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Detecting protein complexes is crucial in computational biology for understanding cellular mechanisms 
and facilitating drug discovery. Evolutionary algorithms (EAs) have proven effective in uncovering 
protein complexes within networks of protein–protein interactions (PPIs). However, their integration 
with functional insights from gene ontology (GO) annotations remains underexplored. This paper 
presents two primary contributions: First, it proposes a novel multi-objective optimization model 
for detecting protein complexes, conceptualizing the task as a problem with inherently conflicting 
objectives based on biological data. Second, it introduces an innovative gene ontology-based mutation 
operator, termed the Functional Similarity-Based Protein Translocation Operator (F S − P T O). 
This operator enhances collaboration between the canonical model and the GO-informed mutation 
strategy, thereby improving the algorithm’s performance. As far as we know, this is the initial effort 
to incorporate the biological characteristics of PPIs into both the problem formulation and the 
development of intricate perturbation strategies. We assess the effectiveness of the proposed multi-
objective evolutionary algorithm through experiments conducted on two widely recognized PPI 
networks and two standard complex datasets provided by the Munich Information Center for Protein 
Sequences (MIPS). To further assess the robustness of our algorithm, we create artificial networks by 
introducing different noise levels into the original Saccharomyces cerevisiae (yeast) PPI networks. This 
allows us to evaluate how perturbations in protein interactions affect the algorithm’s performance 
compared to other approaches. The experimental results highlight that our algorithm outperforms 
several state-of-the-art methods in accurately identifying protein complexes. Moreover, the findings 
emphasize the substantial advantages of incorporating our heuristic perturbation operator, which 
significantly improves the quality of the detected complexes over other evolutionary algorithm-based 
methods.

Keywords  Evolutionary algorithm, Multi-objective optimization, Heuristic perturbation operator, Protein–
protein interaction network, Gene ontology, Protein complexes

Proteins are the cornerstone of all life forms, composed of amino acids linked in polypeptide chains that carry 
genetic instructions. These molecules are pivotal in performing and regulating the essential functions within 
organisms through interactions in cellular or controlled environments, as documented in various studies1–3. 
Recent advancements in bioinformatics and biochemistry, particularly in high-throughput techniques such as 
proteomics, metabolomics, and phenomics, have significantly enhanced our understanding of these processes4. 
Alongside this, the rapid development of computational technologies and high-throughput sequencing methods 
has empowered researchers to predict potential drug-drug interactions (DDIs), facilitating more accurate and 
comprehensive analyses of complex biological systems5,6. This technological evolution advanced the mapping of 
protein interactions within intricate biological networks, such as cellular and protein-protein interaction (PPI) 
networks, with powerful techniques like yeast two-hybrid (Y2H) assays serving as key examples7,8.

Despite significant advancements, the study of protein interactions still faces issues such as spurious and 
missing interactions9–11. Often, interactions that exhibit low confidence levels are disregarded in further analyses. 
Nonetheless, different topological measures and link prediction techniques can successfully detect likely false 
negatives, enabling the incorporation of highly reliable interactions into PPI networks12–15. In biology, it is 
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well-established that proteins with close interactions within PPI networks tend to share functional similarities. 
Likewise, genes that are under the control of the same transcription factors often exhibit comparable activities 
and can be associated with similar diseases or phenotypes. This relationship implies that disruptions in these 
protein interactions may contribute to the development of related diseases or phenotypes16,17.

Recently, there has been a significant increase in the literature focusing on various methods for detecting 
community structure within complex networks. The primary objective of these methodologies is the revelation 
of hitherto undiscovered structural components within PPI networks. Despite the potential dissimilarities 
in algorithmic attributes, these techniques generally fall into two main types: heuristic and meta-heuristic 
approaches, as elucidated by Manipur et al.18. Generally, heuristic algorithms are utilized when conventional 
methods prove insufficient or time-consuming for providing precise solutions. The primary objective of heuristic-
based problem-solving is to provide a feasible solution in a timely manner. In contrast, meta-heuristic algorithms 
are crucial in guiding the search process, often using probabilistic and approximate methods to achieve solutions 
that are near-optimal. Unfortunately, the computational complexity of the complex detection problem under 
consideration has been formally established to reside within the realm of nondeterministic polynomial time-hard 
(NP-hard) complexities, as substantiated by extant literature19,20. In combinatorial optimization problems with 
n parameters, exhaustive search for the optimal solution becomes computationally prohibitive as n increases. 
To tackle the complexity of NP-hard problems, meta-heuristic methods, such as evolutionary algorithms (EAs), 
have been empirically shown to be effective alternatives to traditional heuristics. Additionally, most module 
identification algorithms focus on detecting densely connected subgraphs, often overlooking smaller or sparsely 
connected functional modules, which may consist of only two or three proteins21,22. To address these challenges, 
particularly the detection of small or sparse modules and noisy edges, recent algorithms have incorporated prior 
knowledge, such as co-expression relationships or functional associations. These algorithms improve the network 
by filtering out low-reliability edges or enhancing it with weighted connections23. However, this approach has 
its limitations. The insufficient integration of domain-specific knowledge can hinder the effectiveness of EAs, as 
demonstrated by Sala et al.’s study24.

To the best of our knowledge, this is the first effort to recast the problem of protein complex identification as a 
multi-objective optimization (MOO) problem based on biological data. This paper makes two key contributions: 

	1.	 Recasting the problem as a multi-objective optimization (MOO) problem: We introduce a novel multi-ob-
jective optimization model that integrates both topological and biological data within the evolutionary algo-
rithm framework. This approach accounts for the inherently conflicting effects of intra- and inter-biological 
properties in PPI networks.

	2.	 Introducing a gene ontology-based mutation operator: We propose a new mutation operator, based on gene 
ontology (GO), termed the Functional Similarity-Based Protein Translocation Operator (F S − P T O), to 
enhance the consistency and reliability of the results produced by the multi-objective evolutionary algo-
rithm. This operator improves the interaction between topological data and biological insights, ensuring 
more accurate protein complex identification.

The rest of this paper is structured as follows: Section “Preliminaries” provides an overview of the graph topology 
and ontology approaches applied to PPI networks. Section  “The proposed MOEA-based complex detection 
algorithm” presents a multi-objective evolutionary algorithm formulated with GO-based methods, focusing on 
gene ontology and functional data. In Section “Experiments and evaluation”, the results and discussions reveal a 
strong interest in creating complex detection algorithms that do not rely on ontology-based methods.

Related works
The methodologies discussed herein span a diverse array of techniques aimed at augmenting local analysis for 
the characterization of protein complexes within PPI networks, predominantly focusing on network density.

Dongen et al.25 proposed the Markov Cluster (MCL) algorithm, which is intended to simulate the behavior 
of a random walk on a graph. This algorithm effectively captures protein families by utilizing two key operations: 
expansion and inflation. Expansion allows the random walk to spread across the graph, while inflation sharpens 
the clusters by favoring stronger connections and suppressing weaker ones. Due to these operations, the MCL 
algorithm is highly regarded for its ability to accurately cluster graphs, and it has been widely recognized as one 
of the most effective techniques for this purpose26.

In a different approach, Bader and Hogue27 presented the Molecular Complex Detection (MCODE) algorithm 
in their study, which serves as a computational tool for identifying protein complexes in large-scale protein 
interaction networks. MCODE algorithm operates on a graph-growing principle, employing a greedy strategy 
to assemble clusters of proteins centered around a selected seed vertex. The process begins by choosing a single 
protein as the seed vertex. Subsequently, the algorithm evaluates neighboring proteins in the network, adding 
them to the forming cluster if their pre-computed weights are sufficiently similar to that of the seed vertex, based 
on a predetermined threshold. This iterative inclusion continues until no additional proteins meet the criteria 
for inclusion. Through this methodical approach, MCODE effectively identifies densely interconnected regions 
within the network, which are indicative of potential protein complexes.

Expanding on network analysis techniques, Li et al.  28 presented the DECAFF (Dense-Neighborhood 
Extraction using Connectivity and Confidence Features) algorithm, marking a significant improvement in 
network analysis. DECAFF stands out due to its unique approach, which integrates a method for removing 
hubs with a technique for combining local cliques. Central to the algorithm is a probabilistic model specifically 
designed to evaluate the reliability of connections within complex networks. This model effectively filters out 
unreliable or spurious connections, thereby enhancing the precision of the analysis. The hub-removal strategy is 
a particularly critical component of DECAFF, as it addresses a major challenge in network analysis: the presence 
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of highly connected nodes, or hubs, which can obscure the detection of meaningful community structures. 
By systematically removing these hubs, the algorithm reduces noise in the network, facilitating the clearer 
identification of densely connected subgraphs, or cliques.

Zaki et al.   29 proposed a novel approach to improve the identification of protein complexes using graph 
convolutional network (GCN) techniques. Their method starts by redefining the problem as a node classification 
task, where the goal is to detect protein complexes within a graph. In this framework, each protein is represented 
as a node, and the objective is to classify these nodes into distinct complex groups. Following this redefinition, 
the authors develop a sophisticated model tailored for this classification task. A central element of their approach 
is the creation of a detailed complex affiliation matrix. This matrix is crucial for organizing and grouping the 
nodes, which represent individual proteins, thus enabling a more structured method for identifying complex 
formations. To improve the extraction of relevant features from the nodes, the authors utilize an advanced GCN 
feature extractor. This tool is essential for capturing the intricate characteristics of each node, which are critical 
for precise classification. Additionally, they employ a mean shift clustering algorithm, which further refines 
the grouping of nodes based on the features extracted by the GCN. This clustering technique enhances the 
identification and delineation of protein complexes by grouping proteins with similar features.

Accurately detecting protein complexes within PPI networks presents a significant challenge, as conventional 
methods often prove inadequate due to their complexity and the limitations of traditional computational 
approaches. This problem, classified as NP-hard, makes it extremely difficult to find precise solutions using 
standard techniques. To address this, researchers have increasingly turned to optimization algorithms inspired 
by natural processes. Among these, genetic algorithms have gained particular attention. Various frameworks 
based on genetic algorithms have been developed to explore complex problem spaces and find solutions that 
are near-optimal. These nature-inspired techniques utilize evolutionary principles to iteratively refine solutions, 
making them well-suited to address the specific challenges posed by the complexities of PPI networks30.

Pizzuti and Rombo31,32 tackled the challenge of identifying protein complexes within PPI networks through 
the optimization of single-objective models. They introduced a range of quality functions to serve as fitness 
measures in their optimization framework. These metrics include Modularity (Q), which assesses the network’s 
division into modules; Conductance (CO), which evaluates the share of edges that link a cluster to the remainder 
of the network; Expansion (EX), measuring how a cluster extends beyond its core; Cut Ratio (CR), focusing 
on the ratio of edges cut relative to the total number of edges; Normalized Cut (NC), which normalizes the 
cut criterion based on network size; Internal Density (ID), quantifying the density of connections within a 
cluster; and Community Score (CS), a composite measure of cluster quality. By employing these metrics, Pizzuti 
and Rombo significantly advanced the identification of hidden protein complexes, thereby enhancing our 
understanding of protein interactions and functions.

