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Horse gram (Macrotyloma uniflorum (Lam.) Verd.) is an underutilised legume from the Indian 
subcontinent. Being a nutritious legume, it plays an important role in human nutrition in developing 
countries like India. Conventional assessment of nutritional traits, are labour and time intensive for 
screening of huge germplasm, hence alternative and rapid technique for conventional method for 
the determination of nutritional components of horse gram flour is needed. NIRS can be used for 
this purpose as it gives rapid and precise results for most of the plant products. In this study, a highly 
diverse collection of 139 horse gram accessions was utilized to generate reference data. Prediction 
models were developed for protein, starch, TSS, phenols, and phytic acid using MPLS regression 
method with spectral preprocessing using SNV-DT to remove scatter effects and baseline noise. 
Models were optimized for derivatives, gap selection, and smoothening and evaluated using different 
statistics including RSQ, bias and RPD. The RSQ and RPD for the best fit models obtained were protein 
(0.701; 1.85), starch (0.987; 4.03), TSS (0.800; 4.06), phenols (0.778; 2.15) and phytic acid (0.730; 
1.88) indicating developed models are good for screening large number of germplasm collections and 
market samples. Statistical analyses, including paired t-tests, correlation, and reliability assessments, 
validated the strength of these models. This study represents the first report introducing a rapid, multi-
trait evaluation approach for horse gram germplasm, highlighting its high predictive accuracy for pre-
breeding applications. High throughput germplasm screening can be done through these developed 
models to identify trait-specific germplasm, which can be recommended to develop healthy products 
and thus can also be recommended for production in the farmer field simultaneously.
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TSS	� Total soluble sugar
RSQ	� Coefficient of determination
SEP(C)	� Corrected standard error of prediction
RPD	� Ratio of performance to deviation

Leguminous crops have been acknowledged for their nutritional value as plants that can complement cereals 
in human diets, especially in developing nations1. Horse gram (Macrotyloma uniflorum (Lam.) Verd.) is such 
an underutilised legume indigenous to Indian subcontinent2, belongs to the tribe—Phaseolae, sub-family—
Faboideae and family Fabaceae3. Horse gram is a minor legume in India, cultivated on 0.32 million hectares 
of land4, contributing 1–2% of total pulse growing area. Currently, it ranks fifth among the most extensively 
grown grain legumes in India and is considered exceptionally resilient. Additionally, it serves as a vital source 
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of vegetable protein for hundreds of millions of rural residents on the subcontinent5 especially in the Southern 
Peninsular India. The major horse gram producing Indian states are Karnataka, Andhra Pradesh, Tamil Nadu, 
Odisha, Maharashtra, Chhattisgarh, Bihar, Jharkhand Madhya Pradesh, Uttarakhand and Himachal Pradesh.

Horse gram is now emerging as a potential future food legume, due to its high nutritional quality and 
adaptability to harsh climatic conditions which could contribute significantly to global food and nutritional 
security6. It contains high protein (18–29 g/100 g), carbohydrates (57.2 g/100 g), total dietary fibre (16.3 g/100 g), 
minerals (3.2%), and vitamins like thiamine (0.42  mg), riboflavin (0.2  mg), niacin (1.5  mg) and Vitamin C 
(1 mg/100 g)4. Apart from nutritional and health-promoting effects, horse gram also possess some anti-nutritional 
factors like phytic acid (1.02 g/100 g), polyphenols (1.43 g GAE/100 g), oligosaccharides (2.68 g/100 g) which 
restricts its large amount utilization as human food7. While it plays a significant role in traditional diets as a vital 
source of protein, fiber, and bioactive compounds, its potential as a future food legume remains underexplored 
in modern agricultural research. Despite its resilience and nutritional value, horse gram has been overlooked 
in mainstream crop improvement and biochemical profiling studies. Current research trends in legumes have 
leveraged advanced tools like near-infrared spectroscopy (NIRS) to accelerate the assessment of nutritional 
traits8.

