Table 3 Comparison of different machine learning classifers.

From: Enhancing noninvasive pancreatic cystic neoplasm diagnosis with multimodal machine learning

Models

Accuracy

Precision

Sensitivity

Specificity

ROC-AUC

NaiveBayes

0.6203 ± 0.0296

0.6394 ± 0.0237

0.6419 ± 0.0264

0.8741 ± 0.0116

0.7923 ± 0.0897

SVM

0.5188 ± 0.0288

0.3670 ± 0.0346

0.3727 ± 0.0159

0.8049 ± 0.0058

0.6825 ± 0.0927

Decision Tree

0.7878 ± 0.0087

0.7639 ± 0.0189

0.7648 ± 0.0199

0.9256 ± 0.0024

0.8755 ± 0.0522

CatBoost

0.8964 ± 0.0260

0.9070 ± 0.0291

0.8698 ± 0.0206

0.9607 ± 0.0084

0.9272 ± 0.0259

XgBoost

0.8911 ± 0.0246

0.8876 ± 0.0271

0.8681 ± 0.0270

0.9599 ± 0.0088

0.9243 ± 0.0155

Random Forest

0.8680 ± 0.0101

0.8850 ± 0.0245

0.8221 ± 0.0184

0.9493 ± 0.0044

0.9065 ± 0.0432

Multilayer Perceptron

0.7665 ± 0.0298

0.7474 ± 0.0315

0.7334 ± 0.3155

0.7335 ± 0.0370

0.8512 ± 0.0417

DNN

0.8083 ± 0.0141

0.8007 ± 0.0208

0.7851 ± 0.0261

0.9326 ± 0.0054

0.901 ± 0.0153

CNN

0.8135 ± 0.0621

0.8023 ± 0.0981

0.8471 ± 0.0339

0.8382 ± 0.0635

0.8789 ± 0.0313

Transformer

0.8294 ± 0.0509

0.8374 ± 0.0387

0.8146 ± 0.0823

0.8070 ± 0.0143

0.9113 ± 0.0231

Multimodal Deep Forest

0.9126 ± 0.0170 *

0.9174 ± 0.0250*

0.8891 ± 0.0202*

0.9653 ± 0.0088*

0.9584 ± 0.0214*

Improvement

1.8% ~ 75.9%

3.35% ~ 149%

2.21% ~ 138%

0.47% ~ 31.6%

3.36% ~ 40.4%

  1. A paired t test is performed and * indicates a statistical significance p < .001 as compared to the best baseline method; ± represents the mean and variance.
  2. Significant values are in [bold].