Building on this, Cao et al.33 proposed an innovative multi-objective algorithm, MOEPGA, which further 
refines the analysis of PPI networks by considering multiple topological features. Unlike the single-objective 
models, MOEPGA incorporates network size, characteristic path length (CPL), and density into its optimization 
process. The MOEPGA algorithm follows a systematic approach, beginning with an in-depth analysis of the PPI 
network to extract relevant topological properties. These properties are then utilized to formulate a comprehensive 
multi-objective function that guides the optimization process. The algorithm operates in a structured manner, 
where each subgraph undergoes three fundamental steps: population initialization, mutation, and selection. 
Population initialization ensures a diverse starting set of solutions, mutation introduces variations to explore 
different network configurations, and selection refines the solutions by preserving the most optimal subgraphs. 
By integrating these steps, the MOEPGA algorithm enhances the identification of significant network structures 
and contributes to a more effective analysis of complex biological networks.

In a similar vein, Vella et al.34 propose MTGO (Module detection via Topological information and GO 
knowledge), a method that combines both topological and functional insights for module detection. This approach 
goes a step further by integrating Gene Ontology (GO) terms during module construction, assigning the most 
appropriate GO term to each module, and thus enhancing functional interpretation. By repeatedly partitioning 
the network, MTGO refines module structures based on both GO annotations and graph modularity, creating 
a more comprehensive and biologically meaningful framework for understanding protein-protein interactions.

Extending the work of previous methods, Bandyopadhyay et al.35 incorporated both biological and 
topological properties into a multi-objective optimization framework aimed at identifying protein complexes 
and determining their disease associations. This method introduces a more integrated approach, combining 
structural and biological features to optimize the identification of protein complexes. The optimization problem 
is defined through three objective functions: two focusing on topological properties and one addressing 
biological aspects. The first topological property is formalized as an objective function that seeks to maximize 
the contribution of a node in the protein interaction network. The contribution of a node ni within a protein 
cluster C is defined as follows:

	
max Contr(ni) =

∑
ni∈C

|Nni |
degree(ni) � (1)

where Nni  denotes the set of nodes directly connected to node ni in cluster C, and degree(ni) represents 
the degree of the node. The degree of a node, degree(ni), refers to the number of edges connected to the 
node, which quantifies its immediate connectivity within the network. The term |Nni | refers to the size of the 
neighborhood of node ni, or the count of nodes directly adjacent to ni in cluster C. The goal of this function 
is to generate compact and well-separated clusters by favoring nodes with fewer external connections, thereby 
minimizing interaction partners outside the cluster. In essence, this objective function prioritizes nodes that 
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contribute more locally to the cluster and reduces the influence of external nodes, leading to more cohesive 
protein clusters.

The second topological property focuses on the concept of closeness centrality, which is used to measure how 
efficiently a node spreads information across the network. Closeness centrality is defined as the reciprocal of the 
average shortest-path distance from a given node to all other nodes in the graph. A higher closeness centrality 
value indicates that a node is more centrally positioned within the network, which is a key factor in forming 
protein complexes. The corresponding objective function, which seeks to maximize the closeness centrality of 
nodes in a protein complex, is expressed as:

	
max

∑
ni∈C

CC(ni)� (2)

where CC(ni) denotes the closeness centrality of node ni within the protein cluster C, and the sum is taken 
over all nodes that belong to the protein complex C. The optimization goal is to maximize the total closeness 
centrality for all nodes in the cluster, ensuring that the resulting protein complexes consist of nodes that are 
centrally located in the network. This centrality promotes the identification of biologically significant protein 
complexes, as nodes with higher closeness centrality are typically more important in the overall structure of 
the protein interaction network. By prioritizing these central nodes, the algorithm can enhance the biological 
relevance of the identified complexes, improving the accuracy of protein complex detections.

The third objective function aims to ensure that proteins within the identified protein complexes are 
functionally similar. This is achieved by computing the semantic similarity between the GO terms with which 
the proteins are annotated. Since each protein is annotated with multiple GO terms, the semantic similarity 
between two proteins is calculated by averaging the similarities of all cross-pairs of GO terms associated with 
them36.

The semantic similarities between all protein pairs in the PPI network are precomputed and assigned as edge 
weights in a semantic similarity network. The objective is to maximize the average similarity of all protein pairs 
connected by edges in a chromosome, which represents a potential protein complex. This can be formulated as 
the following objective function:

	

max 1
|E|

∑
(ni,nj )∈E

Sim(ni, nj)� (3)

where E is the set of edges in the semantic similarity network, (ni, nj) is a pair of connected proteins, and 
Sim(ni, nj) represents the semantic similarity between proteins ni and nj . By maximizing the average semantic 
similarity of protein pairs in a chromosome, this objective ensures that the identified protein complexes are 
functionally coherent, reflecting shared biological functions within each complex.

In the latest advancements, Abbas et al.  37 have recently introduced a heuristic mutation operator known 
as strong neighbor-node migration. This operator is designed to improve the performance of optimization 
algorithms, whether they address a single objective or multiple objectives. This innovative operator improves the 
quality of solutions produced by these algorithms, significantly advancing their performance and effectiveness 
in solving complex optimization problems related to protein complex detection.

Preliminaries
Understanding the complex network of cellular processes starts with examining the PPI network. This complex 
web of interactions can be modeled as a graph G(V,E), where V represents the n vertices, V = {v1, v2, . . . , vn}, 
each corresponding to a protein. The edges E are pairs (vi, vj) signifying interactions between proteins Pi and 
Pj . The degree di of a protein Pi quantifies the number of interactions involving Pi, defined mathematically as 
di = |(vi, vj) ∈ E|. Figure 1 presents a detailed visualization of the yeast Saccharomyces cerevisiae (Yeast-D1). 
The top left section shows a comprehensive network of 990 proteins and 4,687 interactions. This network is 
organized into 81 distinct complexes, according to benchmark datasets from the Munich Information Center for 
Protein Sequence (MIPS) catalog38. The top right section illustrates these complexes, which vary in size and offer 
a detailed view of the network’s structure. The bottom right section zooms in on one specific complex, which 
contains 21 proteins connected through multiple intra-complex interactions, highlighting their functional 
relationships. In the bottom left section, protein #49 (’YBR198C’) is emphasized within its complex, with its 
internal interactions shown in green. Additionally, its interactions with proteins #682, #540, and #539 from a 
different complex are highlighted in red, demonstrating its connections across various molecular groups.

In undirected graphs such as the PPI network, the structure is commonly depicted using a symmetric 
adjacency matrix, denoted by A = [aij ]n×n. This matrix outlines the connections between nodes, where each 
element aij  indicates whether a direct interaction exists between the proteins Pi and Pj . Specifically, if aij = 1 
and aji = 1, it denotes the presence of an interaction, while aij = 0 and aji = 0 indicate no interaction. In 
matrix A, each row and column represent a particular protein node, highlighting direct interactions. Figure 2 
provides an example of such an adjacency matrix, illustrating a segment of a PPI network.

To further analyze the PPI network, we explore the space of possible decompositions of G into complexes, 
denoted as Ω. This space includes all clustering solutions derived from decomposing the adjacency matrix A. The 
adjacency matrix A encodes the interactions between a defined set of proteins, denoted as P = P1, P2, . . . , PN . 
By analyzing A, Ω identifies all feasible partitions of A into unequal square sub-matrices, representing potential 
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complexes. For a specific clustering solution C ∈ Ω, where C = C1, C2, . . . , CK  is a decomposition of G into K 
complexes, we can quantify the connectivity patterns of a protein Pi ∈ P . Specifically, for a complex Ci ∈ C, the 
intra-complex degree and inter-complex degree of Pi are calculated using the following formulas:

	

di,intra =
∑

Pj ∈Ci

aij � (4)

	

di,inter =
∑

Pj /∈Ci

aij � (5)

Gene ontology: exploring semantic and functional similarity
To fully understand the complex roles of genes and their products in various biological contexts, it is essential 
to adopt a structured approach for describing their functions. The Gene Ontology (GO) framework provides 
a robust and widely accepted system for this purpose. GO is a comprehensive, collaboratively curated public 
database that standardizes the characterization of gene products using a controlled vocabulary, allowing for 
consistent and thorough descriptions of their roles within cellular contexts. This system is organized into three 
primary ontologies: biological process (BP), cellular component (CC), and molecular function (MF), each 
addressing distinct aspects of gene product activities. These ontologies are represented as directed acyclic graphs 
(DAGs). To further enrich the understanding of gene functions, the assignment of a gene product to specific 
terms within these ontologies is referred to as a Gene Ontology annotation (GOA)39. A gene product, denoted as 
Pi, is typically annotated with a set of terms known as GO Slim terms, TPi , which provide a concise summary of 
its functional attributes. This relationship is represented as follows:

	
TPi =

∪
x∈{MF,BP,CC}

xi� (6)

here, TPi  represents the set of GO Slim terms associated with gene product Pi, and the union over the ontologies 
captures the functional attributes of Pi across all three domains: MF, BP, and CC. The DAGs represent semantic 
relationships between terms through two primary types of edges: ‘is_a’ and ‘part_of . The ‘is_a’ relationship 
denotes hierarchical classification, indicating that one term is a subclass of another. For instance, if term A is 
categorized as an ‘is_a’ instance of term B, A is understood to be a more specific version of B, inheriting all 
attributes of B while adding its own unique characteristics. In contrast, the ‘part_of ’ relationship illustrates a 
componential or structural connection, where a term C is described as ‘part_of ’ another term D, meaning that 
C is a constituent of D whenever C is present, though its presence may vary depending on specific conditions 
within the biological system40. To understand the semantic similarity between GO terms, it is crucial to convert 

Fig. 1.  A comprehensive visualization of the yeast Saccharomyces cerevisiae protein network (Yeast-D1), 
comprising 990 proteins and 4687 interactions. The figure illustrates the segmentation into 81 complexes (top 
right), provides a detailed view of a specific complex (bottom right), and focuses on protein #49 (’YBR198C’) 
to display its internal and external connections (bottom left).
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their semantics into a numerical format. This approach allows us to evaluate how biologically related different 
GO terms are based on their positions and connections within the GO graph. By representing the terms through 
a DAG, which maps the term’s path to the root terms, we can effectively capture these relationships. For example, 
Figure 3 illustrates the DAG for the GO term Septum Digestion After Cytokinesis (0000920). This graph displays 
how the term is related to others through different types of connections: a solid arrow indicates an ‘is_a
’ relationship, showing that Septum Digestion After Cytokinesis is a subclass of Cellular Process (0009987), 
while a dotted arrow signifies a ‘part_of ’ relationship, highlighting its role as a component of Cell Division 
(0051301).