It is a non-destructive, quick approach that does not require any chemical reagents for the quick estimation 
of different organic compounds in different food forms like grains, flours, fruits, vegetables and meat through 
prediction modelling9 Samples could be evaluated directly regardless of their physical status, due to the high 
penetration and scatter efficiency of NIRS10. Conventional biochemical methods for assessing nutritional traits, 
such as Kjeldahl for protein estimation or colorimetric assays for phenols and phytic acid, are widely used 
but are labor-intensive, time-consuming, and require extensive sample preparation, well trained analyst and 
costly reagents. These methods also involve chemical extraction, making them destructive and impractical for 
large-scale germplasm screening and also adds to environmental costs In contrast, NIRS offers a rapid, non-
destructive, and cost-effective alternative, enabling simultaneous analysis of multiple traits within seconds. 
Compared to standard wet chemical analysis per-sample cost of estimation is negligible, elimination of 
hazardous chemicals, and reduced labour requirements make it a more sustainable choice for high-throughput 
analysis. In this study, the accuracy of NIRS models was validated through statistical analyses, including paired 
t-tests (p > 0.05), high RSQexternal values, and low SEP(C) values, demonstrating strong predictive performance. 
Given its efficiency, accuracy, and economic feasibility, NIRS emerges as a robust tool for evaluating horse gram 
germplasm, facilitating trait-specific selection for breeding programs and value-added product development. 
Theoretically, choosing samples that cover a data set’s spectrum, variation range should be adequate; however, 
the calibration should be taken into account for all types of variation, not only for genotypic variation11. 
Reference data, generated through laboratory method is primarily required to establish the calibration and 
validation model of the samples. It is dependent on the absorption in near infra-red area of the electromagnetic 
(EM) spectrum of molecular overtone and combination vibration of hydrogen groups X–H (X = C, N, O) (from 
750 to 2500 nm)12. Spectral pre-processing methods such as derivatization, standard normal variate and detrend 
(SNV-DT), multiplicative scatter correction (MSC), weighted and inverse MSC, along with other techniques, are 
commonly employed to mitigate light scattering effects. Multivariate regression methodologies like partial least 
squares (PLS), principal component regression (PCR), multiple linear regression (MLR), and modified partial 
least squares (MPLS) are applied to produce reliable and efficient models11.

NIRS has been widely applied for high-throughput biochemical profiling in many cereals, legumes, oilseeds, 
tuber crops, etc. Analysis of multi-nutritional traits in brown rice12, multi-nutritional traits in cowpea13, protein 
content in mung bean14, nutritional quality of dual-purpose cowpea15, glucosinolate content in mustard16, 
multi-nutritional traits in lablab bean17, and the multi trait nutritional profiling of pearl millet18, are some 
of the recent applications of NIRS in biochemical profiling of crop plants. However, its application in horse 
gram remains largely unexplored, with existing studies limited to proximate composition or traditional wet-lab 
methods, which are time-consuming and less scalable. To the best of our knowledge, no studies have developed 
NIRS-based predictive models for multiple biochemical traits in horse gram, such as protein, fiber, starch, and 
phenolic compounds. This gap hinders comprehensive agrobiodiversity assessment and the potential integration 
of this legume into diverse diets.

Our study addresses this gap by creating predictive models using NIRS for biochemical traits in horse 
gram. This approach not only enhances our ability to evaluate its nutritional profile but also supports on-field 
agrobiodiversity assessments, contributing to its valorization in sustainable agricultural practices and nutritional 
planning.

Materials and methods
Sample collection and preparation
One hundred thirty-nine accessions of horse gram belonging to different agro-ecological environments were 
obtained from National Gene Bank, ICAR-NBPGR, New Delhi, India. Accessions were selected based on the 
information recorded in passport data and variability observed in grain characters. The selected accessions 
were grown in the experimental field at ICAR-NBPGR, Regional Station (RS) Bhowali (29.3823° N, 79.5196° E, 
1654 m ASL), Uttarakhand, India and ICAR-NBPGR, RS Thrissur (10.5276° N, 76.2144° E, 2.83 m ASL), Kerala, 
India in augmented block design during kharif-2018 following standard agronomic practices. The standard 
agronomic practices were followed for sowing time, spacing and irrigation schedules. Fertilizer application rates 
were standardized based on soil nutrient analysis conducted before the experiment. The pods of physiologically 
mature plants were harvested, manually threshed, cleaned and dried to moisture content up to 8–10%. The 10 g 
grains of each genotype from both locations were pooled, cleaned and dried to moisture content up to 8–10%.
The dried seed samples underwent grinding, homogenization, and sieving through a 1 mm sieve using a Foss 
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Cyclotec flour mill. The resulting flour was then stored in polypropylene tubes in cool conditions (< 4 °C) for 
NIR scanning and wet biochemical analysis.

Reference data for NIRS prediction models
Total protein content
The FOSS Kjeltec N2 Auto Analyser (FOSS Tecator 2300 Kjeltec Analyser Distiller Unit) was used to assess total 
nitrogen content using the Kjeldahl technique (AOAC 984.13)19. Jone’s factor of 6.25 was used to convert percent 
N2 to g/100 g protein.

Total starch content
Megazyme total starch assay kit was used to calculate total starch content according to AOAC 996.1119, which 
uses α-amylase, amyloglucosidase, and glucose oxidase. A UV–VIS spectrophotometer (cat# BT-VS-E) was used 
to measure absorbance at 510 nm, and the results were expressed in g/100 g.

