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Road cracks affect traffic safety. High-precision and real-time segmentation of cracks presents a 
challenging topic due to intricate backgrounds and complex topological configurations of road cracks. 
To address these issues, a road crack segmentation method named EGA-UNet is proposed to handle 
cracks of various sizes with complex backgrounds, based on efficient lightweight convolutional 
blocks. The network adopts an encoder-decoder structure and mainly consists of efficient lightweight 
convolutional modules with attention mechanisms, enabling rapid focusing on cracks. Furthermore, 
by introducing RepViT, the model’s expressive ability is enhanced, enabling it to learn more complex 
feature representations. This is particularly important for dealing with diverse crack patterns and shape 
variations. Additionally, an efficient global token fusion operator based on Adaptive Fourier Filter is 
utilized as the token mixer, which not only makes the model lightweight but also better captures crack 
features. Finally, to demonstrate the method’s effectiveness and accuracy, we compare the proposed 
approach with some existing methods on three public datasets. Experimental results demonstrate 
that the proposed method outperforms existing approaches in detecting cracks of diverse shapes and 
sizes within complex backgrounds, satisfying the requirements for both high precision and real-time 
segmentation.
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 Cracks constitute the most prevalent road defects. As urbanization accelerates and infrastructure construction 
advances, the detection and segmentation of cracks exhibit extensive application value in road safety assessments 
and maintenance. Unrepaired cracks can pose severe threats to traffic safety1. The timely detection and repair of 
cracks represent a significant responsibility for transportation departments. Traditional crack detection methods 
rely heavily on manual inspections—a process that is cumbersome, labor-intensive, and inefficient, with accuracy 
further compromised by operator experience and subjective judgment. Consequently, there is an urgent need for 
high-precision and real-time segmentation methods. Segmenting cracks poses significant challenges due to their 
erratic intensity, erratic contrast, and densely packed backgrounds. Moreover, diverse road textures resembling 
cracks and their inherently low contrast complicate crack recognition. The advent of deep learning has facilitated 
the emergence of computer vision techniques, presenting researchers with novel solutions to these problems. 
Researchers have increasingly directed their focus on automated crack segmentation methods grounded in 
computer vision techniques.

Crack segmentation serves as a critical preprocessing step for quantitative structural health assessment, aiming 
to precisely extract crack morphologies from complex backgrounds. Crack segmentation methodologies are 
primarily categorized into traditional image processing methods2-7 and deep learning methods9-13. Traditional 
frameworks typically employ edge detection algorithms, morphological operations, and threshold segmentation 
strategies. Ron et al.2 introduced the concept of gravitational field intensity as a substitute for image gradient 
and proposed an adaptive threshold selection approach based on the mean and standard deviation of image 
gradient magnitude. Yan-Yin et al.3 presented an image segmentation algorithm leveraging an adaptive weighted 
mathematical morphology edge detector. Cuevas et al.4 introduced an image segmentation algorithm based 
on an automated threshold determination technique. These methods exhibit efficacy in handling images with 
simple backgrounds and distinct cracks but falter in images with complex backgrounds, blurred and microscale 
crack, and cannot fulfill real-time segmentation demands. Recently, advancements in deep learning technology, 
particularly the pervasive application of convolutional neural networks8 in image processing, have significantly 
propelled crack segmentation methods based on deep learning14-20. Deep learning-based crack segmentation 

1School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China. 
2Tianjin Key Laboratory of Information Sensing and Intelligent Control, Tianjin University of Technology and 
Education, Tianjin, China. email: yangli@tute.edu.cn

OPEN

Scientific Reports |        (2025) 15:33818 1| https://doi.org/10.1038/s41598-025-01983-3

