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Cancer initiation occurs when a cell acquires and accumulates mutations in genes involved in the 
regulation of cell processes: each cell division throughout a person’s life introduces novel mutations in 
the cells’ DNA and under normal circumstances, the body is primed to prevent those from leading to 
cancer. Occasionally, a subset of those mutations escapes those safeguards and might eventually result 
in the emergence of the disease. To understand the dynamics of accumulation of somatic mutations, 
we have performed longitudinal whole genome sequencing of DNA obtained from whole blood from 
healthy individuals and cancer patients using Oxford Nanopore Technologies’ Long Read Sequencing. 
Here we show that the number of somatic single nucleotide variants detected increases with their age 
and that for specific mutational processes, changes can be detected within months. We computed 
aggregated metrics for unique participants at each timepoint across types of variants (based on single 
based substitution molecular signatures) and identified patterns of change both over an individual’s 
lifespan (age) and over the sampling period (months). This study showcases the suitability of long 
read sequencing of blood DNA for detecting coarse-grained differences over time and enable future 
development of “state of the system” personalized prevention programs.

Throughout the aging process, healthy cells accumulate somatic mutations due to intrinsic and extrinsic forces, a 
process that varies between both individuals and tissues1. Studies have repeatedly shown that mutations involved 
in the regulation of cell processes are associated with the development of cancer, sometimes years before the 
appearance of the disease2–5. For example, mutations present in both healthy skin and neighboring cancerous 
lesions sharing a mutational signature associated with UV damage have been demonstrated to accumulate 
with age6,7. The human body is primed to prevent the accumulation of these mutations and the formation of 
cancer through critical cellular regulation processes8,9. However, when the body is under acute or chronic stress, 
these safeguarding processes may become less dependable, and the affected tissues may be more susceptible to 
developing cancer10. Decades of research have revealed deficient mechanisms of DNA repair and replication 
in mutagenesis, yet surprisingly little is known about the rate of accumulation of somatic mutations caused by 
normal cellular processes over an individual’s lifetime and its fluctuations in response to intrinsic or extrinsic 
factors.

Clonal hematopoiesis (CH) can result from mutations caused by environmental triggers (e.g. smoking or 
cytotoxic therapies), errors in DNA replication, or a combination of both extrinsic stress and intrinsic repair 
rate and which yield a competitive growth advantage leading to detectable clonally expanded populations of 
hematopoietic stem cells and peripheral blood11. While CH can result in hematologic malignancy, cooperative 
mutations in additional genes are required to induce malignant transformation12. Population-scale data have 
revealed that on average, ~ 1.3 somatic exonic mutations are acquired per hematopoietic stem cell per decade13. 
In addition, as hematopoietic cells travel to different tissues of the body, affecting homeostasis among a number 
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of different organ systems, recent studies have demonstrated the potential for these altered immune cells to 
impact risk for cardiovascular disease, diabetes, cancer, and other diseases14. Though CH was found to be 
associated with aging, most studies investigating CH and its clinical significance captures only a snapshot of 
the somatic genome landscape in time, making it hard to evaluate the dynamics of somatic genomes and its 
effect on human health. Longitudinal studies can elucidate pattern of clonal expansion15 and provide insights 
into the origin of particular cell populations16. Therefore, investigating the rate of accumulation of the somatic 
alterations, its dynamics and its association with clinical manifestations may improve understanding of disease 
onset, uncovering a new paradigm for monitoring general health. Initial efforts of sequencing peripheral blood 
DNA in a cohort of 12,380 Swedish patients was among the first to identify a large fraction of CH carriers that 
did not have known disease driving mutations17, and subsequently, similar results reported in ~ 11,262 Icelandic 
patients using short-read sequencing18. These studies emphasize the need to better understand the process and 
rate of accumulation of somatic mutations and their effect on general health.

The introduction of advanced molecular profiling platforms enabled researchers to start addressing the 
contribution of somatic mutation rates and of endogenous and exogenous mutational processes across normal 
tissues to disease phenotypes. For example, a study using long-read sequencing (LRS) of whole blood and heart 
tissue from ~ 3622 patients provided preliminary evidence that application of LRS can further our understanding 
of the effects of sequence variation on disease phenotype, particularly genomic regions thus far inaccessible 
using short-read sequencing alone19.

