptible 
(S), Infected (I), and Recovered (R), representing potential participants, active participants, and immune 
individuals, respectively. The state transition process in HSIRS model is illustrated in Fig. 2.

When a new topic enters the hypernetwork, the specific dissemination process unfolds as follows:

	(1)	 Initialization: In the initial hypernetwork, there are I0 nodes in the initial infected state, spreading the topic 
by posting, commenting, etc. All other nodes are in the susceptible state S.

	(2)	 State Update: At each time step, the state of all individuals is updated synchronously. When a susceptible 
node i has an infection probability Pi that exceeds its infection threshold ri( i.e., Pi > ri), the node tran-
sitions from the susceptible state S to the infected state I. Infection threshold refers to the minimum force 
needed to change an individual’s behavior38. In actual transmission process, there are differences between 

Network size (nodes) Merging threshold Number of cliques Number of hyperedges Average hyperedge size Max hyperedge size Computation time

500

0.1 1664 439 5.31 9 2.3 s

0.3 1664 824 3.18 13 3.7 s

0.5 1664 1657 2.19 5 3.2 s

0.7 1664 1664 2.20 4 1.5 s

1 K

0.1 3485 923 5.16 9 9.2 s

0.3 3485 1748 3.12 10 12.1 s

0.5 3485 3476 2.15 6 17.5 s

0.7 3485 3485 2,15 5 6.8 s

10 K

0.1 38,603 5495 8.14 14 25 m 51.7 s

0.3 38,603 19,677 3.00 12 22 m 55.0 s

0.5 38,603 38,596 2.03 6 21 m 9.3 s

0.7 38,603 38,603 2.03 5 11 m 17.1 s

30 K

0.1 118,006 16,848 8.06 13 2 h 24 m 12.7 s

0.3 118,006 60,231 2.97 11 3 h11 m 11.3 s

0.5 118,006 118,002 2.01 5 3 h 16 m 32.8 s

0.7 118,006 118,006 2.01 5 1 h 38 m 2.5 s

50 K

0.1 197,665 28,256 8.03 13 6 h 47 m  3.2 s

0.3 197,665 100,955 2.97 12 8 h 58 m 43.5 s

0.5 197,665 197,657 2.01 5 9 h 13 m 20.0 s

0.7 197,665 197,665 2.01 5 4 h 40 m 42.1 s

100 K 0.7 396,999 / / / > 12 h

Table 1.  Impact of hyperedge merging threshold on networks of different sizes.

 

Fig. 1.  Illustration of two types of hypernetworks for online social network. (a) a clique-structured 
hypernetwork with 8 cliques; (b) a hypernetwork with 3 hyperedges applying a 0.2 merging threshold.
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individuals who possess different infection threshold. Nodes in I-state transition to an immune state R at a 
certain recovery rate γ , meaning that they no longer engage in topic dissemination. Alternatively, they may 
maintain a level of activity and, with a re-entry probability Ri, return to the susceptible state S, indicating 
multiple participations in topic dissemination.

	(3)	 Steady State: As the topic propagates through the hypernetwork, the states of nodes gradually stabilize and 
the system approaches a steady state, marking the end of topic dissemination.

An example of the dissemination process of HSIRS model is given in Fig. 3. At t = 1, nodes 2 is infected by node 
3 via the hyperedge e1, despite having no direct connection with node 3 in the simple network. At t = 2, node 
6 is infected by node 5 through the hyperedge e3. The example demonstrates how the hypernetwork represents 
the complex interactions within multiple nodes, enhances network connectivity, and provides a deeper 
understanding of the topic dissemination mechanisms in complex social networks.

HSIRS topic dissemination model
The model assumes that the key factors influencing the node i’s participation in topic dissemination are:

	(1)	 Topic Attractiveness λ : The spread of a topic is constrained by its macro characteristics, such as validity, 
richness, and novelty. The parameter λ  quantifies the attractiveness of the topic based on its macro charac-
teristics, with a value ranging from [0,1].