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-01983-3&domain=pdf&date_stamp=2025-9-22


demonstrates superior accuracy and computational efficiency through three fundamental advantages. Firstly, 
deep learning models exhibit robust feature learning capabilities, enabling automatic learning of crack feature 
representations, thereby enhancing segmentation accuracy. Secondly, deep learning models possess excellent 
generalization ability, achieving effective segmentation across different scenarios and crack types. Finally, 
deep learning models can be trained and optimized end-to-end, simplifying the segmentation process and 
improving segmentation efficiency. Liu et al.9 proposed a deep level of convolutional neural network (CNN) 
called DeepCrack which predicted pixel-wise crack segmentation in an end-to-end approach, achieving high 
performance. Choi et al.10 proposed a semantic damage detection network (SDDNet), which was trained on 
a manually created crack dataset, achieving a high mean Intersection over Union (mIoU) on the test set and 
demonstrating a certain degree of real-time performance. Qu et al.11 combined a novel multi-scale convolutional 
feature fusion module and proposed a crack detection method based on a deeply supervised convolutional neural 
network, which achieved better performance in terms of F1 score and mean IoU. These crack segmentation 
methods demonstrate satisfactory performance but struggle with accurately segmenting topological cracks and 
lack real-time segmentation capabilities. Real-time segmentation is crucial for enhancing efficiency and ensuring 
segmentation integrity. Real-time denotes an algorithm’s ability to complete a task within a specified time frame 
without significantly increasing the number of parameters to improve accuracy. Our focus is on real-time 
segmentation methods that preserve semantic information during transmission, as this information tends to 
degrade over time. Employing lightweight convolutions, residual connections, and the Spatial Pyramid Pooling 
Fast (SPPF) module in deep network layers can address these challenges, enhancing multi-scale information 
representation and overcoming limitations of single spatial hierarchy in feature maps. This paper mainly has the 
following contributions:

	1.	 An Efficient Ghost Sparse Convolution(GSConv) Block (EG-Block) is proposed, consisting of three light-
weight convolutions with kernel sizes of 3 × 3, incorporating residual connections and an efficient multi-scale 
attention (EMA) module. This module enhances the extraction and transmission of crack features and re-
duces the loss of crack information.

	2.	 The A-RepViT Block module is proposed, wherein the original token mixer is substituted by Adaptive Fre-
quency Filtering (AFF). AFF facilitates the model in capturing crack features more effectively, enhances 
crack segmentation accuracy, and diminishes a certain quantity of parameters, thereby achieving an im-
proved equilibrium between accuracy and efficiency.

	3.	 The EGA-UNet network is proposed, which embeds the proposed Efficient GSConv Block into UNet and 
incorporates the SPPF module and A-RepViT Block into the deeper layers of the encoder. EGA-UNet im-
proves the effectiveness of crack segmentation while being a lightweight network, meeting the requirements 
for real-time and high-precision crack segmentation.

The rest of the paper is organized as follows: Sect. 2 presents the related work; Sect. 3 presents the proposed 
algorithm and designed methodology; Sect. 4 explores the experimental results and discussion. Finally, 
conclusions are drawn in Sect. 5.

Related works
This section mainly explains the practical application of semantic segmentation technology in road crack 
detection, as well as the historical development of transformers and attention mechanisms and their practical 
application in crack detection.

Road crack detection based on semantic segmentation
Semantic segmentation of road cracks is predominantly implemented through deep convolutional neural 
networks (CNNs). In this paper, it is possible to learn the complex relationships between crack pixels in an 
image and generate a crack prediction map of the same size as the input image by training the network, ensuring 
that each pixel is assigned a specific category label. Leveraging the advantages of CNN in feature representation, 
various semantic segmentation techniques for crack image detection have emerged. Cheng et al.22 proposed 
an automatic crack detection method based on the U-Net deep convolutional neural network, achieving 
excellent results. A supervised method23 based on deep learning was proposed, which had the ability to handle 
different road surface conditions. However, the encoder of the traditional UNet network had relatively weak 
feature extraction capabilities and a large number of parameters. This had prompted efforts to enhance the 
encoder’s feature extraction capabilities and to make the entire network more lightweight. Yu et al.24 proposed 
a U-shaped encoder-decoder semantic segmentation network that combined UNet and ResNet for pixel-level 
road surface crack image segmentation, improved crack detection performance. Zhang et al.25 proposed a 
customized deep learning model architecture named Efficient Crack Segmentation Network to accelerate real-
time pavement crack detection and segmentation without compromising performance. Building upon the work 
of previous researchers, the algorithm proposed in this paper, named EGA-UNet, integrates efficient lightweight 
convolutional blocks to quickly and precisely segment topological cracks of varying shapes with complex 
backgrounds.