These studies, however, fail to assess the dynamic aspect of mutation accumulation and whether the rate of 
accumulation is related to environmental factors. Longitudinal sampling can help improve our understanding 
of the dynamics of mutational changes overtime, and ultimately the impact of alterations on the development of 
disease. The use of LRS technology provides several advantages over traditional Next Generation approaches20, 
including delivering richer data (methylation, structural variants) and more extensive coverage in hard-to-
sequence regions21. While it is currently still not cost competitive, the ease of use makes it highly suitable for 
medium scale sequencing studies where laboratory conditions require tight control. Moreover, the possibility 
to computationally determine specific regions of the genome be included (or excluded) available with Oxford 
Nanopore Technologies make it especially attractive for designing flexible assays that target specific areas of the 
genome.

Thanks to the convergence of technology and molecular knowledge we can now start characterizing the 
accumulation of somatic mutations and measuring its rate of change over time to serve as a surrogate for the 
state of the system of an individual, and to inform clinical course trajectories through this monitoring, and 
ultimately to evaluate useful interventions for changing their outcome.

In this study, we hypothesize that an individual’s rate of accumulation of mutations, in particular somatic 
single nucleotide variants (sSNVs), can be measured over time using LRS from whole blood. Data generated and 
analysis of variability will be used to develop a model and inform statistical plans for future validation studies, 
and correlation to cancer risk determination. Improved understanding of which cohorts of patients could benefit 
from targeted molecular profiling could enable a precision-medicine approach to cancer risk reduction.

Results
Long read sequencing can be used to identify and characterize low frequency single 
nucleotide variants in a contrived sample
To determine whether our approach can capture and characterize low-frequency single nucleotide variants, 
we performed a contrived sample experiment in which increasing amounts of DNA from a well characterized 
cancer cell line (BT-474) were spiked into a known genomic DNA background (NIST Genome in a Bottle 
reference sample NA12878/HG001). BT-474 is a breast cancer-derived cell line characterized by APOBEC 
activity and displaying an enrichment of single nucleotide variants matching the mutational signatures SBS2 
and SBS1322. At 10% w/w BT-474 DNA concentration, our pipeline was able to recover an average of 2133 
SNVs (SEM 263), corresponding to 2.9% of the number observed in a pure sample of BT-474 DNA sequenced 
on the same instrument (71,931 SNVs common to two replicates). At 5% and 1% BT-474 concentration, the 
proportions recovered are 1.5% and 1.2% respectively, indicating a linear recovery between 5 and 10% and a 
drop below accurate quantification below 5%. We also observed a significant linear relationship between the 
recall (true positives over sum of true positives and false negatives) and the percentage of exogenous DNA 
(Fig.  1A, linear regression model: slope = 0.06, t = 5.00, p value = 5.4 E−4, n = 12). While the overall pattern 
demonstrates our ability to detect lower frequency variants, only a small proportion of the actual variants was 
recovered. This is likely due to the filtering step in our analysis pipeline (Supplementary Figure S2), which is 
designed to aggressively filter out inherited (germline) variants and low-quality variants.