Proteins can be associated with multiple GO terms, reflecting the diversity of their biological roles and 
functions. However, some proteins may remain unannotated due to limitations in GO data and the broad range 
of protein functions. For example, Fig. 4 presents the GO annotations for three proteins from the yeast PPI 
network, highlighting their associated biological processes, molecular functions, and cellular components. This 
detailed information is sourced from the most recent comprehensive datasets available in the Saccharomyces 
Genome Database (SGD), which can be further explored at http://www.yeastgenome.org.

Semantic similarity of GO terms
Semantic similarity, represented as SS, is a crucial metric for assessing the relatedness or similarity among GO 
terms. It achieves this by considering both their hierarchical relationships and the meaning conveyed through 
their annotations. Its significance lies in its ability to facilitate comparisons among sets of genes and the 
discovery of functional relationships among genes41–43. To compute semantic similarity, a semantic similarity 
matrix is constructed and denoted as S = [SSij ]N×N , where SSij  represents the semantic similarity between 
terms A and B, while N represents the number of GO terms used to annotate a set of n proteins. Semantic 
similarity between GO terms can be explored through two main strategies: internal methods, which analyze the 
inherent structure of the GO DAGs, and external methods, which rely on external data sources like annotation 

Fig. 2.  Illustration of seven proteins in Saccharomyces cerevisiae along with their corresponding adjacency 
matrix.
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corpora. Internal methods exclusively utilize the ontological topology to evaluate relationships, offering a 
focused perspective on the semantic connections within the DAG structure. A prominent internal method is 
the hybrid approach, which integrates aspects of both path length metrics and structural properties of the DAG. 
By combining these elements, the hybrid model provides a more refined and nuanced evaluation of semantic 
similarity. Building upon this foundation, the hybrid approach determines edge weights through two principal 

Fig. 4.  Annotation of three distinct protein from the yeast PPI network with their respective GO terms.

 

Fig. 3.  DAG representation of the GO term Septum Digestion After Cytokinesis (GO:0000920), highlighting 
its relationships with other GO terms. The solid arrow represents the ‘is_a’ relationship, while the dotted 
arrow indicates the ‘part_of ’ relationship.

 

Scientific Reports |        (2025) 15:16855 7| https://doi.org/10.1038/s41598-025-01667-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


factors: node density, reflecting the number of shared and unique ancestors between terms, and link type, such 
as ‘is_a’ or ‘part_of ’. These weighted edges are then applied to compute the semantic similarity, making the 
hybrid model an effective framework for analyzing relationships between GO terms. Unlike earlier models, such 
as the one proposed by Wang et al.40, which included the root of the ontology in calculating semantic values, the 
hybrid approach focuses on a more nuanced method inspired by Kamran et al.44. Kamran’s method, GOntoSim, 
enhances the calculation of semantic similarity by considering the graph structure and the information content 
of the nodes, while accurately capturing the similarity between the ancestors of GO terms and accounting for 
their common children. By excluding the root from the calculation, this approach provides a more precise 
reflection of the inherent semantic relationships between terms. The semantic contribution of a GO term from 
its higher-level DAG is represented as DAGA = (A, TA, EA), where (TA) includes the set of GO terms related 
to a specific GO term (A) and its ancestors, and (EA) denotes the set of edges connecting these nodes within 
DAGA. Each edge in EA is assigned a weight (We) that reflects the type of relationship it represents in the 
graph. For this analysis, We values are set to 0.8 for the ‘is_a’ relationship, 0.6 for the ‘part_of ’ relationship, 
and 0.7 for the ‘regulates’ relationship. In evaluating the semantic contribution for DAGA, the GO term, A, is 
given a maximum contribution value of 1. For all other terms in the DAG, the contribution of an ancestor term 
(t′) relative to A is calculated as the highest product of weights along the path from A to (t′). The root of the 
ontology is assigned a semantic contribution value of zero for the term A.

	
SA(t) =

{
SA(root) = 0
SA(A) = 1
max{We × SA(t′)}|t′ ∈ children of (t), ift ̸= A

� (7)

The cumulative semantic value SV(A) of a GO term A is determined by aggregating the semantic contributions 
of the term along with those of its ancestor terms.

	
SV (A) =

∑
t∈TA

SA(t)� (8)

The semantic similarity SS(A, B) between two GO terms A and B is calculated by taking the sum of the semantic 
contributions of intersecting terms A and B, divided by the sum of the total semantic values of A and B.

	
SS(A, B) =

∑
t∈TA∩TB

(SA(t)) + SB(t))
SV (A) + SV (B)

� (9)

Functional similarity
Gene product similarity (FS) is used to compare the functional similarity between genes or proteins based on 
their annotations. This similarity is typically evaluated using two main approaches: group-wise and pairwise45.

The group-wise approach considers the collective properties of annotation sets and is further categorized into 
three subtypes: set-based, graph-based, and vector-based methods. Set-based approaches leverage traditional 
cardinality-based measures like the Jaccard index, which evaluates the ratio of shared terms to the total terms, 
and the Dice coefficient, which emphasizes shared terms relative to the average size of the annotation sets. 
These methods are straightforward but may oversimplify relationships between terms. Graph-based methods, 
on the other hand, exploit the hierarchical structure of ontologies, to capture the relationships between terms. In 
contrast, the pairwise approach evaluates FS by directly comparing the terms associated with two proteins, P1 
and P2, using their respective sets of annotations, TP1  and TP2 . This method calculates the semantic similarity 
(SS) between each pair of terms, either by considering all possible term pairs or by focusing on the best-matching 
pairs. The SS values are then combined into a single functional similarity score for the two proteins. Different 
statistical methods, such as averaging, summing, or taking the maximum or minimum similarity scores, can be 
used to derive the global FS. A widely used measure for FS is the maximum similarity, defined as:

	
F S(P1, P2) = argmax

A∈TP1 , B∈TP2

SS(A, B).� (10)

The proposed MOEA-based complex detection algorithm
The need to address multiple conflicting objectives simultaneously is a common challenge in many real-world 
problems, driving the motivation for MOO. Researchers have increasingly focused on this area due to its ability 
to capture the complexity of such problems more effectively than traditional single-objective approaches. By 
leveraging MOO, it becomes possible to identify a set of Pareto-optimal solutions rather than a single optimal 
or near-optimal solution. This approach provides decision-makers with a spectrum of non-dominated solutions, 
each representing an optimal or near-optimal trade-off among the conflicting objectives, thereby facilitating 
more informed and balanced decision-making46. Building on the motivation for multi-objective optimization, 
we introduce a new model for detecting protein complexes within the context of large-scale PPI networks. 
Recognizing the complexity and scale of these networks, our model leverages the decomposition-based multi-
objective evolutionary algorithm (MOEA/D) developed by Zhang and Li47, which is well-suited for handling 
multiple conflicting objectives simultaneously. We have specifically adapted the core structure of MOEA/D to 
better accommodate the unique challenges posed by PPI networks.
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Our model integrates both topological and biological characteristics of protein complexes, ensuring a 
comprehensive optimization process that balances these conflicting aspects. To further enhance the model’s 
effectiveness, we introduce a heuristic perturbation operator that exploits biological features, resulting in more 
precise and reliable detection of protein complexes within extensive PPI networks.

Objective functions
The proposed MOEA framework seeks to bridge the gap between evolutionary algorithms and principles 
observed in biological systems. Beyond the existing topological domain A, we introduce two novel domains: 
semantic similarity of gene ontology (denoted as SS) and similarity of protein functions (denoted as FS). By 
integrating these additional domains, the framework is poised to advance the effectiveness of evolutionary 
algorithms in identifying protein complexes.

In this study, we adopted a variant of our methodology designed to identify functional similarity by conducting 
a pairwise analysis of direct terms associated with protein pairs, using the Best Match Average (BMA) method. 
In this approach, each term linked to the first protein is paired with its closest counterpart in the second protein, 
and vice versa. This process constructs a functional similarity matrix, denoted as FSBMA = [F Sij ]n×n, where 
F Sij  represents the functional similarity between the direct GO terms of protein pair Pi and Pj . The functional 
similarity is calculated using the following equation:

	
F SBMA(P1, P2) =

∑
A∈TP1

maxB∈TP2
SS(A, B) +

∑
B∈TP2

maxA∈TP1
SS(A, B)

|TP1 | + |TP2 |
� (11)

To further refine the semantic analysis, we employed the GOntoSim method introduced by44, which evaluate 
the similarity between GO terms and their corresponding DAGs. This method produces a semantic similarity 
matrix, represented as:

	 SGOntoSim = [SSij ]N×N ,� (12)

where each element SSij  represents the semantic similarity between the DAG terms Ai and Bj , computed 
using GOntoSim. Formally, the semantic similarity between two terms TA and TB  can be expressed as:

	 SSij = GOntoSim(DAG(TA), DAG(TB)),� (13)

where DAG(TA) and DAG(TB) denote the respective DAG structures of the terms TA and TB . The GOntoSim 
method leverages the structural and hierarchical relationships in the DAGs, including ancestor terms and edge 
weights, to calculate a numerical similarity score. The resulting matrix SGOntoSim serves as the foundation for 
downstream analysis of GO term relationships.

While these methods enhance the precision of functional and semantic similarity assessments, a critical 
limitation remains in the existing models. For instance, the work by Bandyopadhyay et al.35 focuses on optimizing 
non-conflicting, predominantly topological objectives in their MOO model. By simplifying the trade-offs and 
narrowing the solution space, this approach limits the discovery of diverse protein complexes. Furthermore, the 
absence of conflicting objectives overlooks the biological trade-offs inherent in real-world protein interactions.

To address these limitations, our formulation introduces two biologically conflicting objectives, focusing on 
both intra-biological and inter-biological properties of protein complexes. By incorporating these conflicting 
objectives, we aim to generate a set of near Pareto-optimal solutions, where improvements in one objective 
cannot be achieved without a corresponding trade-off in the other. This allows for a more biologically relevant 
exploration of the solution space, capturing the inherent complexity of protein interactions. To further refine the 
complex detection process, the proposed multi-objective optimization model refines the approach by narrowing 
its focus to two fundamental optimization functions. These functions are the Intra-Complex Semantic (ICSIntra) 
score, which evaluates semantic consistency within a given complex, and the Inter-Complex Semantic (ICSInter) 
score, which assesses the semantic relationships between different complexes. These functions are designed to 
assess the effectiveness of a solution in terms of functional similarity among complexes. Each complex, denoted 
as (Ck), is evaluated using three biological attributes. The first attribute includes general semantic features, such 
as the semantic volume (Vk) and the size (|Ck|) of the complex. The second attribute focuses on the contributions 
from proteins with high semantic similarity within the complex, specifically the relative input these proteins 
(Rk). The third attribute is the cohesiveness or semantic centrality of the complex, quantified by the semantic 
centrality measure (Dk). To achieve a balanced optimization, we aim to maximize the term ( (Vk+Rk)

|Ck| ) while 
minimizing the cohesiveness measure (Dk). To unify these objectives into a single minimization framework, 
we modify the term ( (Vk+Rk)

|Ck| ) by subtracting it from (|Ck|2). Consequently, the ICSIntra score for a partition 
solution (C = C1, C2, . . . , CK) is expressed as follows:

	
min ICSIntra(C) =

K∑
k=1

(
|Ck|2 − (Vk + Rk)

|Ck| + Dk

)
� (14)

where Rk  quantifies the contribution of proteins with high semantic similarity within Ck  and is computed as:
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Rk =
∑

v∈Ck|ISIntra,k(v)>ISInter,k(v)

ISIntra,k(v)
ISIntra,k(v) + ISInter,k(v) � (15)

here, ISIntra,k(v) represents the intra-complex semantic similarity of protein v within complex Ck , while 
ISInter,k(v) represents the inter-complex semantic similarity of protein v with proteins in other complexes.