	(2)	 Topic Sensitivity Si: This parameter quantifies the level of interest and reaction of a node to various topics. 
For instance, nodes interested in technology will be more likely to participate in discussions related to new 
technological advancements, while they may be less inclined to engage with topics related to entertainment. 
To formalize this concept, we define two label vectors: node tag vector U = {u1, u2, . . . , un}, represent-
ing the interest tags associated with a node, and topic tag vector T = {t1, t2, . . . , tn}, representing the 

Fig. 3.  Schematic illustration of the dissemination process in HSIRS model. (a) t = 0: Node 3 is initialized 
as the dissemination user (I-state), and all other nodes are in the susceptible state (S-state). (b) t = 1: Node3 
infects its neighboring nodes 0, 2 and 5, which become infected (I-state). (c) t = 3: Node 1 is infected under 
the joint influence of neighboring nodes 0, 2 and 3, and node 7 is infected under the joint influence of nodes 
3 and 5, while nodes 6 and 8 become infected through a hyperedge connection with node 5. Meanwhile, node 
0 returns to the susceptible state (S-state), and nodes 3 and 5 transition to the immune state (R-state) and no 
longer participate in dissemination.

 

Fig. 2.  State transition diagram of HSIRS model.
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tags associated with a topic, where n is the number of tags. Topic sensitivity of node i to a topic is defined 

as Si = 2*|Ttags∩ Utags|
|Ttags|+|Utags| , ranging from [0,1].

	(3)	 Individual Activity Ai: Activity influences the rate at which nodes receive and disseminate information. 
Highly active nodes engage more frequently in discussions, increasing their exposure to new topics and 
their likelihood of dissemination. The parameter Ai is used to analyze the impact of node i’s activity level 
on topic dissemination, taking the value range of [0,1].

	(4)	 Hyperedge Size Effect τ k : Hyperedges represent higher-order interactions, enabling complex association 
patterns beyond simple pairwise interactions and increasing the influence range of nodes within the hyper-
network. The size of a hyperedge plays a crucial role in topic dissemination, as larger hyperedges include 
more participants, increasing the potential audience for a topic. We consider the heterogeneous effects of 
different hyperedge sizes on topic dissemination. A weight τ k  is assigned to each hyperedge of size k 
ranging from [0,1]. Larger hyperedges allow more widespread dissemination, as they connect more nodes 
in a single interaction. The dissemination process prioritizes nodes in larger-size hyperedges, reflecting 
their greater influence in spreading topics. Smaller hyperedges, while still facilitating dissemination, may be 
more constrained in reach.

Based on the analysis above, HSIRS model is formulated to represent how nodes participate in new topics within 
the hypernetwork over time. Let t be the time elapsed since the topic arose. The infection rate, representing the 
probability of a susceptible node i participating in topic dissemination, is calculated as follows:

	 Pi (t) = 1 − (1 − λ *Si)
Ai

(∑ Ni

j=i
δ j (t−1)

−
τ j A

j

)
� (1)

In Eq. (1), Ni is the number of neighboring nodes of node i. 
−

τ j=
∑

M
m=1τ km

M  is the average weight over M  
hyperedges involving node j where each hyperedge m has a size km. The symbol δ j  is an indicator function 

representing whether neighboring nodes are propagators: δ j (t) =
{ 0, j = ”I”

1, j ̸= ”I” .