Because of the presence of specific strong and distinct signatures, compared to other cell lines with more 
diffuse mutational patterns, we can use this cell line to test our ability not only to recover specific signature at 
low frequencies. At BT-474 DNA concentration above 1%, our signature analysis shows significant enrichment 
of signatures SBS2 and SBS13 whereas all other signatures remain undetected or at much lower level, with the 
exception of SBS1 and SBS5 (Fig. 1B), which are ubiquitous, clock-like mutational signature23. For the two BT-
474 specific signatures SBS2 and SBS1322, we see a strong linear relationship between the ratio of each signature 
and the concentration of BT-474 DNA (Fig.  1C,D, SBS2: slope = 0.023, t = 6.06, p value = 1.2 E−4; SBS13: 
slope = 0.030, t = 6.92, p = 4.1 E−5; n = 12 for all linear regression models). In contrast, while SBS1 and SBS5 
were also observed in BT-47422 the relative proportions of these two signatures do not change depending on 
the amount of BT-474 DNA spiked in due to its ubiquitous nature and presence in the background genome 
(Fig. 1E,F, SBS1: slope = − 0.61E−4, t = − 0.59, p value = 0.57; SBS5: slope = − 0.0033, t = − 0.30, p = 0.77; n = 12 for 
all linear regression models).
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Aggressive filtering results in high-confidence somatic SNVs
Given the challenge present in identifying and distinguishing somatic variants from germline variants and 
sequencing artifacts, we applied a set of filtering steps to our initial set of SNV to progressively enrich for somatic 
SNVs (Supplementary Figure S1). In total, our characterization pipeline identified 425,459,468 SNVs across 277 
samples corresponding to 103 individuals (mean SNVs per sample 1,477,289, SD 311,645), corresponding to an 
average depth of 31x (sample-level depth of coverage can be found in sample detail table as part of the online data). 
We expect these to be composed of bona-fide somatic variants as well as germline variants and sequencing errors 
and artifacts. The aggregate allele frequency spectrum (Fig. 2, top panel) is compatible with this expectation with 
a strong peak around 100% frequencies caused by sequencing errors and a broad peak around 50% composed of 
heterozygous germline variants affected by sampling noise. After applying our filtering, we are left with 211,530 
high-confidence sSNVs (mean sSNVs per sample 801, SD 227) with an allele frequency distribution centered 
around 20% (Fig.  2, bottom panel). The unfiltered set of SNV displayed an almost uniform distribution of 
mutational signatures with limited variation across individuals and just three signatures accounting for almost 
100% of all observed SNV (mean ± SD: SBS5 94% ± 2.60%, SBS1 4% ± 0.04% and SBS54 2% ± 2.61%). The most 
prevalent signatures (SBS5 and SBS1) are known to be ubiquitous across all cells and clock-like whereas SBS54 is 
known to be associated with sequencing artifacts and germline contamination in somatic studies23.

High-confidence somatic SNVs display different mutational signatures from sequencing 
artifacts.
To verify that our high confidence sSNVs are not in fact sequencing artifacts, we compared their mutational 
signature to the signature derived from false positive SNVs detected in our reference HG002 samples. As HG002 
is a very well characterized genome, all (germline) SNV variants are known, which allows us to infer that virtually 
all detected SNVs are sequencing errors and artifacts. Because our starting material is native DNA that does not 
undergo PCR amplification, we do not expect PCR bias or PCR errors to be a major source of errors. We applied 
TensorSignatures24 to the set of high confidence sSNVs obtained from the reference genome after applying our 
filtering (i.e. false positive set). This set showed a different profile from all the subject samples (Fig. 3), with 
significant overrepresentation of certain signatures (e.g. TS06, TS11, TS13, TS15 and TS16) and absence of 
multiple signatures observed across subject samples (e.g. TS03, TS05, TS07, TS08, TS09, TS12, TS17, TS18 and 
TS19). Additionally, the relative proportions of the different signatures are highly variable across subjects and 
fairly uniform across the different replicate sequencing runs of HG002.

Fig. 1.  Exogenous DNA from a well characterized breast cancer cell line (BT-474) spiked into a known 
genomic background at increasing concentrations can be recovered by our approach (A), preserving the 
mutational signatures present in the original cell line (B, horizontal lines representing the signature proportion 
in22). The cell-line specific signatures also correlate linearly with the amount of exogenous call line DNA (C, 
D). Ubiquitous mutational signatures that are non-specific of the breast cancer cell line do not show a linear 
correlation with the amount of exogenous DNA (E, F).