Additionally, the cohesiveness measure Dk  of complex Ck  is defined by:

	
Dk =

∑
v,w∈Ck

sem_dist(v, w)
|Ck|

� (16)

A lower ICSIntra score indicates that the complexes are more compact, semantically coherent, and contain a 
higher proportion of proteins with high semantic similarity.

On the other hand, the ICSInter score is essential for assessing the separation between complexes. This 

score aggregates the total inter-complex protein semantic similarity 
(∑

v∈Ci
ISInter,i(v)

)
 and the number of 

proteins exhibiting stronger semantic similarity to proteins in other complexes than to those within the same 
complex (weaki). The ICSInter score for a partition solution (C) is defined as:

	
min ICSInter(C) = K ·

K∑
i=1

(∑
v∈Ci

ISInter,i(v)
ISIntra,i(v)

|Ci|
+ weaki

)
� (17)

In this formula, weaki represents how many proteins within the complex Ci have an inter-complex semantic 
similarity score that surpasses their intra-complex similarity score. For example, if complex Ci contains proteins 
P1, P2, and P3, with the following similarity scores:

•	 For protein P1: ISIntra,i(P1) = 0.4 and ISInter,i(P1) = 0.7
•	 For protein P2: ISIntra,i(P2) = 0.5 and ISInter,i(P2) = 0.6
•	 For protein P3: ISIntra,i(P3) = 0.6 and ISInter,i(P3) = 0.5

Here, proteins P1 and P2 are considered weak because their inter-complex similarities (0.7 and 0.6) exceed their 
intra-complex similarities (0.4 and 0.5). Thus, weaki would be 2 for this complex.

The effectiveness of ICSInter in maintaining distinct protein complexes relies on accurately quantifying 
semantic similarity. Semantic similarity serves as a foundational measure for evaluating the relatedness of GO 
terms based on their hierarchical positions within the GO DAG. In this study, we employed GOntoSim44, a 
recent method that leverages these hierarchical relationships to quantify term similarity, providing a biologically 
meaningful representation of functional associations. Extending this concept to gene products, functional 
similarity aggregates the semantic similarity of their associated GO terms. The BMA method, employed in our 
study, refines functional similarity computation by pairing each term from one protein with its most similar 
counterpart in another protein. This process results in a comprehensive similarity matrix, which plays a crucial 
role in assessing protein complex formation. By integrating semantic and functional similarity measures 
into our multi-objective optimization model, we introduce biologically relevant trade-offs that refine protein 
complex detection. Specifically, the Intra-Complex Semantic Score (ICSIntra) ensures that proteins within the 
same complex exhibit high functional coherence, while the Inter-Complex Semantic Score (ICSInter) penalizes 
excessive similarity between proteins assigned to different complexes. These two objectives inherently conflict, 
as maximizing intra-complex cohesion often increases inter-complex similarity.

Chromosome representation
In a population, I, each solution, referred to as a chromosome I, consists of n genes associated with proteins 
in the PPI network. Each gene features a locus and an allele value: the locus i identifies a specific protein Pi, 
while the allele value j denotes an interacting neighboring protein of Pi. Thus, each gene represents a potential 
interaction between two proteins. The encoding scheme for the genotype ensures the generation of feasible 
solutions, preventing invalid configurations such as disconnected nodes or erroneous interactions.

Mathematically, a chromosome is represented as:

	 I = {I1, I2, . . . , In}� (18)

where each gene Ii is described by:

	 Ii = (Pi, j) with j ∈ N(Pi)� (19)

here, N(Pi) denotes the set of neighboring proteins that interact with protein Pi. The decoding function γ 
applied to a chromosome I yields a set of possible protein complexes. This function is given by:

	 γ(I) = C = {C1, C2, . . . , CK}� (20)

where C represents the collection of protein complexes formed by the proteins encoded in the chromosome, and 
K is the number of distinct complexes, which may differ among chromosomes.
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Recombination operator
The proposed complex detection algorithm incorporates an evolutionary approach, utilizing a recombination 
operator referred to as rpc : I1 × I2 → I . This operator, known as canonical uniform crossover rpc, merges 
topological information from two parent individuals, denoted as I1 and I2, to generate an offspring individual. 
Figure 5 visually illustrates this process by showcasing the graph structures and genotypes of the two parent 
individuals, highlighting how genetic information from both parents is combined to create a child individual. 
This method enables the transfer of desirable traits and characteristics from the parent individuals to the newly 
generated offspring. Mathematically, the topological-based uniform crossover is formalized as follows:

For each gene j in the chromosome of individual i, where i ∈ {1, 2, . . . , µ} and j ∈ {1, 2, . . . , n}:

	
Ii,j =

{
I1,j if χj ≤ 0.5
I2,j otherwise � (21)

In this equation, Ii,j  represents the gene at position j in the chromosome of individual i. The choice of which 
parent’s gene to inherit depends on a random variable χj , where if χj  is less than or equal to 0.5, the gene from I1 
is selected, and if χj  is greater than 0.5, the gene from I2 is chosen. This uniform crossover mechanism ensures 
a balanced combination of genetic material from both parents during the creation of offspring, promoting the 
inheritance of favorable characteristics in the evolutionary process.

The proposed GO-based heuristic mutation: enhancing genetic diversity through GO 
integration
In this paper, we present the Functional Similarity-Based Protein Translocation Operator (FS-PTO), a novel 
heuristic method designed to enhance the identification of functional protein complexes within PPI networks. 
The FS-PTO improves detection accuracy by strategically evaluating and reallocating proteins based on their 
functional roles and connectivity. This operator uses functional similarity, denoted as F SBMA, to guide the 
reassignment of proteins between complexes, particularly targeting those proteins that exhibit low functional 
similarity, known as weak proteins. Such proteins can undermine the functional coherence of their current 
complexes due to their mismatched functional attributes. The FS-PTO refines the network by reassigning weak 
proteins to complexes where their functional profiles align more closely with the other proteins. By integrating 
these weak proteins into more suitable complexes, the functional efficiency of the receiving complexes is 
enhanced. This realignment promotes synergistic interactions among proteins with similar functions, thereby 
optimizing the overall performance and stability of the complexes.

To understand how the FS-PTO operates, consider a set of proteins, I = {I1, I2, . . . , IN }, and a complex 
structure C consisting of K complexes, {C1, C2, . . . , CK}. Each protein, Pi, is initially evaluated based on its 
functional similarity to the complex C to which it is currently assigned.

The functional similarity, denoted as F SBMA, between a protein Pj  and a complex C is determined by 
aggregating the similarity scores between Pj  and each member protein Pk′  within the complex C. This is 
expressed as:

Fig. 5.  Two parent individuals, each characterized by their respective genotypes, combine their genetic 
information through a uniform crossover process to produce a child individual.
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F_Intra(Pj , C) =
∑

Pk′ ∈C

F SBMA(Pj , Pk′ )� (22)

This measure indicates how well protein Pj  integrates with the existing members of its current complex. On the 
other hand, the inter-complex functional similarity F SBMA is calculated for each other complex Cj( where 
Cj ̸= Ci) as:

	

F_Inter(Pj , Cj) =
∑

Pk′ ∈Cj

F SBMA(Pj , Pk′ )� (23)

This calculation helps in pinpointing the complex Cj  where Pj  might be reassigned to achieve better functional 
alignment.

The decision to reassign a protein is governed by the following criteria:

	
Ii,j =

{
arg maxC∈C

{∑
Pk′ ∈C

F SBMA(Pj , Pk′ )
}

if r ≤ pm

Ii,j otherwise
� (24)

This equation aims to find the complex C that maximizes the aggregate functional similarity score for protein 
Pj . The reallocation decision also considers a random value r compared to a mutation probability pm, in-
fluencing whether a protein should be reassigned to a new complex to enhance functional homogeneity. An 
outline of the proposed FS-PTO heuristic mutation operator is presented in algorithm 1. 

Algorithm 1.  Functional similarity-based protein translocation operator (FS-PTO).

The FS-PTO algorithm is designed to optimize the assignment of proteins to complexes based on their 
functional similarities. The algorithm works by iterating through each protein and assessing both its current 
intra-complex and inter-complex functional similarities. Intra-complex functional similarity is calculated for 
each protein within its current complex. This value represents the functional similarity between the protein and 
the other proteins in the same complex. On the other hand, inter-complex functional similarity is calculated 
for each protein with respect to all other complexes. This value helps identify the complex that has the highest 
functional similarity to the protein.
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For each protein, the algorithm compares the intra-complex functional similarity with the inter-complex 
functional similarity. If the protein’s intra-complex similarity is lower than its inter-complex similarity, the 
protein is reassigned to the complex with the highest inter-complex similarity. The reassignment involves 
removing the protein from its current complex and adding it to the new complex. The process continues for each 
protein until all proteins have been evaluated, resulting in updated complexes.

Comparative analysis of topological and biological information in protein complex detection
The corpus of existing literature predominantly anchors its methodology on the utilisation of topological data 
for the identification of protein complexes. This topological information fundamentally concerns the structural 
dynamics and connectivity patterns inherent within protein networks. To elucidate this concept, we refer to Fig. 
6 in our study, where we selected complex #29 from the MIPS database, comprising 20 distinct proteins. The 
protein YBR198C emerges as a focal point due to its extensive connectivity within the complex.