Additionally, individual activity Ai influences the likelihood of a node participating in topic dissemination 
multiple times. Nodes with high activity are more likely to pay continuous attention to the progress of a certain 
topic and have a higher probability of engaging in the topic dissemination process many times. A generalized 
Pareto distribution is introduced to describe the trend of node participation in topic dissemination. As shown 
in Eq. (2), Ri (∆ t) represents the re-entry rate of infected node i where ∆ t denotes the time step. As ∆ t 
increases, the effect of individual activity decreases, reducing the probability of continuous participation:

	 Ri (∆ t) = (1 + Ai∆ t)−1− 1
Ai � (2)

According to the assumptions and state transfer probabilities of HSIRS model, the dissemination process 
algorithm is designed, and the specific steps are shown in Algorithm 1. The algorithm is structured into two 
primary components:

	(1)	 Initialization: Parameters are set and initial topic propagators are generated.
	(2)	 Iteration Loop: The process continues until a maximum iteration count is reached or no I-state nodes re-

main. During each iteration, the state of each node in the hypernetwork is evaluated based on its state and 
the corresponding actions are performed.

Scientific Reports |        (2025) 15:16881 6| https://doi.org/10.1038/s41598-025-01497-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Algorithm 1.  HSIRS model.

The time complexity of HSIRS model is determined by three key factors: time step iteration, node traversal 
and neighboring nodes computation. In the worst case, the time complexity of the algorithm is O(T N2), where 
T  is the maximum simulation time step and N  is the total number of network nodes. In practice, the complexity 
may be reduced if the network is sparser.

Simulation and experimental analysis
This section aims to verify the influence of the aforementioned parameters on topic dissemination in 
hypernetworks. We conduct simulations and experiments on three constructed simulated networks and 
three real-world networks. The performance of HSIRS model is compared and analyzed against two existing 
dissemination models. In all subsequent simulations, the time step is set as ∆ t = 1 and a random infection 
threshold ri is assigned to each node.

Simulation results and analysis
To evaluate the effectiveness of HSIRS model, we simulate the dissemination effects using three network models: 
(1) BA Scale-Free Network: Using the Barabási-Albert (BA) model with a preferential attachment of m = 4, 
we construct a network with N = 500 nodes and an average degree 

−
k= 8, (2) WS Small-World Network: The 

Watts-Strogatz (WS) small-world network is generated by assigning each node five neighbors and a rewiring 
probability of 0.3, resulting in a network size of N = 500 with an average degree 

−
k= 4, (3) ER Randomized 

Network: The Erdős-Rényi (ER) random network model, where each pair of nodes is connected with equal 
probability, is used to create a network of size N = 500 with an average degree 

−
k= 9. After detecting and 

extracting all clique information, cliques are merged with a 0.1 merging threshold to construct hyperedges for 
the three simulated networks respectively. The final network structures are shown in Table 2, which is used for 
subsequent simulation and analysis.

Hypernetwork structure effects
User relationship structures in online social networks substantially influence interactive behaviors and determine 
topic dissemination pathways. We simulate the topic dissemination for the three structures with initial conditions 
as follows: topic attractiveness λ = 0.5, individual activity Ai = 0.7, topic sensitivity Si = 0.5, recovery rate 
γ = 0.02, fixing the initial topic propagators. The process and range results are presented in Fig. 4.

Figure 4 shows the dissemination simulation results across three network structures. Figure 4a, c,e show 
the dissemination process and Fig. 4b, d,f show the dissemination range overtime. Overall, topic dissemination 
processes under the simple network and the clique-structured hypernetwork exhibit similar characteristics with 
dissemination speed and peak infection. Under the hypernetwork constructed in this paper, topic dissemination 
is enhanced in speed and peak level, as hyperedges enable multipoint concurrent dissemination, where 
multiple nodes connected by hyperedges can simultaneously receive and transmit information. This effect is 
especially pronounced in the WS network with short average paths. In the BA network, the centralized structure 
causes hyperedge effects to focus mainly on a few highly connected nodes. These dominant nodes control the 
dissemination process, reinforcing the existing hierarchy. In the ER network, with its random connectivity, 
hyperedges has not greatly altered the information dissemination pattern. Therefore, hyperedges have limited 
effects on the overall dissemination dynamics in the BA and ER networks.