The application of transformers in semantic segmentation
Since Transformer architecture was introduced by Vaswani et al. in 201726, it was initially primarily used for 
natural language processing tasks. However, over time, the powerful capabilities of Transformer have also been 
applied to the field of computer vision, including object detection27 and image segmentation28. Conventional 
convolutional neural networks (CNNs) predominantly utilize local receptive fields for image processing, 
whereas Transformers leverage self-attention mechanisms to capture global dependencies. This enables 
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effective integration of features across various levels, enhancing the model’s ability to comprehend global image 
information and inter-regional relationships. At the same time, the self-attention mechanism of Transformers29 
also facilitates self-supervised learning, which is particularly useful in image segmentation since labeling a 
large amount of image data is both time-consuming and labor-intensive. Through self-supervised learning, the 
model can be trained with little to no labeled data. Therefore, scholars have begun applying the Transformers 
architecture to image segmentation. Gao Y et al.30 proposed UTNet, which integrated the self-attention 
mechanism into convolutional neural networks to enhance medical image segmentation. Cheng B et al.31 
proposed a new architecture capable of solving any image segmentation task (panoptic, instance, or semantic), 
which achieved excellent results on public datasets like COCO. Xie E et al.32 proposed a semantic segmentation 
framework called SegFormer, which combined transformers with a lightweight multi-layer perceptron (MLP) 
decoder, improving segmentation performance. While Transformers have demonstrated strong performance, 
they have also incurred significant computational costs and inference speed trade-offs. The advancement of 
Transformers has traditionally been credited to the attention-based mechanism for token mixing. Yu T et al.33 
completely replaced the attention-based module with Spatial MLPs as the token mixer and discovered that the 
derived MLP-like model could easily achieve competitive performance on image classification benchmarks. 
Yu W et al.34 further abstracted the entire Transformer as a general architecture MetaFormer by viewing the 
attention module as a specific token mixer. They did not specify a token mixer, as they believe that MetaFormer 
is the key to achieving superior results in visual task models similar to Transformers and MLPs. Huang Z et al.35 
developed an efficient global token fusion operator named Adaptive Fourier Filter to replace the self-attention 
module in Transformers. To address the computational complexity of Transformers, Wang et al.36 proposed a 
lightweight Transformer architecture with a slight increase in the number of parameters and inference speed, 
which accuracy has been improved. In the task of crack segmentation, Liu et al.37 proposed a Transformer-
based crack detection network called CrackFormer, and conducted experiments on three public datasets, all of 
which achieved good results. Building upon prior research, this study enhances the RepViT Block, introduces 
the A-RepViT Block, and incorporates it into the EGA-UNet al.gorithm. This integration aims to deepen image 
comprehension and enhance the precision of crack segmentation.

Attention mechanisms
In recent years, attention mechanisms have been widely applied in various fields of deep learning, including 
object detection38,39, semantic segmentation40,41, object tracking42, and face recognition43, among others. The 
core principle of the attention mechanism is to emulate human information processing by selectively prioritizing 
important information based on task requirements, while disregarding irrelevant information, rather than 
treating all information equally. Hu et al.44 proposed the Squeeze-and-Excitation Network (SENet) to model 
the interdependencies between feature channels. Wang et al.45 introduced an Efficient Channel Attention (ECA) 
module, overcoming the trade-off between performance and complexity. Xu et al.46 presented an Efficient Local 
Attention (ELA) method that effectively utilized spatial information without reducing channel dimensions or 
increasing the complexity of the neural network, meeting the demands of various vision tasks. Ouyang et al.47 
proposed an Efficient Multi-Scale Attention(EMA) module that focused on retaining information of each channel 
while reducing computational overhead. Additionally, the method further aggregates the output features of two 
parallel branches through cross-dimensional interaction. The results show that EMA significantly outperforms 
several recent attention mechanisms without changing the network depth. In the task of crack detection, Qiao et 
al.48 and Liang et al.49 respectively proposed a pavement crack detection method using the attention mechanism, 
both having good performances. This illustrates the capability of the attention mechanism to integrate multi-
scale feature data and identify distinctive features. Building upon prior work, the present study introduces the 
EG-block, incorporating an attention mechanism to facilitate rapid identification of cracks within the network.