Protein YBR198C is centrally involved, displaying internal linkages with 16 other proteins and engaging in 
external connections with three additional proteins from a disparate complex. Within our visual representation, 
proteins affiliated with the same complex are marked in green, whereas those associated with different complexes 
are highlighted in red. For a more granular analysis, consider three illustrative cases involving YBR198C: Firstly, 
the protein YML015C, which resides within the same complex, is connected to YBR198C, as evidenced by a ’1’ 
in the corresponding cell of the adjacency matrix in the lower section of Figure 6, indicating the presence of a 
linkage. Conversely, a ’0’ denotes the absence of such a connection. Secondly, another protein, external to the 

Fig. 6.  This illustration depicts the interactions of protein ’YBR198C’ within a 20-protein MIPS benchmark 
complex. Proteins highlighted in green directly interact with ’YBR198C’ by intra-connections, whereas 
proteins highlighted in yellow do not. Proteins highlighted in red belong to different complexes but are 
connected to ’YBR198C’ by inter-connections. The bottom section presents the adjacency matrix for the green 
(’YML015C’, ’YPL011C’), red (’YCR042C’), and yellow (’YMR227C’) proteins.
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complex yet connected to YBR198C, similarly exhibits a connection value of ’1’. Thirdly, YMR227C, also within 
the same complex but not linked to YBR198C, is represented in yellow, with the adjacency matrix showing 
a connection value of ’0’. Existing methodologies that depend solely on topological information encounter 
limitations, exemplified by their inability to associate YMR227C with YBR198C due to the lack of direct 
connectivity. This highlights a significant shortfall in the capability of these topological approaches to discern 
protein complexes with precision. In contrast, our investigation pivots towards leveraging biological information 

Fig. 7.  GO terms associated with both proteins YBR198C and YML015C. Shared GO terms are highlighted in 
green, while distinct GO terms for each protein are highlighted in blue.
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to unearth protein complexes. Specifically, we have analyzed the interactions between YBR198C and YML015C 
using the SGD to extract their GO terms. The results, depicted in Fig. 7, reveal that these proteins share seven 
GO terms, represented in green, affirming their functional congruence. Another instance involves YML114C, 
associated with a different complex but sharing five GO terms with YBR198C, as illustrated in Fig. 8. Additionally, 
YMR227C, while part of the same complex and unlinked to YBR198C, shares six GO terms, as demonstrated 
in Fig. 9. These instances significantly validate the efficacy of our proposed method, which discerns protein 

Fig. 8.  GO terms associated with both proteins YBR198C and YML114C. Shared GO terms are highlighted in 
green, while distinct GO terms for each protein are highlighted in blue.
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complexes not merely through structural data but through a profound understanding of biological interactions 
and functional similarities. Despite the inherent noise and variability in protein network data, our approach 
offers a robust framework for accurately identifying protein complexes, underlining the critical role of biological 
data in enhancing the precision of complex detection in PPI networks.

The methodology presented in this paper, illustrated in Fig. 10, outlines a structured and comprehensive 
framework for systematically evaluating the similarity between GO terms. The framework consists of several key 

Fig. 9.  GO terms associated with both proteins YBR198C and YMR227C. Shared GO terms are highlighted in 
green, while distinct GO terms for each protein are highlighted in blue.
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stages, each contributing to the primary objective of accurately detecting and evaluating biological complexes. 
The process begins with obtaining GO annotations from the SGD for a given yeast dataset. These annotations 
provide essential information about the functional aspects of genes, categorizing them into three primary 
ontologies: BP, MF, and CC. This initial step establishes a foundation for understanding the functional roles of 
genes and their relationships within various biological processes.

Once the GO annotations are acquired, the next step involves constructing a DAG for each GO term. The 
DAG captures the hierarchical relationships between different GO terms, showing how they are functionally 
dependent on one another. This graph structure is critical for visualizing the complexity of gene functions and 
their interconnections, offering insight into how various biological processes or functions are related.

With the GO annotations and DAG in place, the methodology proceeds to the calculation of gene similarity 
based on these annotations. This step evaluates the functional similarity between gene pairs, producing a 
similarity matrix that quantifies their degree of similarity. This matrix plays a central role in the framework, as it 
serves as the key input for the subsequent stage of the process.

The similarity matrix is then incorporated into our model, which is specifically designed to detect protein 
complexes within biological data. EAs, inspired by natural selection, are employed to iteratively refine solutions, 
identifying protein complexes or gene groups that share functional similarities. By integrating the gene similarity 
matrix, the algorithm improves its ability to detect complex structures with more accuracy.

Finally, the output generated by our model undergoes a rigorous evaluation phase. During this phase, the 
identified complexes are assessed using various metrics, such as accuracy and biological relevance.

Experiments and evaluation
In this section, we systematically assess the quality of the complexes generated by our proposed approach 
through a three-phase evaluation process. First, we compare the performance of our model against existing 
heuristic state-of-the-art complex detection methods to establish its baseline effectiveness. Next, we evaluate the 
proposed model’s effectiveness by benchmarking it against heuristic-based EA models, providing insights into 
its relative performance within the EA domain. In the final phase, we evaluate the robustness of our approach by 
introducing or removing interactions, and comparing the results with other EA-based models to demonstrate 
the stability and reliability of our method under varying network conditions.

Datasets
To conduct a rigorous performance evaluation, we utilized two PPI networks meticulously derived from the 
yeast species Saccharomyces cerevisiae. The first PPI network dataset, known as Yeast-D1, underwent meticulous 
curation led by Gavin et al.48. This process involved the careful selection and validation of PPIs. Subsequently, 
the curated dataset underwent further refinement through a rigorous filtration process, guided by Zaki et al.49. 
The outcome is a highly reliable and accurate network comprising a notable m = 4687 interactions, involving a 
total of n = 990 distinct proteins.

One noteworthy aspect of the Yeast-D1 dataset is the variability in the number of interactions per protein, 
denoted as mi. This parameter displays significant diversity, ranging from a minimum of 1 to a maximum of 52. 

Fig. 10.  The methodology framework comprises a sequence of steps aimed at assessing gene similarity. 
Initially, we obtain GO annotations via the SGD. Subsequently, we generate a DAG for each GO term sourced 
from the GO. We then calculate gene similarity and incorporate the resultant similarity matrix into our method 
as vital elements of an evolutionary-based algorithm meticulously crafted for detecting complex structures. 
Lastly, we conduct an evaluation to gauge the quality of the detected complexes.
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This variation offers valuable insights into the connectivity and centrality of different proteins within the yeast 
protein interaction network. Simultaneously with the curation and refinement of Yeast-D1, a comprehensive 
annotation process unfolded for the 990 proteins. This meticulous annotation involved systematically assigning 
GO terms to each protein, facilitating a deeper understanding of their functional roles. Specifically, these 
proteins were meticulously annotated with 5645 BP terms, 4904 CC terms, and 3434 MF terms. These GO 
annotations provide a rich resource for characterizing the functional attributes of proteins within the Yeast-D1 
dataset. Transitioning to the second PPI network dataset, referred to as Yeast-D2, it represents a comprehensive 
amalgamation of yeast protein interactions derived from six distinct experimental sources. This composite dataset 
was intentionally compiled to encompass a broad spectrum of interactions within the yeast species, aiming to 
provide a more holistic view of the yeast protein interaction network. Following the compilation of Yeast-D2, 
an additional filtration step, guided by Zaki et al.49, was applied to enhance data quality. This filtration resulted 
in a refined subset comprising 1443 proteins with a notable count of 6993 interactions. Similar to Yeast-D1, the 
number of interactions per protein, denoted as mi, exhibits a considerable range, spanning from a minimum 
of 1 to a maximum of 59. This variability in interaction counts is indicative of the diversity and complexity 
of protein interactions within Yeast-D2. Figure 11 illustrates the Yeast-D1 and Yeast-D2 PPI networks, which 
were visualized using Gephi50, an open-source network visualization tool. The construction process involved 
importing the PPI dataset as an edge list into Gephi, where each edge represents an interaction between two 
proteins. To enhance interpretability, a Fruchterman-Reingold layout was applied, which simulates a physical 
system where nodes repel each other while edges act as springs pulling connected nodes together. This results in 
a visually balanced distribution of nodes that highlights interaction patterns effectively. Specifically, each node 
represents a protein, while edges represent PPIs. For example, if proteins P1, P2, and P3 interact such that P1 
interacts with both P2 and P3, the resulting network would display P1 positioned in a way that maintains an 
optimal balance between repulsive and attractive forces, ensuring clarity in structural representation. The final 
visualization in Fig. 11 effectively captures the structural properties and interaction densities of both Yeast-D1 
and Yeast-D2.

Concurrent with the refinement of Yeast-D2, an extensive annotation effort was undertaken to associate 
functional attributes with the 1443 proteins. This annotation process involved systematically assigning GO terms 
to each protein, resulting in a comprehensive repertoire of functional annotations. Specifically, these proteins 
were meticulously annotated with 8111 BP terms, 6846 CC terms, and 4904 MF terms. These annotations 
provide valuable insights into the functional roles and cellular locations of proteins within the Yeast-D2 PPI 
network, making it a valuable resource for studying yeast biology and protein interactions in detail. To assess the 
effectiveness and reliability of our proposed model in accurately predicting protein complexes, we performed a 
comprehensive validation using two meticulously curated benchmark datasets: Complex-D1 and Complex-D2. 
Both datasets were sourced from the well-regarded MIPS catalog 38. Complex-D1, the first benchmark dataset, 
consists of 859 proteins organized into 81 distinct complexes. These complexes vary in size from 6 to 38 
proteins, with an average of approximately 8.9 proteins per complex. Notably, this dataset includes Yeast-D1, 
which contains a comprehensive collection of 701 known proteins. In contrast, Complex-D2 is a more exclusive 
dataset, featuring 162 carefully selected complexes that range from 4 to 266 proteins, totaling 3125 proteins. 
Within Complex-D2, Yeast-D2 accounts for 680 proteins. The primary distinction between Complex-D1 and 
Complex-D2 lies in their structural attributes. The complexes in Complex-D1 are inherently disjoint, meaning 
there is no overlap between any pair of complexes (i.e., C∗

i ∩ C∗
j = ∅). Conversely, Complex-D2 presents a 

higher level of complexity, with 190 complexes exhibiting overlapping features. This overlap is due to 1255 
proteins that are shared among multiple complexes, resulting in instances where (C∗

i ∩ C∗
j ̸= ∅) for many of 

the complexes.

Evaluation measures
In the context of biological networks where standard or reference complexes are established, evaluating the 
quality of identified protein complexes is crucial. This evaluation is commonly performed using well-known 

Fig. 11.  Two distinct PPI networks: Yeast-D1 (on the left) and Yeast-D2 (on the right). These networks 
represent intricate biological interactions among proteins, providing valuable insights into cellular processes 
and functions.

 

Scientific Reports |        (2025) 15:16855 18| https://doi.org/10.1038/s41598-025-01667-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


statistical measures such as recall, precision, and F-score, as described by Tan et al.51. These metrics provide a 
systematic way to compare the detected protein complexes with the established standard complexes, thereby 
offering insights into the accuracy and relevance of the findings.

To elaborate, for each protein complex identified in the PPI network, denoted as Cj , the comparison with a 
corresponding standard complex, denoted as C∗

i , involves the calculation of several key sets. The True Positives 
(TP) represent the set of proteins that are correctly identified, meaning they are present in both the detected 
complex Cj  and the standard complex C∗

i . This set indicates the degree to which the discovered complex 
overlaps with the known standard.