Reorganizing cliques into hyperedges changes the network topology, highlighting the hyperedge effects 
on topic dissemination. Hyperedges improve users’ access to topics, enabling faster and wider dissemination. 
Unlike simple networks, where influence is limited to direct neighbors, the hypergraph-based model captures 
complex interactions, simulating topic spread more effectively. Consequently, the hypernetworks formed by 
merging cliques are used for all subsequent experiments.

Hyperedge size effects
Nodes can simultaneously belong to multiple hyperedges of varying sizes, potentially impacting the dissemination 
process differently. To parameterize this influence, we consider the average hyperedge size effect, with values 
τ = 0.1, 0.3, 0.5, 0.7, 0.9, λ = 0.7, Ai = 0.7, Si = 0.5, γ = 0.02.

Figure 5 illustrates the effects of varying τ  values on topic dissemination across different hypernetworks. The 
WS hypernetwork exhibits high sensitivity to τ  changes, while the ER hypernetwork remains stable. In the WS 
hypernetwork, smaller hyperedge sizes and short paths limit effective dissemination. At τ ≤ 0.3 topic spread 
is nearly suppressed. The higher volatility of the WS network reflects the dissemination is easily affected by the 

Network Number of nodes N Number of simple edges E Number of cliques E Number of hyperedges E

BA 500 1984 1664 439

WS 500 1000 700 357

ER 500 2462 2175 304

Table 2.  Simulated network settings.
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change of the hyperedge, and thus its robustness is relatively poor. Results in the BA and ER hypernetworks show 
weakened dissemination at τ = 0.1. In the BA hypernetwork, hub nodes sustain dissemination despite smaller 
hyperedges. The ER hypernetwork’s random connections still provide sufficient dissemination paths, allowing 
topic to spread even at low τ  values. At τ ≥ 0.5, dissemination curves in the BA and ER hypernetworks 
show little difference. Under different hyperedge sizes (τ), the BA network and ER network show lower volatility 
and relatively stable dissemination range, indicating their high robustness in the dissemination process.

These results highlight the adaptive capacity and dissemination of different hypernetworks in response to 
hyperedge size effects. Smaller hyperedge sizes tend to suppress dissemination and larger sizes enhance it. In 
the BA and ER hypernetworks, effects of hyperedge sizes eventually diminish, such that further increases in 
hyperedge size no longer improve the dissemination process beyond a certain level.

Fig. 5.  Simulation results for varying hyperedge sizes. (a) the BA hypernetwork, (b) the WS hypernetwork, (c) 
the ER hypernetwork.

 

Fig. 4.  Simulation results for three network structures. (a, b) the BA network, (c, d) the WS network, (e, f) the 
ER network.
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Topic sensitivity effects
The higher similarity between node tags and topic tags has, the higher sensitivity of users to topic is, increasing 
the probability of participation and dissemination. Three experiments are conducted on each simulated 
hypernetwork, with topic tags generated randomly and values

	
λ = 0.5, Ai = 0.7, τ = 1, γ = 0.02, Si = 2 ∗ |Ttags ∩ Utags|

|Ttags| + |Utags|

.
Figure 6 shows the topic dissemination simulation results on the simulated BA hypernetwork, WS 

hypernetwork, and ER hypernetwork three times respectively. Results in the ER hypernetwork exhibit the highest 
infection count and largest dissemination speed, but topics quickly diminish. The WS hypernetwork, with the 
smallest average node hyperdegree and lowest density, shows the slowest and minimal spread of new topics. All 
three simulated hypernetworks exhibit noticeable volatility and long-tail effects, maintaining sustained attention 
and engagement long after the initial peak.