 

Scientific Reports |        (2025) 15:18397 3| https://doi.org/10.1038/s41598-025-01690-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Somatic SNVs are enriched in certain functional regions of the genome
Due to different selective pressures, different functional regions of the genome are expected to accumulate 
mutations at different rates. This is a well-known phenomenon at evolutionary times scales, but it has been 
observed for somatic mutations as well1. We measured the median allele frequency of all high confidence sSNVs 
for each individual across several functional categories (Fig. 4). As expected, the more functionally constrained 
region encompassing the mRNA encoding portion of the genome display the lowest median frequency, reflecting 
the fitness effect of deleterious variants on the population of cells carrying such variants. Intronic and intergenic 
regions show a higher median frequency. Silent variants (i.e. nucleotide substitutions in the protein coding 
sequence that do not change the encoded amino acid) show the highest allele frequency, as expected given that 
they are functionally neutral. Surprisingly, on average, missense mutations (i.e. nucleotide substitutions that 

Fig. 3.  Heatmap of TensorSignature associated with sequencing errors (HG002 false positives, in red) versus 
study subjects after filtration (in salmon) shows distinct signatures between the two groups, indicating that 
the somatic SNVs observed in the subjects are not caused by sequencing errors and artifacts. The color scale 
corresponds to the proportion of that signature present across all extracted signatures in that particular sample.

 

Fig. 2.  Density plots of SNV allele frequencies before filtration (top) and after aggressive filtration (bottom) 
to enrich for somatic variants. The large majority of all SNVs (99.95%) are removed by the filtering step. The 
unfiltered SNVs show a typical distribution of frequencies associated with germline variants (broad peak 
around 50% frequency associated with heterozygous variants and a narrow peak around 100% comprising 
homozygous variants and sequencing errors), whereas the filtered SNVs are enriched for low-intermediate 
frequencies (10–40%).
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change the encoded amino acid), do not display particularly low allele frequencies, but instead have a large 
variability across individuals.

Interpretable mutational signatures differ among individuals
While TensorSignatures24 are useful for identifying novel patterns, they have poor interpretability and provide 
limited insights into to the underlying mutational processes. Conversely, COSMIC’s Single Base Substitution 
(SBSs) mutational signatures have been linked to various mutational processes and exposures23,26. To further 
attempt to better understand the sources and processes associated with the sSNVs identified from whole blood 
DNA sequencing, we classified them into known COSMIC SBSs (Fig. 5). SBS1 (clock-like, ubiquitous signature, 
associated with 5-methylcytosine deamination), SBS5 (clock-like ubiquitous signature of unknown etiology) 
are found in most samples (272/277 and 276/277, respectively). Some others SBSs appear only in a sizable but 
limited subset of samples: for example, SBS7a/7b/7c are associated with UV exposure damage, SBS6, SBS30 and 
SBS44 are associated with defects in DNA repair machinery. It is also possible to identify specific mutational 

Fig. 5.  Distribution of COSMIC SBS signatures identified in our subject cohort. Each point represents one 
sample. Red line indicates the average across all samples. Few signatures are near ubiquitous (SBS1, SBS5 and 
SBS90) whereas most signatures are found in subsets of samples.

 

Fig. 4.  Median sSNV allele frequency across different functional parts of the genome and mutational effects 
shows the highest frequency for 5′ untranslated region (UTR) followed by silent sSNVs and by sSNVs found 
in intergenic regions, which is compatible with the overall lack of functional constraints. Conversely, sSNVs 
found in the mRNA coding region of the genome (defined here as the aggregate of 5′ and 3′ UTR and protein 
coding sequences) show the lowest median allele frequencies, compatible with the strongest functional 
constraints. UTRs, silent mutation and missense mutations show the broadest spread of frequencies due to 
the smaller overall number of sSNVs falling in those classes. This is especially prevalent for 5’ UTR due to the 
average short length of those regions in humans25. Each point represents the class median for the sample. Note 
that UTRs, silent and missense variants are also included in the calculations for the mRNA Encoding class. 
Center line: median; box limits: 1st and 3rd quartiles; whiskers 1.5× interquartile range; outliers: filled black 
points.
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sources: for example, SBS4 and SBS92 are both associated with tobacco smoke and are found in multiple samples. 
An unexpected finding is the near ubiquitous presence of SBS90, found in 263 samples out of 277 and absent 
from the set of sequencing errors and artifacts obtained from HG002, which has been previously associated with 
exposure to duocarmycin, a potent anti-cancer drug23,26. As we have no evidence that any of the subjects in the 
study was previously treated with or exposed to duocarmycin, we hypothesize that the presence of this signature 
is a technical artifactual, rather than being of biological origin. We were able to demonstrate this by performing 
a small experiment in which we run our sequencing pipeline on a HG002 sample as if it were a subject sample, 
using a different HG002 dataset obtain from a different run as a batch control. In that case, the SBS90 signature 
was also found in the HG002 sample, confirming its ubiquitous origin. Overall, this approach demonstrates the 
possibility of further characterizing the relative impact of different mutational process and possible exposures on 
the total accumulation of somatic variants over an individual’s lifetime.