Methods
In this section, the proposed EGA-UNet network is introduced firstly, and then the EG-block, A-RepViT Block, 
SPPF module and finally the loss function in detail.

The structure of EGA-UNet
EGA-UNet consists mainly of EG-block, A- RepViT Block and SPPF module. Input a road crack image into 
the segmentation model and divide all the pixels in the image into crack pixels and background pixels based 
on the corresponding probability values. Crack pixels have higher probability values, while background pixels 
have lower probability values. Therefore, crack segmentation can be seen as a pixel-by-pixel binary classification 
problem. Figure 1 shows the architecture of the EGA-UNet. Based on the encoder-decoder structure, the EGA-
UNet network model is proposed. It utilizes a combination of residual connections and attention mechanism 
modules to form the EG-block, replacing the convolutional parts in the encoder and decoder to extract feature 
information from different layers. Integrating the SPPF module into the encoder’s lower layers enables the 
network to better capture spatial hierarchies in images. This enhancement improves multi-scale crack feature 
perception while boosting flexibility and robustness. Following the SPPF module, the A-RepViT Block is 
included to help the model better capture crack features and handle multi-scale features. The decoder integrates 
multi-layer feature information in the form of feature pyramid to achieve accurate crack segmentation.

The structure of EG-Block
The EG-Block comprises three 3 × 3 lightweight convolutions and a single 1 × 1 standard convolution. It also 
incorporates a residual connection mechanism and an EMA module, as shown in the Fig. 2. This process can be 
represented as Eq. (1). Increasing the network depth can enhance crack recognition in models. The EG-Block 
structure employs three concatenated lightweight convolutional layers to extract features efficiently. Stacking 
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convolutional layers augments the number of parameters, hence lightweight convolutions were utilized. Each 
convolutional layer captures distinct levels of features from input data, enabling the network to amalgamate 
simple features into complex representations. Moreover, stacking convolutional layers enhances the network’s 
robustness against translations and minor deformations in the input data, thereby enhancing generalization. 
However, excessive convolutional layer stacking can degrade network performance. To address this issue, the 
residual method is employed after three lightweight convolutional layers, directly incorporating input features 
into the feature map. This approach facilitates feature reuse, minimizes information loss, and sustains robust 
feature extraction capabilities with increased network depth. Furthermore, an EMA module is integrated after 
the initial lightweight convolutional layer to integrate multi-scale feature information and select discriminative 
features. This module reconstructs some channels into batch dimensions and groups the channel dimensions 
into multiple sub-features to ensure that spatial semantic features are evenly distributed within each feature 
group, which can be represented by Eq. (2)47. The purpose of this is not only to encode global information to 
recalibrate the channel weights in each parallel branch but also to further aggregate the output features of the 
two parallel branches through cross-dimensional interaction. To capture pixel-level paired relationships, it can 
retain more crack pixels.

	 fout = fC(fGS(fGS(fGS(x))) + fEMA(fGS(x)))� (1)

Fig. 2.  The structure of Efficient GSConv Block(EG-Block).

 

Fig. 1.  The structure of EGA-UNet.
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where x represents the input, fout represents the output, fEMA represents the channel through the EMA module, 
fGS  represents the operation of GSConv with a kernel size of 3 × 3, fC  represents the result of a standard 
convolution operation with a kernel size of 1 × 1.

	 X = [X0, Xi, · · · , XG−1], Xi ∈ RC//G×W ×H � (2)

where C//G represents division into G groups along the channel direction, and W and H represent the width and 
height of the feature map.