Fig. 6.  Simulation results for varying topic sensitivities. (a-c) the BA hypernetwork, (d-f) the WS 
hypernetwork, (g-i) the ER hypernetwork.
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Topic sensitivity of nodes varies for different topics, leading to different dissemination speeds and fluctuations. 
In comparing the three experiments, the first experiment generated a topic that considerably stimulated node 
participation, while the second encountered lower node sensitivity and weaker dissemination. The observed 
variability in dissemination patterns within the same hypernetwork suggests no direct correlation between node 
sensitivity and hyperdegree. Therefore, the scope and speed of topic dissemination are influenced by network 
structure and closely related to individual characteristics, such as node sensitivity to topics.

Individual activity effects
Individual activity impacts node acquisition and participation in new topic dissemination. With parameters 
set as λ = 0.7, τ = 1, γ = 0.02, and fixed initial propagators and topic tags, Fig.  7 illustrates the topic 
dissemination curves in the simulated hypernetworks at various individual activity levels A = 0.3, 0.5, 0.7, 0.9.

Higher node activity correlates with faster and more extensive topic dissemination. At a low activity 
level ( A = 0.3), topics are easily ignored with minimal node participation, while at a high activity level 
( A = 0.9), nodes quickly engage, leading to a rapid increase in infections. The WS hypernetwork, with its 
small-world characteristics, exhibits high sensitivity to activity level changes and poor robustness, affecting 
topic dissemination greatly. In contrast, the ER hypernetwork, with fewer clusters and short paths, shows less 
sensitivity to activity variations and high robustness, resulting in less pronounced increases in dissemination 
speed and scale even at higher activity levels. Highly active hypernetworks enable swift topic spread and robust 
dissemination fluctuations due to high re-entry probabilities of active nodes, which aligns with the observation 
that such nodes consistently engage in topic dissemination.

Statistical significance tests
ANOVA analysis of I-State curves across different experimental groups (Table 3) reveals that network structure, 
hyperedge size, and individual activity significantly impact infection dynamics across all network types. WS 
networks exhibit the strongest effects, indicating that topological characteristics accelerate topic dissemination. 
Hyperedge size has a particularly significant influence ( p ≈ 0), with larger hyperedges leading to faster 
and wider dissemination. Individual activity also plays a key role, as highly active individuals enhance topic 
propagation. Notably, topic type has no significant effect in BA networks ( p = 0.35066) but does influence 
dissemination in WS and ER networks, suggesting that network structure determines sensitivity to different 
topics. Overall, these findings confirm that hypernetwork structure and individual behavior significantly shape 
topic dissemination, validating the improved model.

Real-world network experiment results and analysis
To evaluate the effect of HSIRS topic dissemination model on real-world networks, we conducted experiments 
on three distinct social networks: (1) Weibo Social Network (https://github.com/WxxShirley/WeiboSpammer): 

Variable BA (F, p) WS (F, p) ER (F, p)

Network structure (F = 4.398, p = 0.01259) (F = 26.990, p = 0.00000) (F = 3.258, p = 0.03896)

Hyperedge size (F = 74.456, p = 0.00000) (F = 39.068, p = 0.00000) (F = 23.334, p = 0.00000)

Topic sensitivity (F = 1.049, p = 0.35066) (F = 165.884, p = 0.00000) (F = 3.692, p = 0.02537)

Individual activity (F = 25.822, p = 0.00000) (F = 51.620, p = 0.00000) (F = 8.201, p = 0.00002)

Table 3.  ANOVA analysis for simulation results.

 

Fig. 7.  Simulation results for varying individual activity. (a) the BA hypernetwork, (b) the WS hypernetwork, 
(c) the ER hypernetwork.
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constituting 903 nodes and 2,065 edges, representing real users on the Weibo platform. (2) Twitter Network 
(https://snap.stanford.edu/.

data/twitter.tar.gz): comprising 236 nodes and 1,811 edges from the social database of Twitter. (3) Facebook 
Network (https://snap.stanford.edu/data/facebook.tar.gz): containing 333 nodes and 2,519 edges, obtained 
from Stanford University database. All clique information is extracted and the cliques are merged with a 0.1 
merging threshold to construct the hypernetworks for the three real-world networks respectively. The specific 
information is shown in Table 4.