In contrast, False Positives (FP) refer to the set of proteins that are included in the detected complex Cj  but 
are not part of the standard complex C∗

i . This set reflects the extent of incorrect or extraneous proteins that have 
been erroneously grouped into the complex during the detection process. On the other hand, False Negatives 
(FN) represent the proteins that are part of the standard complex C∗

i  but have been missed or excluded from the 
detected complex Cj . This measure is crucial for understanding the completeness of the detected complex in 
capturing the entirety of the standard complex.

	
Recall = T P

T P + F N
� (25)

	
P recision = T P

T P + F P
� (26)

	
F -score =2 × Recall × P recision

Recall + P recision
� (27)

The evaluation of the proposed model involves considering the Jaccard similarity score, represented by Eq. (28), 
as a means to assess the similarity between a predicted complex Cj  and a benchmark complex C∗

i . This score 
is computed as the ratio of the number of proteins that are shared by both C∗

i  and Cj  to the total number of 
proteins in the set that contains all proteins from C∗

i  and Cj . By utilizing this Jaccard similarity score, the degree 
of overlap and similarity between the predicted and benchmark complexes can be quantitatively measured, 
providing valuable insights into the performance of the proposed model.

	
J(C∗

i , Cj) =
|C∗

i

∩
Cj |

|C∗
i

∪
Cj |

� (28)

In the context of our study, we employ a crucial metric known as the Jaccard similarity coefficient to assess the 
similarity between a benchmark complex, denoted as C∗

i , and a predicted complex, denoted as Cj . This metric, 
represented as J(C∗

i , Cj), serves as a fundamental measure of agreement between the two complexes. The core 
of our evaluation lies in the application of a specific criterion: if the Jaccard similarity coefficient J(C∗

i , Cj) 
surpasses or equals a predetermined threshold known as δ, then we consider the predicted complex Cj  as a 
valid prediction for the benchmark complex C∗

i . In essence, the value of δ serves as a quantitative indicator, 
delineating the level of concordance required between a predicted complex and a complex drawn from our 
benchmark dataset.

Algorithm parameter settings
The algorithms proposed in this study, along with all EA-based approaches analyzed herein, have been configured 
according to the standard parameters outlined in Table  1.

Parameter Description/value

Population size (µ) The size of the population is set to 100, following the recommended practice of ensuring a sufficiently large and diverse population for 
effective evolutionary search. A larger population helps explore the search space comprehensively.

Maximum number of generations The maximum number of generations is predetermined as 100, equivalent to a total of 10,000 function evaluations. This setting controls the 
termination condition of the evolutionary process, ensuring a finite and bounded search.

Uniform crossover probability (pc) The probability of applying uniform crossover is fixed at a value of 0.8. This reflects a preference for a higher likelihood of generating 
offspring with well-balanced genetic information inherited from both parents, promoting exploration and exploitation in the search space.

Mutation probability (pm) The mutation operator, responsible for introducing diversity and facilitating exploration of unexplored regions in the search space, is 
assigned a probability represented by pm , specifically set to 0.2. This setting controls the likelihood of mutation occurring in each generation.

Proposed heuristic GO-based (pm) A proposed mutation operator based on Gene Ontology (GO) is incorporated into the algorithms, also assigned a probability of pm = 0.2. 
This specialized mutation operator aims to inject domain-specific knowledge into the search process.

Evaluation metrics
The evaluation metrics discussed in Section  “Evaluation measures” are rigorously analyzed and reported based on the average results 
obtained from conducting 30 independent runs. This approach of averaging outcomes across multiple runs provides a comprehensive and 
robust assessment of the algorithms’ performance, ensuring that the reported results are statistically significant and representative of their 
overall effectiveness in finding optimal solutions.

Table 1.  Experimental settings and parameter values for EAs.
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Assessing the robustness of the proposed GO-based MOEA against Noisy PPI Networks
The reliability of a PPI network is a critical concern in the field of systems biology, primarily due to the substantial 
noise present in high-throughput experiments. High-throughput experiments are known to introduce a high 
rate of false positives, which can result in spurious inter-complex interactions within the network. Conversely, 
there is also the issue of missing genuine protein interactions that should be present in a reliable PPI network. 
Researchers such as26,31 have made significant contributions in addressing these challenges by developing 
algorithms aimed at assessing the consistency and effectiveness of algorithms designed to detect protein 
complexes in PPI networks, even in the presence of noise.

In the studies conducted by26,31, the addition and deletion of interactions within PPI networks were 
performed in a random manner. This approach allowed them to evaluate the robustness and performance of 
their algorithms under conditions that simulate the inherent noise found in experimental PPI datasets. The 
insights gained from these investigations have been invaluable in advancing our understanding of how well these 
algorithms can adapt to real-world scenarios characterized by noise and uncertainties.

In this study, we rigorously evaluate several EAs, including EA − CS31, EA − CSmu
37, MOEA/D35, 

MOEA/Dmu
37, and our model MOEA − GOF S−P T O , by testing them on synthetic PPI networks. To 

simulate real-world conditions, we introduce varying levels of noise into the Yeast-D1 and Yeast-D2 networks 
by adding or removing interactions between proteins. Specifically, we adjust the proportion of interactions 
altered to 10%, 20%, 30%, 40%, and50%. For each proportion, we create 10 distinct synthetic networks. The 
interactions in these networks are modified by either adding or removing them from proteins chosen based on 
different criteria: randomly selected proteins, targeting those with the most interactions, or focusing on those 
with the fewest interactions.

To quantitatively evaluate the impact of these noise types on the PPI networks, we collected statistics and 
reported them in four separate tables: Tables 2, 3, 4 and 5 summarize the impact of interaction modifications. 
Tables 2 and 3 cover the addition of spurious interactions, while Tables 4 and 5 addresses the removal of true 

Noise
DelRandom DelHighDegree DelLowDegree

m |n|d=1 dAvg m |n|d=1 dAvg m |n|d=1 dAvg

0% 4687 28 9.4687 4687 28 9.4687 4687 28 9.4687

10% 4249 53 8.5838 4309 28 8.7050 4596 32 9.2848

20% 3851 70 7.7797 3931 28 7.9414 4506 36 9.1030

30% 3480 89 7.0303 3553 29 7.1777 4415 43 8.9191

40% 3191 119 6.4464 3175 30 6.4141 4325 45 8.7373

50% 2899 168 5.8565 2796 35 5.6484 4234 48 8.5535

Table 4.  Statistics on the impact of removing true interactions from the Yeast-D1 Dataset.

 

Noise
AddRandom AddHighDegree AddLowDegree

m |n|d=1 dAvg m |n|d=1 dAvg m |n|d=1 dAvg

0% 6993 92 9.6923 6993 92 9.6923 6993 92 9.6923

10% 7835 92 10.8593 7572 92 10.4948 7113 64 9.8586

20% 8607 92 11.9293 8150 92 11.2959 7234 42 10.0263

30% 9417 92 13.0520 8729 92 12.0984 7354 39 10.1927

40% 10249 92 14.2051 9308 92 12.9009 7474 27 10.3590

50% 11043 92 15.3056 9886 92 13.7020 7595 20 10.5267

Table 3.  Statistics on the impact of adding spurious interactions to the Yeast-D2 dataset.

 

Noise
AddRandom AddHighDegree AddLowDegree

m |n|d=1 dAvg m |n|d=1 dAvg m |n|d=1 dAvg

0% 4687 28 9.4687 4687 28 9.4687 4687 28 9.4687

10% 5189 28 10.4828 5065 21 10.2323 4778 20 9.6525

20% 5689 28 11.4929 5443 15 10.9959 4868 10 9.8343

30% 6179 28 12.4828 5821 13 11.7595 4959 7 10.0181

40% 6684 28 13.5030 6199 5 12.5232 5049 6 10.2

50% 7147 28 14.4383 6578 5 13.2888 5140 4 10.3838

Table 2.  Statistics on the impact of adding spurious interactions to the Yeast-D1 dataset.
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interactions. In all tables, m denotes the total interactions, (|n|d=1) shows proteins with only one interaction, 
and (dAvg) represents the average number of interactions per protein.

Complex detection performance: GO-based multi-objective evolutionary algorithm against 
state-of-the-art methods
This section presents a comprehensive performance comparison between the proposed GO-based MOEA and 
state-of-the-art heuristic and evolutionary-based methods for complex detection. The experimental evaluation 
begins with the reporting of results obtained from the proposed GO-based MOEA, which are compared to 
established heuristic methods, including MCODE27, OCG52, LC53, NDOCD54, RNSC55, ELC56, CPM57, and 
MCL58 as documented in Table  6. The evaluation focuses on the Yeast-D1 and Yeast-D2 datasets. In this analysis, 
the GO-based mutation operator assumes the role of a ’background heuristic’ operator, with a low probability of 
occurrence set at pm = 0.2. Additionally, to establish a successful match between a predicted complex and a true 

Algorithm

Yeast-D1 Yeast-D2

Recall Precision F-score Recall Precision F-score

EA- CS 0.8718 0.7232 0.7902 0.8133 0.4861 0.6082

EA- EX 0.7910 0.7009 0.7430 0.7740 0.4790 0.5916

EA- RC 0.7128 0.7280 0.7202 0.7213 0.4948 0.5868

EA- NC 0.7026 0.7319 0.7166 0.7080 0.5014 0.5870

EA- ID 0.7269 0.6540 0.6882 0.7053 0.4413 0.5427

EA- Q 0.7462 0.7006 0.7225 0.7713 0.5003 0.6068

MOEA- GOF S−P T O 0.9436 0.7593 0.8209 0.8953 0.5702 0.6839

Table 7.  Performance comparison was conducted at a complex level with an overlapping score threshold of 
δ = 0.2, focusing on key metrics including Recall, Precision, and F-score. The evaluated algorithms consisted 
of canonical single-objective EAs as proposed in31, and the proposed GO-based MOEA. All of these EAs were 
configured according to the settings used in this study. Outstanding results are marked in bold.

 

Algorithm

Yeast-D1 Yeast-D2

Recall Precision F-score Recall Precision F-score

MCODE 0.6700 0.6250 0.6467 0.3410 0.3650 0.3526

OCG 0.8380 0.6150 0.7094 0.6000 0.3450 0.4381

LC 0.4950 0.0410 0.0757 0.6995 0.0800 0.1436

NDOCD 0.7830 0.7000 0.7392 0.4225 0.4190 0.4207

RNSC 0.8490 0.2650 0.4039 0.4850 0.1560 0.2361

ELC 0.5910 0.6479 0.6181 0.2855 0.3890 0.3293

CPM 0.5850 0.6170 0.6006 0.3050 0.3955 0.3444

MCL 0.8230 0.5390 0.6514 0.1900 0.2920 0.2302

MOEA- GOF S−P T O 0.9436 0.7593 0.8209 0.8953 0.5702 0.6839

Table 6.  Performance comparison at the complex level: Evaluating Recall, Precision, and F-score with a 
δ = 0.2 threshold. The comparison encompasses established heuristic-based complex detection algorithms 
alongside the proposed GO-based MOEA. The proposed heuristic mutation operator is set to a low probability 
of occurrence, pm = 0.2. Outstanding results are marked in bold.