The structure of A-RepViT block
The RepViT Block is the main structure in the lightweight convolutional neural network RepViT36, and it uses 
structural re-parameterization techniques to separate the Token mixer and Channel mixer. This preserves the 
original expressive capacity by decreasing parameters and computational complexity, thereby enhancing the 
model’s learning and inference efficiency. Moreover, the expansion ratio in the Channel mixer is adjusted to 
2, augmenting network width, improving model performance, and decreasing computational burden. A 3 × 3 
kernel convolution is employed alongside the SE layer arranged in a cross-block configuration akin to the Token 
mixer to decrease latency without compromising model performance. Despite the reduction in delay, the SE layer 
exhibits lower precision for target segmentation compared to the self-attention mechanism in the conventional 
Transformer architecture. Therefore, the efficient global token fusion operator based on AFF proposed in [35] 
is adopted in this paper instead of the SE layer as the Token mixer in RepViT Block, and the A-RepViT Block 
is proposed, as shown in Fig. 3(a). The adaptive frequency filtering can help the model better capture the crack 
characteristics and deal with multi-scale features better. The AFF(as shown in the Fig. 3(b)) based efficient global 
Token fusion operator is mathematically equivalent to using a dynamic convolution kernel with the same spatial 
resolution as the Token set to perform Token fusion in the original domain (as shown in the Fig. 3(c)), and has 
the function of content adaptive Token fusion in the global scope. Thus, the depth of the image understanding 
and the accuracy of crack segmentation can be improved. Moreover, AFF optimizes computational resource 
utilization by prioritizing crucial information, leading to improved model performance.

The structure of SPPF
SPPF is improved on the basis of Spatial Pyramid Pooling(SPP), as shown in Fig. 4. SPP uses three maximum 
pooling layers with different kernel sizes to maximize feature maps, thus obtaining multi-scale feature maps. 
Finally, these feature maps are joined together to enrich the spatial hierarchy of the feature map. SPPF is modified 
from SPP by changing it into three max pooling layers of the same kernel size and transforming it into a serial 
structure for computation. This reduces redundant calculations and enhances the model’s speed while better 
handling multi-scale objects and improving robustness to scale variations.

Fig. 3.  The structures of A-RepViT Block, Adaptive Frequency Filters and Dynamic Large-kernel Mixers.
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Loss function
The loss function is the most fundamental and crucial element in deep learning, as it measures the quality 
of predictions. EGA-UNet is regarded as a per-pixel classifier and generates a prediction map. Firstly, 
binary cross-entropy loss is introduced for training the EGA-UNet. The predicted probability for the 
pixel is denoted by P = {Pi, i = 1, 2, · · · , N}, where N represents the number of pixels in the image. 
Y = {yi, i = 1, 2, · · · , N}, yi ∈ {0, 1} is the true label. The binary cross-entropy loss function is defined as:

	
Lbce = −

N∑
i=1

yi log(pi) − (1 − yi) log(1 − pi)� (3)

Dice loss can handle severely imbalanced classes, improving the balance between accuracy and recall during 
training. Dice loss is defined as:

	
Ldice = 1 −

2
∑N

i=1 piyi + 1 × 10−6

∑N

i=1 y2
i +

∑N

i=1 p2
i + 1 × 10−6

� (4)

Add 1 × 10−6 to both the numerator and denominator to smooth out fluctuations across epochs and enhance 
stability. Considering that most of the pixels in the image are non-crack (background), binary cross-entropy loss 
and Dice loss are combined for network training. The overall loss is the weighted sum of binary cross-entropy 
loss and Dice loss.

	 L = rLbce + (1 − r)Ldice� (5)

where r is the weighting factor that controls the contribution of the two losses to the total loss. In this paper, r 
is set to 0.5.

Results and discussion
In order to verify the performance of the proposed EGA-UNet on crack segmentation, three public data sets are 
used to train and test the algorithm, and the EGA-UNet is compared with other mainstream detection algorithms. 
It is verified that the proposed algorithm shows good performance on topological cracks with different shapes 
and complex backgrounds. Finally, the ablation experiments are carried out to verify the effectiveness of the 
improved modules.