Hypernetwork structure effects
Figure 8 shows the topic dissemination results across three network structures within three real social networks 
with values λ = 0.5, Ai = 0.7, Si = 0.5, τ = 1, γ = 0.02, illustrating comparative dissemination 
outcomes on each platform.

Weibo network exhibits a mix of small-world and partially random network characteristics, presenting 
local aggregation and short path lengths. Twitter network is primarily based on follower relationships, tending 

Fig. 8.  Results for three network structures in real networks. (a, b) Weibo network, (c, d) Twitter network, (e, 
f) Facebook network.

 

Network Number of nodes N Number of simple edges E Number of cliques E Number of hyperedges E

Weibo 903 2065 1376 353

Twitter 236 1811 1187 310

Facebook 333 2519 1601 419

Table 4.  Real network settings. For node characteristics in the three real networks, the available data consists 
of structural information, including nodes and their topological relationships. Since interest attributes are 
not inherently present, they must be assigned. The interest assignment follows a weighted selection process, 
where each node is randomly assigned a set of interest labels based on predefined probabilities that reflect 
their overall popularity. To ensure diversity, each node receives between 3 and 8 interest labels, balancing 
representation and variability within the network. Using the same parameter settings as in the analog 
simulation, the experimental results for each factor are as follows:
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towards scale-free network characteristics. Facebook network emphasizes personal relationships, resulting in a 
highly aggregated community structure and strong distributed characteristics.

Dissemination patterns in real networks align with those observed in simulated networks, demonstrating 
the robustness of HSIRS model in capturing real network dynamics. Early-stage infection curves peaking 
concurrently in both simple networks and clique-structured hypernetworks. Hyperedge effects are more 
pronounced in Weibo and Facebook networks due to their small-world characteristics, while dissemination in 
Twitter network resembles a scale-free network. The results also reveal that clique connections function similarly 
to simple edges, limiting the impact of clique-based hyperedges. Hyperedges constructed in this paper connect 
a broader set of nodes, enhancing multiple interactions and promoting more robust topic dissemination. This 
mirrors real-world online social network behaviors, involving one-to-one information dissemination with direct 
friends and multiple interactions through interest groups or platform recommendations.

Hyperedge size effects
Figure 9 displays the results of topic dissemination in real hypernetworks with varying hyperedge size effect 
parameters τ = 0.1, 0.3,0.5,0.7,0.9 and values λ = 0.7, Ai = 0.7, Si = 0.5, γ = 0.02, showing similarity 
to those in the simulated networks that the performance of the model remains stable for different τ . In Weibo 
hypernetwork, when τ = 0.1, topics have limited range and persist for only 50 time steps. As τ  increases, 
dissemination reaches a higher peak at a faster rate and lasts longer. In Twitter and Facebook hypernetworks, an 
increase in hyperedge size positively impacts topic dissemination when τ ≤ 0.7, but gradually inhibits it when 
τ > 0.7. Facebook hypernetwork achieves its strongest dissemination at τ = 0.7 rather than τ = 0.9. Results 
suggests that the model robustly captures the decreasing effect of hyperedge size on dissemination efficiency, 
highlighting the complex role of hyperedge size in real networks.

Results also reveal that large communities have advantages in topic dissemination. However, excessive 
user participation in large communities can lead to information overload or choice fatigue and inhibit topic 
dissemination effectiveness.

Topic sensitivity effects
Figure 10 shows the experimental dissemination results of different topics in real hypernetworks with values 
Ai = 0.7, λ = 0.5, τ = 1, γ = 0.02, Si = 2∗|Ttags∩ Utags|

|Ttags|+|Utags| . Topic characteristics are represented by 3 to 5 
interest labels, randomly selected from those assigned to nodes.