Total soluble sugars
Total soluble sugars were estimated spectrophotometrically using anthrone reagent method20. Absorbance was 
recorded at 630 nm, using UV–VIS spectrophotometer (cat# BT-VS-E) and the results were expressed in g/100 g.

Total phenolics
The FCR (Folin–Ciocalteu reagent) assay21 was used to calculate total phenols, which includes both oxidation 
and reduction reactions. A UV–VIS spectrophotometer (cat# BT-VS-E) was used to measure absorbance at 
650 nm, and the results were represented in GAE g/100 g.

Phytic acid
Megazyme commercial test kit containing phytase and alkaline phosphatase enzymes from Wicklow, Ireland 
(AOAC 986.11), was used to determine phytic acid content19. The results were represented in g/100 g and the 
absorbance was measured at 655 nm.

Spectral acquisition
Considering that temperature and moisture levels can influence the absorbance and reflectance of NIR waves, the 
homogenized samples were left at room temperature (25 °C) for 6 h to acclimate to the surrounding environment. 
Prior to scanning, calibration of the FOSS NIRS 6500 spectrophotometer was performed with Win ISI Project 
Manager Software v 1.5, using a mica reference tile (100% white). Approximately 5 g of homogenized samples 
were placed into a circular ring cup equipped with a quartz window (3.8  cm in diameter and 1 mm thick), 
scanned, and gently compressed with a rear cover to achieve consistent packing of the samples. The sample was 
scanned 32 times between 400 and 2500 nm to capture the average spectrum which was used for subsequent 
analysis to ensure consistency and reduce noise from individual measurements, which was then registered as log 
(1/R) at 2 nm intervals, where R is the corresponding reflectance. Outliers were detected using Neighbourhood 
Mahalanobis distance (NH > 0.6) and Global H (GH > 2.5) i.e., spectral distance from the mean spectrum of 
the population14. The proximate of each sample to every other sample in the population was estimated by NH. 
Abrupt spectra were produced due to scanning error in the sample, which becomes an outlier for any trait. The 
removal of superfluous spectra from the calibration population was done by GH.

Calibration and validation of NIRS models
A calibration equation was formulated through multivariate analysis, correlating spectral data with laboratory 
values using Win ISI Project Manager Software v 1.50. MPLS regression with cross-validation was employed 
to develop equations using the global equations program on the entire spectrum The spectral data for each 
nutritional parameter underwent preprocessing using mathematical techniques such as Standard Normal Variate 
and Detrend (SNV-DT). To create calibration and validation sets, the data from 139 samples were sorted in 
ascending order to ensure an even distribution of diversity in both sets. Every second value was then selected to 
form the calibration set. This method is suitable for large datasets with a normal or uniform distribution, ensuring 
that the calibration sets encompass both maximum and minimum trait values and by doing this a framework has 
been made for creating calibration models. Hence, a total of 99 samples were utilized for the calibration set, while 
40 samples were allocated to the validation set, maintaining a ratio of 2:1 to ensure impartiality in the dataset12. 
Various mathematical treatments, were used however, we got our best prediction equations in the treatments 
i.e., “2,4,4,1”, “2,8,8,1”, and “3,4,4,1”, to develop models. These treatments were chosen based on their ability to 
optimize model performance for biochemical traits. The first digit denotes the order of derivative which helps 
in removing the scattering effect, and highlight subtle feature in the spectral data. . The second digit denotes 
the gap between data points for derivative, While the third and fourth digit refers to the number of points used 
for smoothing to minimize high-frequency noise while retaining key spectral features22. Different statistical 
parameters like coefficient of determination (RSQ), standard error of cross validation (SEC(V)), standard 
deviation (SD) and one minus variance ratio (1-VR) were used to assess the developed calibration equations.

Win ISI Project Manager Software v 1.50 was utilized to compute the SEP (standard error of prediction), 
which represents the discrepancy between the reference values of the calibration set and the values predicted 
by the NIRS calibration models. RSQ is employed to illustrate the proportion of variation in reference data 
accounted for by the variance in predicted data, with higher RSQ values (> 0.750) and lower SEP(C) values 
indicating the superior performance of models18.
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Prediction method assessment of the models
Various statistical metrics were employed to assess the predictive capability of the calibration models, including 
SEC(V) and 1-VR, RSQexternal (coefficient of determination in external validation), bias (difference between 
predicted and reference values), SEP(C) (corrected standard error of prediction), and RPD (ratio of standard 
deviation to standard error of prediction) values, along with cross-validation23. Following the evaluation of these 
parameters, the equation demonstrating the best fit was deemed the prediction model.