Experimental detail
The proposed method is implemented by PyTorch, and CUDA is used to accelerate the algorithm. The algorithm 
adopts batch normalization after each convolutional layer to accelerate the convergence speed during training. 
After batch normalization, SiLU is used to add the nonlinear relationship between the layers of the network 
to overcome the problems of overfitting and gradient disappearance. The following Table  1 lists the specific 
information.

Fig. 4.  The structure of SPPF
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Dataset
Crack50050: This dataset consists of 500 images of road surface cracks, each with a size of 2000 × 1500 pixels. 
These images often blend with similar backgrounds with their complex background noise and foreground, which 
make detection difficult. Due to the small dataset, the images in the dataset are divided into 3368 road surface 
crack images, and each size of image is 640 × 360 pixels, as shown in Fig. 5(a). These images were then split 
into 1896 training images, 348 validation images, and 1124 test images. The cracks in this dataset are diverse, 
including single and topological cracks, as well as thick and thin cracks.

DeepCrack9: This dataset consists of 537 complex crack images with a resolution of 544 × 384, as shown in 
Fig. 5(b), which 300 images are for the training set and 237 images for the test set. The image samples contain 
cracks with various textures, different scenes and varying scales with crack widths ranging from 1 to 180 pixels. 
This allows for testing the network’s performance in handling multi-scale cracks in different scenarios.

CrackTree20651: This dataset contains 206 images of road cracks with a resolution of 800 × 600 pixels, as 
shown in Fig. 5(c), which 126 images are for training and 80 images are for validation. The cracks in the dataset 
are relatively thin and there are obstructions and shadow interferences. It can test the generalization performance 
of network models.

CFD52: This dataset contains 118 images of size 480 × 320 pixels, as shown in Fig. 5(d). And these images 
contain background noises such as shadows and stains. All the images have manually labeled ground truth 
contours. The CFD dataset was used to test model generalization performance.

Evaluation metrics
Pixel-level crack detection can be regarded as a form of binary semantic segmentation, aiming to divide the 
image into foreground (cracks) and background (non-crack features). Therefore, Dice coefficient and mean 
intersection over union (mIoU) are used as evaluation metrics for segmentation performance. Dice coefficient 
is a statistic method used for comparing the similarity of two samples, while mIoU measures the ratio of the 
intersection to the union of the predicted results and the ground truth labels to assess model performance. Model 
Parameters and FLOPs are used simultaneously as standards for measuring model complexity. The equations are 
defined as follows.

	
Dice =

2
∑N

i=1 pigi∑N

i=1 p2
i +

∑N

i=1 g2
i

� (6)

	
mIoU = 1

2 × (IoUb + IoUf )� (7)

where pi and gi represent the predicted and ground truth values for pixel i respectively, and N is the total number 
of pixels. IoUbrepresents Intersection over Union (IoU) of the true background and the predicted background. 
IoUf represents Intersection over Union of actual cracks and predicted cracks.

The effectiveness of the attention mechanism
To verify the effectiveness of the attention mechanism in the EG-Block, we conducted experiments on EG-
Block(without attention mechanism), EG-Block(with SE), EG-Block(with ECA), EG-Block(with CBAM) 
and EG-Block(with EMA) respectively in Crack500. Then it can be seen from Table 2 that the segmentation 
performance of EG-Block(with EMA) is the best.

Evaluation
To evaluate the effectiveness of the proposed method, this paper conducts comparative experiments between 
the proposed method and five mainstream methods—FCN, U-Net, SegNet, PSPNet, and DeepLabV3—on three 
public datasets. To ensure the comparability of the experiments, all compared methods were applied with their 
default parameter settings and underwent the same training process. A total of 100 rounds of training were 
conducted, followed by qualitative and quantitative analysis of the resulting models to evaluate the performance 

experimental facilities configuration

CPU Intel(R) Xeon(R) Gold 6248R

GPU NVIDIA RTX3090

PyTorch 1.13.0

CUDA 11.7

CUDNN 8.6.0

Optimizer SGD

learning rate 0.01

weight decay 0.0001

momentum 0.9

Python 3.8

Table 1.  Experimental configurations.
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of each method. Firstly, we display the loss curve to determine whether the model overfits the current data as 
shown in Fig. 6.