The number of somatic SNVs increases over a person’s lifetime
The number of sSNVs is known to increase over a person lifetime, however, this has primarily been observed by 
analyzing the RNA of autopsy material1 or DNA from biopsies6,27, or by laborious lab experiments28. Recently, 
an analysis of genomes obtained from the peripheral blood of over 43,000 individuals revealed a collection of 
sites that are recurrently mutated in a time dependent fashion, meaning that in older individuals more sites are 
mutated29. To address the question of whether we can detect a time dependent accumulation of sSNVs over an 
individual’s lifetime, we modeled the corrected number of observed sSNVs against the individual’s age (at first 
draw). We identify a strong age dependent relationship (slope = 2.64, p value = 0.0027; linear mixed effect model 
with multiple draws per subject, subject ID as a random variable, n = 277) corresponding to an accumulation of 
approximately 2.6 sSNVs per year of life (Fig. 6). This rate does not appear to be dependent on the clinical status 
of the subjects, i.e. we did not detect any significant differences in the accumulation rates between the cohorts. 
However, because our cohort was not designed to address this questions, further studies with appropriate power 
and design will be needed.

Different mutational processes accumulate at different rates
We were further interested to determine whether changes in mutation accumulation rate could be observed at 
shorter time interval. Given the overall rate of accumulation of sSNVs and the measurement noise, our ability 
to detect short-time (i.e. within months) changes is limited. Nevertheless, we hypothesized that because the 
different mutational processes are occurring at different rates, there might be specific signatures that might be 
better at capturing rapid changes compared to others. For every mutational signature collected, we performed a 
linear regression on the corrected counts of the signature over time and looked at the distribution of slopes from 
the linear model. As expected, for most signatures, the distribution of regression slopes across individuals are 
roughly symmetrical and centered across 0, indicating no temporal accumulation effect. However, for several 
signatures we observe an overall skew towards positive numbers Fig. 7A. In particular, we see a significant bias 
towards positive slopes for SBS5 (Fig.  7B), a signature known to be associated with age23,26. Similarly, SBS1 
(Fig. 7C), a signature associated with the spontaneous deamination of 5-methylcytosine but not correlated with 
SBS523,26,30 also shows a skew towards positive slope values. Overall, these findings are compatible with the 
mutational processes associated with these signatures and support the hypothesis that our approach is able to 
capture mutation accumulation in real time.

Fig. 6.  Relationship between the number of observed somatic SNVs and the subject age at first draw. A 
significant linear correlation can be determined, corresponding to approximately 27 sSNVs accumulated per 
decade of life.
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Discussion
Here we report the results of a study aimed to detect and characterize somatic single nucleotide variants from 
whole blood and measure their rate of accumulation over time.

The accumulation of mutations and the rate of their occurrence are affected by the efficacy of DNA repair 
mechanisms, which are key molecular mechanisms involved in maintaining cellular homeostasis and normal 
cellular function. The ability to monitor changes in such a fundamental molecular mechanism over time might 
help us better understand the processes that result in disease, ultimately allowing the assessment and monitoring 
of an individual’s risk for developing cancer and other diseases.

We used LRS to monitor the rate and variability of somatic genomic alterations over time. This experimental 
approach required special attention and rigorous monitoring of pre-analytical variables to enable reliable 
individual-level detection of genomic changes across the whole genome. We established a workflow for serial 
whole genome LRS from individual’s whole blood (Supplementary Figure S2) and were able to quantify and 
characterize the rate of accumulation of sSNVs across both a long time (lifetime) and short time (months) 
interval. Using this approach, we were able to identify changes in specific genomic signatures on an individual-
level basis and differences in the rate of their accumulation over time.