RPD values served as a measure to assess the accuracy and precision of the developed MPLS models. If 
the RPD value is less than 1.5, the model is considered unreliable. Conversely, a value between 1.5 and 2.5 
indicates the model’s capability to differentiate between high and low values, while a range of 2.0 to 2.5 suggests 
approximate quantitative prediction. Values falling between 2.5 and 3.0 indicate good quality prediction, and an 
RPD exceeding 3.0 signifies excellent prediction23.

Statistical analyses
All nutritional compositions were evaluated in triplicates to guarantee precision. Calibration and validation 
was carried out using Win ISI Project Manager Software v 1.50, which employed diverse mathematical 
methods derived from spectral and analytical data. Reference and predicted values were compared using the 
above software with the formulated equation. The model’s accuracy and predictive capability were assessed 
using global statistical indicators such as RSQ, slope, bias, RPD, and SEP(C). The coefficient of determination 
(RSQinternal/external) was plotted externally to visualize all nutritional parameter graphs. Statistical analysis of the 
analytical findings was conducted using Jamovi software. To assess the prediction accuracy of the model, a 
paired t-test was conducted using Jamovi software with a confidence level of 95%. The null hypothesis is rejected 
if p > 0.05, indicating a difference between predicted and reference values. Conversely, if p < 0.05, the null 
hypothesis is accepted, signifying no difference between predicted and reference values. Strict parallel analysis 
was performed to check the reliability of the developed models and the reliability score was calculated by Jamovi 
software between the predicted and laboratory validated samples.

Results
Biochemical data for NIR calibration
In this research, we extensively analysed the nutritional content of 139 horse gram accessions by measuring 
their dry weight. Our statistical examination unveiled significant differences in nutritional composition across 
these varieties. The descriptive statistics of five biochemical parameters i.e., protein, starch, TSS, phenols 
and phytic acid of horse gram are summarized in Table 1. The means and standard deviations of protein was 
23.7 ± 0.99 g/100 g, starch (29.8 ± 1.36 g/100 g), TSS (5.61 ± 2.5 g/100 g), phenols (0.701 ± 0.17 GAE g/100 g) and 
phytic acid (1.02 ± 0.44 g/100 g). The variability of data points present in the accessions was visualized as box 
and whisker plots (Fig. 1).

NIRS spectral assessment
NIR spectral data of 139 horse gram samples scanned on FOSS NIRS 6500 is shown in Fig. 2A. The spectral 
profile generated from the instrument is within the range from 400 to 2500 nm, where the main absorption 
bands were observed at 1196, 1468, 1736, 1934, 2100, 2310 and 2482 mm as shown in Fig. 2B. These absorption 
bands are the result of overlapping absorption that corresponds to combination and overtones of vibrational 
frequencies of N–H, C–H, O–H and C–O in chemical components of the samples in NIR24. The information 
about the chemical composition of the component is provided by the position of absorption bands, while the 
amount of hydrogen containing groups present is determined by the strength of specific band. The C–H second 
overtone, which corresponds to aliphatic hydrocarbons, is the cause of weak absorption bands detected at 1196 
nm25. 1430–1470 nm arises due to O–H first overtone stretch corresponding to hydroxyl phenol groups26 Near 
the peak of 1920 nm, O–H bending/stretching of polysaccharides was found, this group can also be found in 
1560–1640 nm which can be allocated to O–H group associated with phytic acid27. C–O and N–H stretch, which 
is found in spectral region between 2000 and 2222 nm corresponds to protein content28. Third polysaccharide 
overtone caused by asymmetric C–O–O stretch gives rise to the peak at 2083 nm. Since horse gram flour contains 
a small quantity of fatty acids, therefore the peaks about 2304–2352 nm, which defines fatty acids and oils, were 
ambiguous29. The sample composition affects the spectrum properties, which serves as a theoretical foundation 
for the quick estimation of protein, starch, TSS, phenols and phytic acid30.

