Table 3 Performance Metrics Across ASD Datasets: Summary of Precision, Recall, F1 Score, Accuracy, ROC-AUC, and P-value for Logistic Regression, Random Forest, and TabNet models evaluated using 5-Fold Stratified Cross-Validation on the Nadig, Eigsti, Eigsti Multi, and Merged datasets. Metrics were calculated with standard formulas and validated through cross-validation to ensure reliability. Bold values indicate the highest score for each metric within the corresponding dataset.

From: Screening autism spectrum disorder in children using machine learning on speech transcripts

Datasets

Metric

Logistic regression

Random forest

TabNet

Nadig

Precision

0.933

0.833

0.933

Recall

0.933

0.767

0.867

F1

0.920

0.760

0.860

Accuracy

0.946

0.864

0.921

ROC-AUC

0.933

0.927

0.860

P-value

0.00017

0.0037

0.0011

Eigsti

Precision

0.867

0.800

0.760

Recall

0.767

0.750

0.933

F1

0.807

0.729

0.835

Accuracy

0.824

0.748

0.819

ROC-AUC

0.878

0.817

0.889

P-value

0.017

0.020

0.009

Eigsti Multi

Precision

0.692

0.802

0.647

Recall

0.577

0.753

0.588

F1 (weighted)

0.584

0.763

0.596

Accuracy

0.577

0.753

0.588

ROC-AUC

0.553

0.710

0.578

P-value

0.121

0.002

0.258

Merged

Precision

0.869

0.844

0.880

Recall

0.857

0.827

0.869

F1

0.856

0.823

0.869

Accuracy

0.857

0.827

0.869

ROC-AUC

0.946

0.860

0.963

P-value

0.0013

0.003

0.0014