While these initial results are encouraging, this study has several important limitations: as an exploratory 
study, we have not yet optimized our assay to amplify the signal and decrease the noise, potentially by focusing 

Fig. 7.  Detection of changes in specific mutational signatures over multiple draws. To identify whether any 
signature showed a tendency to increase over the span of our sampling (3 draws over 9–18 months) we created 
a linear model of the activity of each signature versus the number of months after first draw. Under a model 
of no accumulation, a distribution of the slopes of those models to be symmetrical and centered around zero 
would be expected, which was observed for the majority of all signatures (A). However, for SBS1 and SBS5 a 
significant bias towards positive slopes was observed, indicating an accumulation of sSNVs associated with 
those mutational processes over the period of the study (B, C, individual subject slopes in grey, average across 
all subjects in blue. SBS1: mean slope = 0.73, p value = 0.011, t = 2.62, 1-sample student t-test; SBS5: mean 
slope = 10.11, p value = 1.19E−4, t = 4.07, 1-sample student t-test).
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on specific region of the genome, which would allow for more accurate and precise measurements. Our approach 
is designed to detect a coarse, aggregate signal: individual somatic variants linked to, or indicative of causative 
effects cannot be identified using our analysis pipeline. In this study we opted to exclude areas of the genomes 
associated with known pathogenic variants, which might be relevant in the context of exploring emergence 
of diseases. We have also used samples of convenience to determine potential pre-analytical variations, which 
limits our ability to further delve into the clinical implication of our findings and might limit its generalizability.

This study opens a new avenue of research to investigate the effects of a variety of intrinsic and extrinsic 
factors on the dynamics of the human somatic genome landscape and set the grounds for evaluating preventative 
and therapeutic interventions to mitigate disease risk. These findings support further investigation to validate 
and assess the clinical significance of the genomic changes identified and to introduce a powerful technology of 
third-generation sequencing into wide-scale clinical utility, enabling easy longitudinal monitoring of genomic 
changes toward the development of “state of the system” personalized cancer prevention programs. In addition, 
looking at outliers, rates of change higher and lower than mean, may yield important biologic insights.

Overall, we believe that this approach can provide a coarse estimate of the “state of the system” with respect 
to the body’s ability to manage, repair and purge DNA mutations. Based on these data we are planning to 
refine our experimental and analytical approach to improve our sensitivity and specificity and decrease costs 
and turnaround time. The use of direct, electronic analysis of DNA and adaptive sequencing, using Oxford 
Nanopore’s technology also provides unique opportunities as it allows us to potentially target specific regions of 
relevance with the goal of further refining our ability to detect biologically meaningful changes. Moreover, the 
ability to integrate other sources of molecular information from the same starting DNA such as methylation or 
novel structural variants enables us to include additional measurements that will help us further validate and 
characterize the observed changes, work that is currently ongoing. We are now planning a larger, confirmatory 
study to be performed with the goal of validating our initial findings and to address and evaluate the significance 
of these findings in a clinically relevant setting.

Methods
Study Design
This study is a non-interventional prospective pilot study recruiting participants for the collection of blood 
samples over time for whole genome sequencing.

Participants
We enrolled for the study a total of 103 male and female adult participants (Supplementary Table S1. Participants 
details available as online data). Patients treated at the outpatient clinic at the Ellison Medical Institute (EMI) 
were approached and offered to participate in the study. In addition, EMI staff members were also offered the 
chance to voluntarily participate in the study. The study cohort includes active cancer patients defined as the 
presence of local or advanced disease in the last 6 month (regardless of treatment status), patients with a history 
of cancer that were definitely treated and are disease free for at least 6 months, and individuals without a history 
of cancer. Individuals without symptoms of active infection at enrollment were allowed to participate. The study 
was approved by Western Institutional Review Board-Copernicus Group (IRB study number: 1328455). All 
research was performed in accordance with relevant guidelines and regulations and informed consent was 
obtained from all study participants.

Clinical and demographic data
In accordance with the approved protocol, participants’ demographics were recorded at the time of the first draw. 
This information was anecdotal only if the participant is not a patient. For the clinic patients, clinical data was 
also gathered if available from medical record review including clinical/pathologic staging (if applicable), results 
of imaging studies (if applicable), results of diagnostic blood tests, treatment history, current treatments, current 
medications, and participant demographics. For the non-patients composed of the EMI staff volunteers taking 
part in the study, clinical data was collected using designated questionnaires capturing medical conditions 
including current and past medical history, allergies, medications, herbal or vitamin supplements, family history 
of cancer and/or chronic diseases.