Calibration of the model
For all the five biochemical parameters two sets were used, one is calibration set constituting 99 samples 
and another is validation set comprising of 40 samples. Table 2 summarizes the calibration statistics of five 

Total soluble sugars % Starch % Protein % Phytate % Phenols %

N 139 139 139 139 139

Mean 5.61 29.8 23.7 1.02 0.701

Standard deviation 2.50 1.36 0.99 0.44 0.17

Minimum 0.860 26.2 21.8 0.110 0.340

Maximum 12.1 33.0 26.7 2.12 1.13

Table 1.  Descriptive statistics of total protein, starch, total soluble sugars, phenols and phytic acid.
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biochemical traits i.e., protein, starch, TSS, phenols and phytic acid in horse gram flour obtained from NIRS 
calibration. Out of the 99 calibration samples of each trait few outliers were observed which may arise due to 
scanning errors. Such samples arise as a common outlier across all traits hence were removed at the calibration 
step. Chemometric methods are essential to model the relationship between NIR spectra and measured analytical 
constituents31. Regression algorithms such as partial least square (PLS), modified partial least square (MPLS) 
and principal component regression (PCR) are commonly used for model development but only MPLS was 
used in our study for the generation of equations owing to more accuracy and stability as compared to PLS and 
PCR32. Among spectral pre-processing methods, SNV-DT was used in the present study to avoid any noise in 
NIRS signal baseline. Different mathematical treatments were used for development of calibration equations for 
various parameters however mathematical treatments “2,4,4,1”, “2,8,8,1” and “3,4,4,1”, were finalised based on 
performance in external validation. Second derivatives performed best for starch, TSS and phenols while third 
derivatives with protein and phytate. In general there is no association for derivative order appropriateness with 
any specific trait, however, second and third derivatives are most commonly used in NIRS modelling while at 
times first and fourth order derivatives also shows appropriateness12,13,18. RSQinternal for different traits obtained 
for protein (0.650), starch (0.979), TSS (0.845), phenols (0.734) and phytic acid (0.933) are given in Table 2, for 
given mathematical treatments “3,4,4,1”, “2,8,8,1”, “2,4,4,1”, “2,8,8,1” and “3,4,4,1” respectively.

Validation of the model
The validation phase involved 40 samples to assess the performance of the developed models. Various statistical 
measures, including RSQexternal, slope, bias, RPD, and SEP(C), were employed to gauge the accuracy and 
precision of the models (Table 3). Figure  3 displayed the regression plots of predicted and reference values 
of the target traits for NIR prediction models. RSQexternal for protein was 0.701, starch (0.987), TSS (0.800), 
phenols (0.778) and phytic acid (0.730) (Fig. 3) indicating a better fit for the respective models. The range for 
the conventionally calculated values in the calibration and predicted values by the model for all the biochemical 
traits are summarized in Table 2 and Table 3 respectively. We can note a strong agreement between the calculated 
and predicted values, indicating a high level of prediction accuracy for the model. The value of slope observed 
in protein was 0.982, starch (0.982), TSS (1.092), phenols (1.029) and phytic acid (1.215). The slope for protein, 
starch and phenols is close to one (on rounding off to one decimal point), indicates predicted values for entire 
range are in proper alignment with laboratory values. The slope for TSS and Phytic acid is close to 1.1 and 1.2 

Fig. 1.  Box and whisker plots of all the biochemical traits of 139 horse gram germplasm.

 

Scientific Reports |        (2025) 15:16950 5| https://doi.org/10.1038/s41598-025-01668-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


respectively indicating intra and extrapolation with possible slight under estimation at lower boundary and 
higher estimation at upper boundary. The bias values for phytic acid (0.004), phenols (-0.003) and starch (-0.004) 
are negligible indicating predicted and laboratory value axis are nearly overlaid above each other, whereas slight 
negative bias for TSS (-0.059) and protein (-0.028), indicates predicted values axis is slightly shifted on lower 
side from laboratory value axis, thus possibly slight under estimation of TSS and protein. Ratio Performance 
Deviation (RPD) value i.e. ratio of standard deviation to standard error of prediction is considered robust test 

Fig. 2.  (A) Combined reflectance spectra of 139 horse gram germplasm. (B) Average reflectance spectrum of 
horse gram with seven absorption bands.
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for model usefulness and it ranged from 1.85 to 4.5. Thus, RSQ more than 0.7, slope close to one, bias close to 
zero, RPD more than 1.8 and p-value more than 0.05 indicates, NIRS predicted values can be reliably used for 
estimating these traits in horse gram germplasm resources.

Statistical analysis between predicted and reference values
A paired sample t-test was conducted to assess the prediction model’s accuracy by comparing the reference 
values with the predicted values for key traits. This test evaluates whether there is a significant difference between 
the two sets of values, providing insight into the model’s reliability in predicting the selected parameters. Table 
4 presents the paired sample t-test results for protein, starch, TSS, phenols and phytic acid at a 95% confidence 
interval. The mean differences between the reference and predicted values are minimal, with all p-values 
exceeding 0.05, suggesting no statistically significant differences. Additionally, the low standard deviation (SD) 
and standard errors of the mean (SEM) further support the accuracy and consistency of the predicted values 
across different traits.