 

Noise
DelRandom DelHighDegree DelLowDegree

m |n|d=1 dAvg m |n|d=1 dAvg m |n|d=1 dAvg

0% 6993 92 9.6923 6993 92 9.6923 6993 92 9.6923

10% 6332 127 8.7762 6414 92 8.8898 6873 95 9.5260

20% 5749 173 7.9681 5836 92 8.0887 6752 101 9.3583

30% 5235 178 7.2557 5257 92 7.2862 6632 107 9.1920

40% 4721 236 6.5433 4678 93 6.4837 6512 119 9.0256

50% 4308 241 5.9709 4100 100 5.6826 6391 131 8.8579

Table 5.  Statistics on the impact of removing true interactions from the Yeast-D2 Dataset.
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complex, a minimum overlap of at least 20% is required between their respective constituent elements, denoted 
as the overlapping score δ = 0.2.

Moreover, we present comprehensive results in Tables   7 and   8, which demonstrate the performance of 
the latest advancements in single EAs introduced by31 and37, respectively. Tables  7 and  8 specifically focus 
on comparing the performance of these advanced EAs against the canonical EAs with single-objective models 
proposed by31, as well as their corresponding heuristic-based EAs introduced in37. The evaluated models include 
conductance (CO), community score (CS), expansion (EX), internal density (ID), normalized cut (NC), and 
ratio cut (RC). Through these comparisons, we aim to assess the efficacy of the proposed enhancements. Building 
on these findings, the culmination of our investigation, depicted in Table  9, serves as a comprehensive portrayal 
of the advancements achieved through the utilization of sophisticated multi-objective EAs. These algorithms, 
notably through the incorporation of a heuristic-based mutation operator proposed in37. This augmentation 
represents a significant stride towards enhancing the performance and efficacy of MOEAs in tackling complex 
optimization challenges. Further extending this investigation, our proposed MOEA framework, with the 
integration of the gene ontology-based mutation operator, the FS-PTO operator, we have successfully identified 
several instances of protein complexes with distinct biological importance. As depicted in Fig. 12, the protein 
complexes under examination were sourced from the MIPS database38, comprising a total of 81 accurately 
annotated complexes. Our investigation aimed to assess the efficacy of both the proposed methodology and 
conventional approaches in identifying these complexes. To elucidate the intricacies of complex structures, two 
representative complexes from the MIPS database were selected, and their intra- and inter-connectivity were 
magnified for detailed scrutiny. The methodology proposed by Pizzuti et al.31 underwent rigorous evaluation. 
However, it became evident that this approach exhibited inconsistencies in protein detection. Notably, proteins 
highlighted in green and blue denote accurate identification in alignment with the MIPS database, whereas 
those in red signify erroneous inclusions within the complex. Furthermore, proteins shaded in yellow indicate 
arbitrary placement within the complex, lacking meaningful associations with other constituent proteins. In 
evaluating the EA − CSmu method, it was observed that while the operator proposed in37 contributed to 
enhancing the algorithm’s proficiency in identifying protein complexes, it also indiscriminately included protein 
(#493) within the complex. Similarly, the utilization of single-objective algorithms necessitated exploration into 
multi-objective algorithms such as MOEA/D as proposed in35 for complex detection. However, this approach 
also yielded false positives, with proteins numbered (#712 and #826) erroneously integrated into the detected 
complexes. Subsequently, employing the multi-objective algorithm in conjunction with the operator proposed 
in37, denoted as MOEA/Dmu, demonstrated improved accuracy in protein detection. Nonetheless, an issue 
arose wherein protein (#400) migrated from the second complex to the first, resulting in misallocation. Finally, 
the efficacy of the proposed algorithm, MOEA- GOF S−P T O , was evaluated. Leveraging the robustness of the 
proposed operator alongside biological insights derived from GO, this methodology successfully identified all 
correct proteins within both the first and second complexes. This unequivocally underscores the superiority of 

Algorithm

Yeast-D1 Yeast-D2

Recall Precision F-score Recall Precision F-score

MOEA/D 0.8667 0.7093 0.7628 0.7720 0.4686 0.5749

MOEA/Dmu 0.9026 0.6761 0.7579 0.8040 0.4758 0.5825

MOEA- GOF S−P T O 0.9436 0.7593 0.8209 0.8953 0.5702 0.6839

Table 9.  Performance comparison was conducted with an overlapping score threshold of δ = 0.2, The 
compared MOEAs include the canonical MOEA (MOEA/D) from35, heuristic-based EAs (MOEA/Dmu) 
from37, and the proposed GO-based MOEAs (MOEA- GOF S−P T O). Outstanding results are marked in bold.

 

Algorithm

Yeast-D1 Yeast-D2

Recall Precision F-score Recall Precision F-score

EA- CSmu 0.9000 0.7289 0.8053 0.8360 0.4764 0.6067

EA- EXmu 0.8321 0.6532 0.7315 0.7773 0.4490 0.5690

EA- RCmu 0.6244 0.7191 0.6680 0.6807 0.4903 0.5696

EA- NCmu 0.6577 0.7426 0.6972 0.7107 0.5111 0.5945

EA- IDmu 0.7474 0.6361 0.6869 0.7140 0.4337 0.5395

EA- Qmu 0.6615 0.7313 0.6943 0.6813 0.4919 0.5709

MOEA- GOF S−P T O 0.9436 0.7593 0.8209 0.8953 0.5702 0.6839

Table 8.  Performance comparison was conducted at a complex level with an overlapping score threshold of 
δ = 0.2, focusing on key metrics including Recall, Precision, and F-score. The evaluated algorithms consisted 
of heuristic-based EAs introduced by37, and the proposed GO-based EAs. Outstanding results are marked in 
bold.
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the proposed approach rooted in GO for protein complex detection, surpassing the performance of traditional 
methods.

In Table   9, we meticulously juxtapose the results derived from these advanced MOEAs against several 
benchmarks. Firstly, we compare them against the conventional MOEA/D framework, initially proposed by59. 
This juxtaposition sheds light on the extent of improvement achieved through the integration of the heuristic-
based mutation operator. Furthermore, we contrast the performance of these refined MOEAs with other state-of-
the-art approaches, namely, the heuristic-based multi-objective MOEAs advocated by37. It is imperative to note 
that the parameter configurations utilized in our study remain consistent across all evaluated methodologies. 
This alignment ensures a fair and unbiased comparison, facilitating a clearer understanding of the performance 
disparities observed.

Tables 10, 11, and 12 provide a detailed overview of our robustness evaluation. This evaluation includes metrics 
such as Recall, Precision, and F-score. The tables cover the performance across yeast datasets. Additionally, they 
present the results for the corresponding synthesized noisy networks, allowing for a comprehensive comparison 
of how well the methods perform under different levels of noise and network perturbations. In contrast, Tables 
13, 14, and 15 present results from a different aspect of our robustness assessment, but in this case, we specifically 
removed true interactions from the networks to evaluate their resilience to such deletions.

Conclusions
This study has successfully redefined the challenge of detecting protein complexes in PPI networks by framing 
it as a multi-objective optimization problem. A new model for complex detection is introduced, distinguished 
by integrating a heuristic perturbation operator. The incorporation of GO heuristic operators has proven crucial 
for boosting the performance of evolutionary algorithms, yet this approach has not been extensively explored 
in existing research. Our proposed GO-based heuristic operators, which leverage functional similarity among 
gene products, have demonstrated significant effectiveness in detecting complexes within PPI networks. These 

Fig 12.  Illustration depicting the evaluation process of protein complex detection methods using 
representative complexes sourced from the MIPS database. Color annotations show detection accuracy: green/
blue indicating correct detection, red for erroneous inclusions, and yellow for arbitrary placements.
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findings underscore the growing viability of GO-based methods in addressing real-world biological problems. 
However, to fully assess the potential of these evolutionary algorithms, future research should explore additional 
algorithm characteristics and PPI network properties, including complex overlapping and varying complex 
sizes, through more extensive experimental investigations.

Noise Algorithm

Yeast-D1 Yeast-D2

Recall Precision F-score Recall Precision F-score

10%

EA − CS 0.4545 0.5196 0.4844 0.3130 0.3201 0.3159

EA − CSmu 0.5462 0.4965 0.5196 0.2769 0.2333 0.2529

MOEA/D 0.5407 0.5728 0.5362 0.2742 0.2828 0.2690

MOEA/Dmu 0.8231 0.6000 0.6835 0.4227 0.3079 0.3445

MOEA- GOF S−P T O 0.9244 0.8766 0.8569 0.8833 0.7009 0.7579

EA − CS 0.3427 0.4534 0.3897 0.2388 0.2889 0.2607

20%

EA − CSmu 0.4585 0.4440 0.4508 0.2053 0.1985 0.2014

MOEA/D 0.4680 0.5652 0.4812 0.2362 0.2814 0.2423

MOEA/Dmu 0.8154 0.6060 0.6870 0.3927 0.2997 0.3284

MOEA- GOF S−P T O 0.9231 0.9069 0.8801 0.8713 0.7266 0.7607

EA − CS 0.2713 .04054 0.3242 0.1801 0.2552 0.2102

30%

EA − CSmu 0.3726 0.4036 0.3867 0.1724 0.1920 0.1811

MOEA/D 0.4154 0.5643 0.4348 0.2012 0.2909 0.2161

MOEA/Dmu 0.8128 0.6160 0.6896 0.3867 0.3006 0.3261

MOEA- GOF S−P T O 0.9179 0.9096 0.8737 0.8933 0.7178 0.7683

EA − CS 0.1890 0.3217 0.2375 0.1310 0.2134 0.1612

40%

EA − CSmu 0.3145 0.3593 0.3350 0.1413 0.1812 0.1586

MOEA/D 0.3437 0.5218 0.3588 0.1610 0.2966 0.1767

MOEA/Dmu 0.8038 0.6012 0.6731 0.3853 0.211 0.3275

MOEA- GOF S−P T O 0.9051 0.8465 0.8531 0.8820 0.6955 0.7633

EA − CS 0.1387 0.2669 0.1819 0.0942 0.1804 0.1229

50%

EA − CSmu 0.2509 0.3097 0.2767 0.1076 0.1442 0.1224

MOEA/D 0.3005 0.4735 0.3067 0.1406 0.2803 0.1494

MOEA/Dmu 0.7795 0.6009 0.6654 0.3727 0.3641 0.3185

MOEA- GOF S−P T O 0.8987 0.8336 0.8412 0.8933 0.7031 0.7663

Table 10.  Robustness evaluation in terms of Recall, Precision, and F-score. False interactions are randomly 
added to protein pairs.
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Noise Algorithm