In real social networks, topic dissemination follows similar patterns: rapid initial growth, high volatility, 
and sustained node engagement. Weibo hypernetwork’s sparse structure contrasts with the denser and more 
interconnected Twitter and Facebook networks, which facilitate faster topic spread. Varying node sensitivity to 
topics leads to diverse dissemination outcomes.

Individual activity effects
Figure 11 illustrates how varying individual activity levels impact topic dissemination in real social networks 
with values A = 0.3, 0.5, 0.7, 0.9, λ = 0.7, τ = 1, γ = 0.02. The sensitivity of individual activity 
levels to topic dissemination further demonstrates the robustness of HSIRS model in real networks. Result 
in real hypernetworks align with simulated hypernetworks, showing that increased activity levels enhance 
dissemination effects. In Weibo hypernetwork, activity levels have a pronounced effect due to its lower average 
node hyperdegree and dispersed community structure, where structural relationship exerts a weaker influence. 
Higher individual activity levels improve topic dissemination efficiency and sustain attention over time across 
communities.

Fig. 9.  Results for different hyperedge sizes in real networks. (a) Weibo hypernetwork, (b) Twitter 
hypernetwork, (c) Facebook hypernetwork.
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Statistical significance tests
ANOVA analysis of I-State curves across different real-world network experimental groups (Table  5) shows 
that network structure, hyperedge size, and individual activity significantly influence topic dissemination across 
Weibo, Twitter, and Facebook. Among them, Weibo exhibits the strongest effects, suggesting that its local 
clustering and short paths accelerate information diffusion. On Twitter, individual activity plays a dominant 
role, indicating that popular users drive dissemination. Facebook, with strong community aggregation, remains 
significantly influenced by network structure and individual activity, but topic type has no significant effect, 
suggesting that content matters less in closed communities. Compared to simulated networks, hyperedge size 
remains a significant factor in real networks, reinforcing the effectiveness of the hypernetwork approach in 
modeling real-world information spread.

Comparative analysis of different models
This subsection compares HSIRS model with CSIRS and Bodó-SIS models. Experimental settings from the 
literature were applied to the simulated BA network and real Twitter network. Parameter settings from the 
literature were used, and the results are shown in Figs. 12, 13 and 14.

Fig. 10.  Results for different topic sensitivities in real networks. (a-c) Weibo hypernetwork, (d-f) Twitter 
hypernetwork, (g-i) Facebook hypernetwork.
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Considering different network construction methods, topics, and individual characteristics, the topic 
dissemination models display varying patterns and effects. HSIRS model shows the most consistent and effective 
topic dissemination across both simulated and real networks and the scale-free characteristics of Twitter 
hypernetwork further validate its reliability. CSIRS model considers individual and topic heterogeneity in simple 
networks, but it struggles with higher-order interactions, leading to rapid rises and declines and shorter topic 
lifespans. Bodó-SIS model extends infectious disease model to hypergraphs through clique-based hyperedges 

Fig. 12.  CSIRS: λ = 0.5 reentry rate σ = 0.5, topic retention length π = N (7,1). (a) the BA network, (b) 
Twitter network.

 

Variable Weibo (F, p) Twitter (F, p) Facebook (F, p)

Network Structure (F = 13.016, p = 0.00000) (F = 5.753, p = 0.00333) (F = 4.842, p = 0.00812)

Hyperedge Size (F = 33.629, p = 0.00000) (F = 18.665, p = 0.00000) (F = 25.470, p = 0.00000)

Topic Sensitivity (F = 14.548, p = 0.00000) (F = 10.839, p = 0.00002) (F = 0.417, p = 0.65939)

Individual Activity (F = 52.175, p = 0.00000) (F = 13.043, p = 0.00000) (F = 20.014, p = 0.00000)

Table 5.  ANOVA analysis for real-world network experiment results.