Along with the paired sample t-test, correlation and reliability analyses were conducted to further evaluate 
the model’s predictive performance for nutritional parameters in horse gram germplasm. Table 5 highlights 
high reliability and strong positive correlations between the reference and predicted values across all traits. The 
correlation coefficients, ranging from 0.837 to 0.997, indicate a strong linear relationship, while the reliability 
values (unbiased), ranging from 0.907 to 0.999, confirm the consistency and impartiality of the predictions. These 
findings underscore the model’s robustness in accurately predicting nutritional traits in horse gram germplasm.

Discussion
Our findings indicate that NIRS can effectively measure the biochemical traits across a wide range of functional 
groups. This suggests a positive prospect for the development of global legume/horse gram NIRS-based models. 
Huge variability was found among biochemical traits in our study where the average protein content is higher 
than chickpea (18.8 g/100 g), kidney bean (19.9 g/100 g), pigeon pea (20.7 g/100 g), but comparable to black 
gram (22 g/100 g), lentil (22.5 g/100 g) and green gram (23 g/100 g)34. Horse gram is primarily cultivated for 
its high protein content, which serves as an essential source of vegetable protein in many rural areas. A protein 
content of 18–27% is considered high for legumes, with 20–25% being optimal for human consumption and 
animal feed. Thus, identification of high protein accessions could accelerate the quality improvement program 
of legumes, this is especially relevant for breeding programs targeting food security, as protein-rich crops can 
help mitigate malnutrition in resource-poor areas. In legumes carbohydrates constitute the major portion (50–
70% of the dry matter)35. The average starch value (29 g/100 g) is lower than that reported by Bravo et al.35 
(36 g/100 g) constituting of two portions i.e., digestible starch (30 g/100 g) and resistant starch (6 g/100 g). The 
starch content of horse gram is important as not only contributes to energy value but also provide slow digestible 
cabohydrates. Horse gram with higher starch content may be preferred for food processing, as it could be used 
in flour production, offering potential commercial applications35. Oligosaccharides, disaccharides (sucrose and 
maltose) and monosaccharides (glucose, galactose, arabinose, fructose and inositol) constitute the soluble sugars 
in horse gram, where oligosaccharides constitute the major fraction in the pulses. TSS in our study is comparable 
to the value reported by Bravo et al.35 (6.38 g/100 g). TSS levels primarily due to oligosaccharides act as prebiotic 
by acting as a food to beneficial bacteria in gut, but very high levels also cause flatulence. On the contrary 
very high content of oligosaccharides is preferred as they add to fermentable sugars, useful in products made 
from fermented paste or dough. TSS is an important trait for breeders interested in improving the tolerance to 

Traits N Range (%) Math treatment Mean RSQ Slope Bias SD SEP (C) RPD

Protein 40 21.7–26.1 3,4,4,1 23.7 0.701 0.982  − 0.028 1.101 0.595 1.85

Starch 40 26.2–32.9 2,8,8,1 29.8 0.987 0.982  − 0.004 1.518 0.376 4.03

TSS 40 1.31–9.52 2,4,4,1 5.04 0.800 1.092  − 0.059 2.404 0.592 4.06

Phenols 40 0.33–1.02 2,8,8,1 0.689 0.778 1.029  − 0.003 0.183 0.085 2.15

Phytic Acid 40 0.16–2.12 3,4,4,1 1.02 0.730 1.215 0.004 0.510 0.272 1.88

Table 3.  External validation statistics of 40 horse gram accessions. RSQ coefficient of determination, SD 
standard deviation, SEP standard error of performance, RPD ratio of performance to deviation.

 

Traits N Outliers Range (%) Math treatment Mean RSQ Slope SD SEC (V)

Protein 99 4 20.9–26.6 3,4,4,1 23.8 0.650 1.076 0.918 0.622

Starch 99 2 26.1–33.7 2,8,8,1 29.8 0.982 1.008 1.308 0.063

TSS 99 4 0.86–12.1 2,4,4,1 5.73 0.845 1.023 2.483 1.108

Phenols 99 5 0.20–1.18 2,8,8,1 0.692 0.734 1.000 0.163 0.085

Phytic Acid 99 4 0.11–2.12 3,4,4,1 0.985 0.933 1.000 0.390 0.266

Table 2.  Calibration statistics of 99 horse gram accessions. RSQ coefficient of determination, SD standard 
deviation, SEC(V) standard error of cross validation.
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abiotic stresses and increasing desiccation tolerance of seeds35. Legumes contains some biological compounds 
which can exert both favourable and unfavourable effects on human body. Undesirable ones are called as anti-
nutritional factors (phenols and phytic acid in our study). The value of phytic acid in our study is comparable 
to Sreerama et al.7 i.e., phytic acid (1 g/100 g) but lower values in phenols comparatively (1.4 GAE g/100 g)7. 
Phenolic compounds in horse gram are known for their antioxidant properties, contributing to the nutritional 
value of the crop7 besides they also impart tolerance to several biotic stresses in vegetative growth stages36. 