Yeast-D1 Yeast-D2

Recall Precision F-score Recall Precision F-score

EA − CS 0.4966 0.5368 0.5154 0.3426 0.3259 0.3335

10%

EA − CSmu 0.5957 0.5295 0.5604 0.3236 0.2623 0.2894

MOEA/D 0.5840 0.5805 0.5652 0.3072 0.2986 0.3462

MOEA/Dmu 0.8218 0.6049 0.6867 0.4427 0.2986 0.3462

MOEA- GOF S−P T O 0.9410 0.7499 0.8183 0.8987 0.5584 0.6812

EA − CS 0.3827 0.5027 0.4338 0.2341 0.2890 0.2579

20%

EA − CSmu 0.5111 0.4876 0.4988 0.2724 0.2552 0.2632

MOEA/D 0.5023 0.5891 0.5118 0.2478 0.3066 0.2579

MOEA/Dmu 0.8167 0.6093 0.6834 0.4167 0.3032 0.3398

MOEA- GOF S−P T O 0.9308 0.7326 0.8023 0.8960 0.5464 0.6728

EA − CS 0.2853 0.4568 0.3504 0.1619 0.2520 0.1964

30%

EA − CSmu 0.4278 0.4598 0.4424 0.2138 0.2317 0.2219

MOEA/D 0.4238 0.5633 0.4374 0.1940 0.3013 0.2107

MOEA/Dmu 0.8077 0.5802 0.6656 0.4173 0.2899 .03372

MOEA- GOF S−P T O 0.9397 0.7228 0.8021 0.8907 0.5380 0.6647

EA − CS 0.2049 0.4070 0.2718 0.1220 0.2334 0.1596

40%

EA − CSmu 0.3786 0.4376 0.4055 0.1849 0.2267 0.2031

MOEA/D 0.3562 0.5255 0.3662 0.1634 0.2944 0.1754

MOEA/Dmu 0.7949 0.5804 0.6565 0.4100 0.2987 0.3323

MOEA- GOF S−P T O 0.9397 0.7091 0.7930 0.8973 0.5356 0.6658

EA − CS 0.1539 0.3624 0.2152 0.0900 0.2116 0.1255

50%

EA − CSmu 0.3359 0.4257 0.3744 0.1398 0.2072 0.1664

MOEA/D 0.3250 0.4639 0.3232 0.1542 0.2628 0.1564

MOEA/Dmu 0.8051 0.5683 0.6575 0.4020 0.2915 0.3300

MOEA- GOF S−P T O 0.9295 0.7136 0.7970 0.8907 0.5249 0.6548

Table 11.  Robustness evaluation in terms of Recall, Precision, and F-score. False interactions are added to 
proteins of maximum number of interactions.
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Noise Algorithm

Yeast-D1 Yeast-D2

Recall Precision F-score Recall Precision F-score

10%

EA − CS 0.5049 0.5371 0.5201 0.3741 0.3396 0.3555

EA − CSmu 0.5846 0.5259 0.5531 0.3380 0.2693 0.2996

MOEA/D 0.5679 0.5799 0.5571 0.3107 0.2963 0.2963

MOEA/Dmu 0.8192 0.6142 0.6887 0.4207 0.3179 0.3486

MOEA- GOF S−P T O 0.9333 0.8577 0.8458 0.8980 0.6561 0.7226

EA − CS 0.3513 0.7216 0.4704 0.3250 0.3292 0.3264

20%

EA − CSmu 0.4906 0.4678 0.4785 0.3087 0.2612 0.2828

MOEA/D 0.4743 0.6031 0.5007 0.2601 0.3333 0.2774

MOEA/Dmu 0.7987 0.6156 0.6881 0.4133 0.3334 0.3489

MOEA- GOF S−P T O 0.9269 0.8959 0.8690 0.8907 0.6803 0.7425

EA − CS 0.3233 0.4337 0.3699 0.2609 0.3018 0.2791

30%

EA − CSmu 0.4291 0.4376 0.4329 0.2576 0.2408 0.2484

MOEA/D 0.3864 0.5949 0.4256 0.2173 0.3544 0.2456

MOEA/Dmu 0.7590 0.6004 0.6548 0.3967 0.3219 0.3468

MOEA- GOF S−P T O 0.9295 0.8951 0.8847 0.8893 0.7447 0.7739

EA − CS 0.2460 0.3853 0.2995 0.1940 0.2623 0.2221

40%

EA − CSmu 0.3816 0.4081 0.3937 0.1971 0.2059 0.2009

MOEA/D 0.3330 0.5573 0.3648 0.1779 0.3387 0.2016

MOEA/Dmu 0.7590 0.5960 0.6585 0.3967 0.3357 0.3451

MOEA- GOF S−P T O 0.9090 0.9314 0.8898 0.8980 0.8219 0.7911

EA − CS 0.1773 0.3241 0.2286 0.1429 0.2256 0.1740

50%

EA − CSmu 0.3115 0.3554 0.3314 0.1884 0.2145 0.2001

MOEA/D 0.2916 0.5153 0.3199 0.1554 0.3306 0.1766

MOEA/Dmu 0.7423 0.5835 0.6318 0.3700 0.3352 0.3336

MOEA- GOF S−P T O 0.9064 0.9561 0.8922 0.8800 0.8289 0.7821

Table 12.  Robustness evaluation in terms of Recall, Precision, and F-score. False interactions are added to 
proteins of minimum number of interactions.
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Noise Algorithm

Yeast-D1 Yeast-D2

Recall Precision F-score Recall Precision F-score

10%

EA − CS 0.5189 0.3969 0.4496 0.3181 0.2190 0.2591

EA − CSmu 0.6662 0.5572 0.6065 0.3462 0.2535 0.2925

MOEA/D 0.6252 0.4682 0.5261 0.3187 0.2048 0.2463

MOEA/Dmu 0.8192 0.5823 0.6645 0.4380 0.3018 0.3394

MOEA- GOF S−P T O 0.9410 0.7719 0.8181 0.8987 0.5516 0.6734

EA − CS 0.4195 0.2771 0.3336 0.2717 0.1632 0.2038

20%

EA − CSmu 0.6222 0.5421 0.5792 0.3467 0.2543 0.2932

MOEA/D 0.5579 0.3097 0.3934 0.2881 0.1429 0.1899

MOEA/Dmu 0.8038 0.5979 0.6685 0.4133 0.2818 0.3166

MOEA- GOF S−P T O 0.9410 0.7540 0.8106 0.9020 0.5562 0.6718

EA − CS 0.3845 0.2308 0.2883 0.2228 0.1175 0.1537

30%

EA − CSmu 0.6226 0.5075 0.5589 0.3622 0.2791 0.3150

MOEA/D 0.4927 0.2349 0.3163 0.2601 0.1084 0.1527

MOEA/Dmu 0.7769 0.5771 0.6422 0.4453 0.3468 0.3670

MOEA- GOF S−P T O 0.9526 0.7526 0.7985 0.9113 0.5593 0.6675

EA − CS 0.2974 0.1622 0.2098 0.1743 0.0842 0.1135

40%

EA − CSmu 0.6774 0.5601 0.6130 0.3907 0.293 0.3347

MOEA/D 0.3964 0.1645 0.2322 0.2247 0.0849 0.1231

MOEA/Dmu 0.7987 0.6199 0.6766 0.4473 0.3651 0.3733

MOEA- GOF S−P T O 0.9500 0.7515 0.8002 0.9147 0.5295 0.6556

EA − CS 0.2042 0.0987 0.1330 0.1123 0.0508 0.0698

50%

EA − CSmu 0.6615 0.5108 0.5763 0.4080 0.3000 0.3456

MOEA/D 0.3130 0.1182 0.1715 0.1860 0.0687 0.1002

MOEA/Dmu 0.7513 0.5655 0.6307 0.4513 0.3761 0.3877

MOEA- GOF S−P T O 0.9718 0.7512 0.8128 0.9240 0.5353 0.6632

Table 13.  Robustness evaluation in terms of Recall, Precision, and F-score. True interactions are randomly 
deleted from protein pairs.
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Noise Algorithm

Yeast-D1 Yeast-D2

Recall Precision F-score Recall Precision F-score

10%

EA − CS 0.5828 0.5625 0.5721 0.4132 0.3307 0.3671

EA − CSmu 0.6517 0.5549 0.5992 0.3538 0.263 0.3015

MOEA/D 0.6572 0.5751 0.6031 0.354 0.2884 0.3134

MOEA/Dmu 0.8308 0.6104 0.6848 0.4420 0.3099 0.3493

MOEA- GOF S−P T O 0.9397 0.7766 0.8235 0.9027 0.5689 0.6820

EA − CS 0.6085 0.5723 0.5896 0.4198 0.3352 0.3725

20%

EA − CSmu 0.6774 0.5572 0.6112 0.3729 0.2665 0.3106

MOEA/D 0.6717 0.5778 0.6111 0.3572 0.2872 0.3138

MOEA/Dmu 0.8359 0.6049 0.6802 0.4573 0.3136 0.3590

MOEA- GOF S−P T O 0.9372 0.7655 0.8186 0.8947 0.5766 0.6897

EA − CS 0.6186 0.5728 0.5945 0.4247 0.3334 0.3733

30%

EA − CSmu 0.6756 0.5538 0.6084 0.3838 0.2657 0.3139

MOEA/D 0.6800 0.5708 0.6106 0.3648 0.2881 0.3176

MOEA/Dmu 0.8359 0.5873 0.6716 0.4513 0.3059 0.3555

MOEA- GOF S−P T O 0.9462 0.7774 0.8178 0.8940 0.5612 0.6703

EA − CS 0.6297 0.5714 0.5988 0.4282 0.3326 0.3742

40%

EA − CSmu 0.6936 0.5511 0.614 0.3929 0.2672 0.3180

MOEA/D 0.685 0.5665 0.6099 0.3686 0.286 0.3179

MOEA/Dmu 0.8308 0.5840 0.6672 0.4540 0.3062 0.3512

MOEA- GOF S−P T O 0.9423 0.7585 0.8056 0.8960 0.5770 0.6853

EA − CS 0.6364 0.5678 0.5999 0.4263 0.3272 0.3699

50%

EA − CSmu 0.6953 0.5497 0.6137 0.3916 0.264 0.3153

MOEA/D 0.6842 0.5597 0.6055 0.3677 0.2806 0.3139

MOEA/Dmu 0.8179 0.5572 0.6526 0.4580 0.3118 0.3505

MOEA- GOF S−P T O 0.9500 0.7632 0.8098 0.9020 0.5610 0.6736

Table 14.  Robustness evaluation in terms of Recall, Precision, and F-score. True interactions are deleted from 
proteins of maximum number of interactions.
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Data availability
The datasets used in this study are available in the supplementary files.
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