Then, this paper qualitatively analyzes method performance through the detection results of different models. 
The detection results of FCN, UNet, SegNet, PSPNet, and DeepLabV3, compared to the method proposed in this 
paper on the Crack500, DeepCrack, and CrackTree206 public datasets are shown in the Fig. 7. The experiment 
selected images with topological, coarse, normal and fine cracks. For the images with topological and coarse 
cracks, it can be seen from the first row that FCN, UNet, SegNet, PSPNet, and DeepLabV3 all missed some 

Fig. 5.  Samples of four datasets.
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detections; from the sixth row, it can be observed that the FCN and UNet networks had incomplete detections, 
while the other networks performed well. For topological and normal cracks, it can be seen from the second row 
that in the presence of edge stone influence, all comparison networks show missed detections; from the third 
row, it can be seen that the comparison networks are less effective in segmenting cracks; from the fourth row, it 
can be seen that the comparison networks are poor at identifying scattered cracks; from the fifth row, it can be 
seen that FCN, UNet, PSPNet, and DeepLabv3 have incomplete segmentation of fine cracks at the edges. The 
last three rows show images of topological and fine cracks. It is evident from these images that FCN exhibits 
insensitivity towards fine cracks, rendering it incapable of their identification. Conversely, UNet, SegNet, 
PSPNet, and DeepLabV3 demonstrate a tendency to overlook numerous fine cracks. In contrast, the approach 
introduced in this study successfully detects nearly all fine cracks. In summary, the method proposed in this 
paper surpasses these methods in segmenting topological cracks of diverse shapes against intricate backgrounds, 
thereby meeting the practical demands for crack segmentation.

To better verify the effectiveness of the method proposed in this paper, quantitative analysis is conducted 
using three datasets. The experimental results for different methods are shown in the Tables 3, 4 and 5, which 
include Dice coefficient, background intersection over union (IoUb), crack intersection over union (IoUf ), 
mean intersection over union (mIoU), parameters, FLOPs and FPS. On the Crack500 dataset, the proposed 
EGA-UNet achieves a Dice coefficient of 77.8%, which is 5.2%, 2.3%, 3.0%, 1.8% and 2.5% higher than FCN, 
U-Net, SegNet, PSPNet and DeepLabV3 respectively. The mIoU of EGA-UNet reaches 83.9%, which is higher 
than FCN, U-Net, SegNet, PSPNet and DeepLabV3 by 3.1%, 1.3%, 1.3%, 1.1% and 2.0% respectively. On the 
DeepCrack dataset, the proposed EGA-UNet achieves a Dice coefficient of 82.6%, which is higher than FCN, 
U-Net, SegNet, PSPNet and DeepLabV3 by 14.9%, 3.4%, 2.8%, 5.1% and 3.7% respectively. The mIoU of EGA-
UNet reaches 86.4%, which exceeds FCN, U-Net, SegNet, PSPNet and DeepLabV3 by 8.8%, 1.5%, 1.9%, 3.0% 
and 2.2% respectively. On the CrackTree206 dataset, because the FCN network is too deep and does not make 
good use of the shallow information, the fine crack information is not extracted. The proposed EGA-UNet 
achieves a Dice coefficient of 73.1%, which is higher than U-Net, SegNet, PSPNet and DeepLabV3 by 3.1%, 
11.9%, 44.9% and 52.3% respectively. The mIoU of EGA-UNet reaches 78.9%, surpassing U-Net, SegNet, PSPNet 
and DeepLabV3 by 1.3%, 4.7%, 21.1% and 23.4% respectively. Moreover, the number of parameters and FLOPs 
of EGA-UNet are significantly lower than those of models like FCN, SegNet, PSPNet, and DeepLabV3, thus 
EGA-UNet meets the requirements for real-time and high-precision crack segmentation. Additionally, it can 
be seen that EGA-UNet has a faster detection speed than other mainstream methods from FPS, which proves 
the high efficiency of this method. Finally, we compared EGA-UNet with the latest methods on three datasets 
in Table 6, and EGA-UNet has a highest mIoU that it meets the requirement of real-time segmentation of road 
cracks.