 

Fig. 11.  Results for different activity levels in real networks. (a) Weibo hypernetwork, (b) Twitter 
hypernetwork; (c) Facebook hypernetwork.
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Model Network t p

HSIRS vs. CSIRS
BA 17.395085 0.00000

Twitter 17.892617 0.00000

HSIRS vs. Bodó-SIS
BA 8.761063 0.00000

Twitter 9.882896 0.00000

Table 6.  A t-tests analysis for different models.

 

Fig. 14.  HSIRS: λ = 0.5, Ai = 0.5, τ = 1, γ = 0.02. (a) the BA hypernetwork, (b) Twitter hypernetwork.

 

Fig. 13.  Bodó-SIS: hyperedge infection rate τ = 0.02, γ = 1, c = 8. (a) the BA clique-structured 
hypernetwork, (b) Twitter clique-structured hypernetwork.
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and fails to accurately reflect real-world topic dissemination, displaying slow initial growth and long-term 
constant number of infections.

Statistical significance tests
The I-State curve results of the three models were analyzed using t-tests. As shown in Table 6, HSIRS differs 
significantly from CSIRS and Bodó-SIS on both the BA and Twitter networks ( p ≈ 0). The t-value for HSIRS 
and CSIRS is higher, indicating that HSIRS, with its improved dissemination mechanism, better captures the 
effects of individual characteristics, topic characteristics, and network structure. While HSIRS also differs 
significantly from Bodó-SIS, the smaller difference suggests that Bodó-SIS can partially simulate propagation 
but remains less effective than HSIRS. Overall, HSIRS outperforms existing models across different network 
environments, confirming its improvements.

Conclusion and perspectives
This paper aims to depict topic dissemination dynamics within real online social networks by incorporating 
hypergraph theory. The proposed HSIRS model, based on the SIRS framework and considering hyperedge size, 
user sensitivity, and individual activity factors, provides a comprehensive analysis of global topic dissemination. 
Experimental results indicate that HSIRS model outperforms other models in simulated and real-world social 
networks, offering more expansive and rapid topic dissemination. Factors such as hyperedge size, topic content, 
hyperdegree value, and user activity level have varying effects on the speed, peak value, and duration of topic 
dissemination.

Theoretically, hyperedge topology influences dissemination dynamics. Larger hyperedges accelerate spread 
by enabling simultaneous transmission to multiple nodes, while smaller ones may constrain dissemination. The 
heterogeneity of hyperedges, including variations in user connectivity and interests, further affects dissemination 
efficiency. Compared with traditional pairwise networks, hypergraphs capture nonlinear diffusion patterns, 
reflecting real-world social interactions where information spreads through group-based rather than sequential 
connections. HSIRS model aligns with empirical trends in viral content dissemination and social influence 
theories. Social media platforms exhibit rapid, large-scale information spread driven by network structure and 
influential users. Our findings support this, demonstrating that highly active individuals and densely connected 
hyperedges enhance dissemination. The limited effect of topic type in certain networks suggests that structural 
properties and individual behavior often play a more decisive role than content characteristics in viral diffusion. 
Moreover, the robustness and reliable performance of HSIRS model across different network topologies, 
hyperedge configurations and user activity levels ensure that it is equally valid in real networks, providing a 
useful tool for understanding topic dissemination in complex social networks. These results can be utilized to 
predict and manage public opinion on various topics. By monitoring large-scale communities and active users, 
strategically placing relevant content, and guiding the influence of key individuals, it is possible to effectively 
control the spread of topics, which can also help curb the dissemination of harmful information and mitigate 
extreme behaviors.

Topic dissemination in online social networks is inherently complex. Future research could build on this 
paper by exploring user interaction patterns, creating a generalized generative model for hypernetworks and 
examining the structural impacts on dissemination. Additionally, this paper assumes a constant number of 
nodes in the hypernetwork, which does not fully reflect the dynamic nature of online social networks in real 
world. Incorporating population mobility in future models will provide a more comprehensive representation of 
the topic dissemination process.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on rea-
sonable request.
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