Blood collection
Informed Consent covers the collection of up to 10ml of blood for this study at each visit. For patients, efforts 
were made to obtain research blood samples immediately following venipuncture or vascular access performed 
as part of standard-of-care procedures. Blood was collected into K2EDTA tubes, put in ice and then aliquoted 
and frozen in − 80 °C. Participants had multiple specimens collected over the duration of this study. The interval 
of blood draws varies between the study participants, as active cancer patients, could receive a study draw (up 
to 10ml) every scheduled visit, optimally at least 2 draws during cytotoxic therapy, whereas participants not 
receiving treatment (individuals with a history of cancer being followed at the clinic and participant without 
any history of cancer) may receive a study draw (up to 10ml) every 6 to 12 months. Specimens collected at each 
visit were labeled with an Ellison Biospecimen ID and linked to a deidentified Ellison ID according to the study 
protocol.

DNA source
DNA samples sequenced in this study were isolated from whole blood. DNA from whole blood was extracted 
using either the MagAttract HMW DNA Kit (Qiagen) or the Quick-DNA MagBead Plus Kit (Zymo) following 
the manufacturer’s protocol (sample processing details available as online data). Isolated DNA sample 
concentrations were quantified using a Qubit 2.0 Fluorometer (Life Technologies) and purity was assessed using 
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NanoDrop One (Thermo Scientific). Lymphoblastoid cell line purified DNA for the reference genomes HG001 
and HG002 were purchased from Coriell (IDs NA12878 and NA24385, respectively). High molecular weight 
DNA for the BT-474 human breast carcinoma cell line was purchased from ATTC (ID: HTB-20D).

Library preparation and DNA sequencing
After extraction, DNA was fragmented using FastPrep-96 (MP Biomedicals) and fragment size assessed on 
a 4150 TapeStation (Agilent). Sequencing libraries were generated using the SQK-LSK110 ligation kit from 
Oxford Nanopore Technologies (ONT). Sample input DNA was determined based on QC analysis (described 
below) to ensure consistency and quality of sequencing. For sequencing, samples libraries were loaded onto 
PromethION R9.4.1 flow cells following ONT’s standard operating procedures. Sequencing was performed 
on the PromethION device for 55 h and data acquisition time was recorded. Reference genome HG002 was 
sequenced every time in the same batch with the sequencing of clinical samples.

Basecalling
Sequencing and data acquisition were performed using ONT’s MinKNOW v. 22.08.06, 22.10.7 and 23.07.12. Raw 
signal values were processed in real time using guppy (v. 6.2.7, 6.3.9 and 7.1.4) with a high accuracy model and 
mapped to the reference chromosomes of the human genome v GRCh38.p13. Adaptive sequencing functionality 
was used to exclude gene regions harboring pathogenic and likely pathogenic variants according to ClinGen31, 
downloaded September 6, 2022) or in the ACMG list of genes with reportable secondary findings32 (ACMG SF 
v3.1) including 10,000 bp upstream and downstream of the gene start sites (filter file in BED format available as 
online data).

Somatic variant calling
A custom-developed pipeline was developed and implemented using the Nextflow workflow engine33, based 
on the nf-core sarek pipeline34,35. In order to enrich for putative SNVs, ClairS36, a deep-learning based somatic 
variant caller for LRS was used followed by multiple filtering steps to remove artifacts and likely germline 
mutations (Supplementary Figure S1). In order to identify hard to sequence areas and capture potential batch 
effects, a well characterized DNA reference genome sample (HG002) was processed in parallel and sequenced 
alongside each batch of subject samples. The same ClairS pipeline was used on the reference genome to identify 
all variants and after removing the known germline variants, used to identify sequencing artifacts and errors. 
The artifact identified in this step were then removed from the list of putative sample SNVs. Next, variant sites 
with base quality scores lower than Q15 are removed as well as any SNV with frequencies above 40% (likely 
subject-specific germline variants). Finally, we compared our putative somatic variants to a list of know SNPs 
present across human populations (gnomAD37 v. 3.1.2,) and removed any matching sites.