Fig. 3.  Regression plots of laboratory versus predicted values for all the worked biochemical traits.
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Similarly, phytic acid, binds minerals and aids in accumulating inside the seed but also reduces the bioavailability. 
However partially hydrolysed phytate act as antineoplastic agent with increase bio availability of minerals37.

To ensure unbiased sub-set divisions, all parameters were arranged in ascending order according to their 
analyzed biochemical parameter. The samples were divided into calibration set and validation set (in the ratio 
of 2:1)12. Samples for validation set were selected after every two samples and the rest samples were filed into 
the calibration set. Many regression algorithms like PCR, PLS and MPLS can be used however in our study 
MPLS has been proved to be more accurate and reliable32. Before the next factor was computed in MPLS, the 
NIR residuals acquired after each factor and at each wavelength were calculated and standardized (by dividing 
them by standard deviation of residuals at each wavelength)38. Changes in absorption levels generally occur 
due to variations in light scattering and path length alterations during sample and light interactions. These 
complexities pose challenges in linear calibration and spectral interpretation of NIR spectra39. Standard Normal 
Variate (SNV), is employed along with detrend (DT) to correct such signal baseline shifts and minimize noise 
in the NIRS signal. Mathematical treatments were applied after evaluating various statistical parameters and 
removing outliers to develop accurate equations.

An external set of 40 samples were used for validating the calibration model. Different statistical parameters 
like RSQ values, slope, bias, standard deviation (SD), SEP(C) values determine the accuracy and precision 
of the model. The calibration models demonstrated excellent predictive performance for starch (R2 = 0.987, 
RPD = 4.5) and total soluble sugars (R2 = 0.800, RPD = 4.0), indicating that the spectral data captured robust 
signals corresponding to these traits (Fig. 3). However, the models for protein (R2 = 0.701, RPD = 1.85), phenols 
(R2 = 0.778, RPD = 2.15), and phytic acid (R2 = 0.730, RPD = 1.88) exhibited moderate predictive accuracy, 
reflecting limitations in capturing spectral features strongly associated with these compounds (Fig.  3). The 
moderate accuracy for protein prediction may be attributed to overlapping absorption bands in the NIR region 
particularly due to oxalates (C═O) and polyphenols (C═C, C═O) stretch with amide (O═C═NH2 ↔ O═C─NH2) 
which are comparatively very high in horse gram compared to other legumes40. Phytic acid’s spectral signal is 
primarily associated with phosphorus bonds, which are weaker and less distinctive in the NIR region compared 
to macronutrients like starch or sugars. This can reduce the specificity of NIR predictions for this trait. 
Phenolic compounds exhibit complex spectral behaviour due to their diverse chemical structures and potential 
interactions with other components in the matrix. This complexity can challenge the development of robust 
predictive models. The combined approach of using normalise spectra with non-linear modelling approaches 
such as ANN, deep learning methods like DNN, CNN, LSTM and may improve the predictive capacity by 
resolving spectral overlaps in absorption bands for different functional groups41–43. Highest RSQexternal was 
found in starch, followed by TSS, phenols, phytic acid and protein. Similar RSQexternal value was found in starch 
(0.997) and phenols (0.706)13 in cowpea germplasm. Towett et al.44 reported a higher RSQexternal of 0.93 for 
crude protein in cowpea leaves may be due to the higher and wide concentration of protein present in the leaves 
than in seeds, while Pande and Mishra27 obtained an RSQexternal of 0.97 for phytates in green gram seeds using 
FT-NIRS. In other crops Lopez-Calabazo et al.45 reported R2 value of 0.904 for sugar content in lentil, Kjusuric 
et al.46 reported R2 value of 0.840 for phenols in berry fruits which is approximately similar to our findings. The 
slope represents the change in predicted values corresponding to a unit change in reference values. An optimal 
slope value would be 1, with values near 1 indicating a precise model. The value of slope observed in protein was 

Serial no. Traits Reliability Correlation

1 Protein (Ref vs. Pred) 0.907 0.837

2 Starch (Ref vs. Pred) 0.999 0.997

3 TSS (Ref vs. Pred) 0.996 0.992

4 Phenol (Ref vs. Pred) 0.932 0.925

5 Phytic acid (Ref vs. Pred) 0.983 0.967

Table 5.  Reliability (unbiased) test and correlation analysis between reference and predicted values of five 
nutritional traits in horse gram germplasm.

 

Pairs

Paired differences

Mean SD SEM

95% Confidence 
interval of the 
difference

t-value DF p-valueLower Upper

Protein reference-protein predicted  − 0.0283 0.162 0.102  − 0.235 0.179  − 0.277 34 0.783

Starch reference-starch predicted  − 0.0085 0.04 0.0181  − 0.045 0.0281  − 0.469 39 0.642

Sugar reference-sugar predicted  − 0.0587  − 0.01 0.184  − 0.433 0.315  − 0.319 35 0.752

Phenol reference-phenol predicted  − 0.0034 0.027 0.0146  − 0.033 0.0262  − 0.235 34 0.815

Phytate reference-phytate predicted 0.00394 0.151 0.0466  − 0.0908 0.0987 0.0846 34 0.933

Table 4.  Paired sample t-test at 95% confidence interval. SD standard deviation, SEM standard error of mean, 
DF degree of freedom.
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0.982, starch (0.982), TSS (1.092), phenols (1.029) and phytic acid (1.215). Similar slope values were reported 
by Padhi et al.13 in protein (0.903), starch (0.997) and phenols (1.179). Similar values of slope were reported in 
pearlmillet, cowpea rice and chickpea by Tomar et al.18 John et al.12 and Bala et al.47 respectively. Bias serves as a 
crucial indicator of the resemblance between reference and predicted values, ultimately influencing the model’s 
accuracy where the ideal value of the bias should be zero48. In our study phytic acid exhibited positive bias 
values denoting the slight overestimation of the parameter while the remaining parameters exhibited negative 
bias values denoting the underestimation of the parameters. By carefully selecting mathematical treatments 
tailored to each trait’s spectral characteristics, the models achieved improved predictive accuracy for most traits. 
However, traits with moderate prediction accuracy (e.g., protein) may require further optimization, such as 
dynamic adjustments of derivatives, gap and smoothening or use of deep learning models. Apart from RSQ 
values, RPD determines the prediction accuracy of the models, which is calculated as the ratio of standard 
deviation with standard error of prediction between predicted and reference values. As given in Table 3 and 
Fig. 3, starch (4.03) and TSS (4.06) showed RPD values greater than 3, indicating an excellent predictive capacity 
of the model. Phenols (2.15) demonstrated an RPD value falling between 2 and 2.5, indicating a very good 
quantitative prediction capability of the model. Protein (1.85) and phytic acid (1.88) have displayed RPD values 
between 1.8 and 2.0 indicating good prediction ability of the model39. As a general thumb rule, the SEP(C) 
shouldn’t be greater than 1.30 times the value of the SEC (represents the error in the calibration set and is a 
measure of how well the model fits the calibration data) while creating robust models. The bias should not exceed 
SEC by more than ± 0.6, the slope should have a minimum value of 0.90, and the minimum RSQinternal/external 
should be 0.6018. These conditions are fulfilled in our study for the development of the models.

NIRS-based prediction models for biochemical traits like protein, starch, and phenols offer transformative 
potential for horse gram improvement. For breeders, these models enable the selection of trait specific genotypes 
and breeding lines, facilitating the development of nutritionally superior and agronomically desirable varieties. 
Non-destructive phenotyping can also support in identification of molecular marker and genomic regions 
linked to traits through genome wide association studies (GWAS) and quantitative trait loci (QTL) mapping and 
accelerating breeding for nutritionally superior varieties. For seed producers and food industry, NIRS provides 
a rapid method for quality control. Availability of good quality seed of improved varieties with better nutrient 
profile increases farmer income through pricing based on nutrient profile, enables customer in taking informed 
choices and contributes to nutritional upliftment. Thus, integration of NIRS into the agricultural pipeline 
enhances efficiency and addresses critical challenges in food security and sustainability.

Further studies on NIRS for horse gram and other legumes offers exciting opportunities to refine and 
expand its applications. Optimization of mathematical treatments and cumulation of other machine learning 
techniques like Deep learning, could enhance the predictive accuracy of complex traits like phenols and phytic 
acid. Broadening NIRS to additional underutilized legumes, present globally may establish a standardized 
method for assessing their nutritional quality facilitating achievement of food security and reducing global 
climate change. Expanding NIRS models to predict a wider spectrum of traits, including polyphenols, fatty 
acids, oligosachharides and micronutrients, could allow for multi-trait profiling, benefiting both breeders and 
farmers. Lastly, addressing environmental and genotypic variability by developing robust models across diverse 
conditions will improve their field-level applicability and ensure reliability in real-world scenarios.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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