Additionally, a set of locations-based filters were applied to eliminate putative SNVs occurring in sequence 
regions known to be challenging to sequence (Centromeres:38; Repetitive regions:39; ENCODE Blacklist:40) as 
well as regions that were empirically determined to have excessive noise level as determined a running window 
of mean coverage. SNVs that had a depth of coverage greater than 1.5 times the mean depth of coverage for that 
chromosome were excluded from the analysis. We also removed all variants in gene regions associated with 
reportable finding to minimize the risk of revealing relevant medical information.

These filtering steps reduced the average number of putative SNV per subject from 1.5 million to approximately 
800 high-confidence sSNVs per subject.

Annotation
Raw SNVs were annotated with all the information necessary to conduct variant-level filtration: population-wide 
allele frequencies were obtained from gnomAD37 v3. GATK v4.4.0 VariantAnnotator41 was used for annotating 
for filtration (see Somatic Variant Calling and Supplementary Figure S1). High confidence sSNVs were annotated 
with GATK 4.4.0 Funcotator41 (prepackaged data source v1.7.20200521s) for downstream functional analyses.

Batch correction
Differences in average high confidence sSNV count were observed between different Ligations Sequencing Kit 
(LSK) lot numbers. To adjust for batch effects due to LSK lots while accounting for the confounding effect 
of coverage, we used the standardize method from the Batchma R package42, where batch is set to a discrete 
variable of LSK lot number and confounder is set to median coverage. Batch correction results were validated by 
diagnosing the parameters of the fitted linear regression models.

Identification of mutational signatures
TensorSignatures24, a multi-dimensional tensor factorization framework was used for characterizing high-
confidence sSNVs in terms of the underlying mutational signatures and associated processes. Additionally, 
mutational signatures associated with sequencing errors and artifacts were generated from the false positive 
SNVs obtained from the HG002 reference genome sequencing. To this aim, we applied TensorSignatures refit 
with the predefined Pan-Cancer Analysis of Whole Genomes (PCAWG) signatures to the HG002 false positive 
catalog, which results in a set of falsely discovered signatures and the corresponding exposure matrix. We then 
analyzed the falsely discovered exposure matrix to calculate false discovery rates for each of the 20 PCAWG 
signatures. From the false discovery rates, we built an error model that adjusts an arbitrary PCAWG exposure 
matrix based on the false discovery rates into a corrected exposure matrix.

To characterize subject samples, we applied TensorSignatures refit with the PCAWG signatures to each 
subject’s high-confidence sSNV catalogue and applied the error model to adjust the output and calculate a false 
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discovery rate (FDR)-adjusted exposure matrix. The FDR-adjusted exposure matrix was used to model and track 
subject mutational signatures over time.

For interpretable signatures, COSMIC’s Single Base Substitution signatures23,26 were assigned to each high 
confidence sSNV and the counts of each SBS class in each sample was normalized to the total number of high-
confidence sSNVs to account for difference in total number of sSNVs (SBS proportion).

Statistical analysis
Statistical analyses were performed using R (v. 4.4.1)43 with packages lme4 (v. 1.1–28)44 and lqmm (v. 1.5.8)45, 
and python (v. 3.10.12)46.

Data availability
The high confidence somatic variant calls for study participants, reference genomes and spike-in experiments, 
sample processing details and subject demographic information are available in Zenodo with the identifier: 
https://doi.org/10.5281/zenodo.14399981. The raw sequences and unfiltered variant calls are not publicly ​a​v​a​i​l​a​
b​l​e due to privacy reasons to prevent identification of study participants.

Code availability
The nf-core/sarek derived deployment ClairS used to characterize somatic variants is available from GitHub at 
https://github.com/eitm-org/sarek_pipeline. The custom code used to process and analyze the data is available 
from GitHub at ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​e​i​​t​​m​-​o​​r​g​​/​s​t​​a​t​e​​_​m​a​n​u​s​​c​r​​i​p​t​​_​a​n​a​l​y​s​e​s​/.
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