Furthermore, the model’s generalization performance will be evaluated by testing on the CFD dataset. We 
performed quantitative and qualitative analyses on this dataset. And the experimental setting is exactly the 
same as the training to ensure the fairness of the experiment. Firstly, quantitative analysis as shown in Table 7, 
we can see that EGA-UNet has higher accuracy and speed than the compared network. And as shown in Fig. 8, 
it can be seen that EGA-UNet can basically segment pavement cracks, which reflects the good generalization 
performance of the model.

Finally, the superiority of the proposed method is demonstrated through comparisons on various complex 
background images, as illustrated in Fig. 9, showcasing its capability to accurately segment cracks amidst 
intricate backgrounds.

Ablation
In this section, ablation experiments are designed on the Crack500 dataset to examine the roles of different 
mechanisms in the U-Net architecture. The contribution of various improved modules to the final model’s 
performance is evaluated, and the results are shown in Table 8. Among them, U-Net (c = 32) indicates that the 
channel parameters are 32, 64, 128, 256 respectively; U-Net (c = 64) indicates that the channel parameters are 
64, 128, 256, 512 respectively. By comparing the first row and the second row, it can be seen that U-Net(c = 32) 
achieves higher metrics with fewer parameters. Comparing the last four lines with the first line, it can be seen 
that the added EG-Block module, SPPF module and A-RepViT Block module all effectively improve the model’s 
performance in segmenting images. According to the results of the ablation experiments, compared to the basic 
U-Net network, the Dice coefficient increased by 2.3% and the mIoU increased by 1.3%, with almost no change 
in the number of parameters, which satisfies the requirements for detecting cracks of various sizes in complex 
backgrounds.

Method Dice(%) IoUb(%) IoUf(%) mIoU(%) Params(M) FLOPs(G)

EG-Block(without attention) mechanism) 76.4 97.6 68.4 83.0 4.68 33.09

EG-Block(with SE) 76.8 97.6 68.8 83.2 4.71 33.16

EG-Block(with ECA) 77.0 97.7 69.2 83.5 4.69 33.13

EG-Block(with CBAM) 76.5 97.7 68.1 82.9 4.71 33.16

EG-Block(with EMA) 77.8 97.8 70.0 83.9 4.73 34.28

Table 2.  Test the effectiveness of the attention mechanism in the EG-Block on Crack500.
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Conclusion
This research presented an innovative and efficient crack segmentation method. Specifically, lightweight modules 
are proposed, EG-Block and A-RepViT Block, which address the issue of feature loss in transmission and retains 
crack features better, while also improving the segmentation performance and efficiency of the network. This 
method addresses critical limitations of traditional crack segmentation methods, such as relying on slow and 
error-prone manual segmentation. Extensive experimentation on three publicly available datasets has confirmed 
that EGA-UNet outperforms in terms of higher mIoU and reduced computational demands, thereby affirming 

Fig. 6.  Loss curve of the training process of the different network.
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the efficacy and versatility of the approach. This research holds significant implications by offering a streamlined 
approach for road maintenance personnel to expedite and enhance the accuracy of crack detection, thereby 
optimizing road maintenance operations. Future endeavors will focus on further refining crack segmentation 
techniques for roads and enhancing algorithmic efficiency. Moreover, efforts will be directed towards enhancing 
the model’s generalizability across various segmentation domains.

Fig. 6.  (continued)
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Fig. 6.  (continued)
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Method Dice(%) IoUb(%) IoUf(%) mIoU(%) Params(M) FLOPs(G) FPS

FCN 72.6 97.2 64.6 80.8 134.27 213.27 37

U-Net 75.5 97.5 67.8 82.6 4.32 35.59 88

SegNet 74.8 97.6 67.6 82.6 29.48 149.49 43

PSPNet 76.0 97.5 68.1 82.8 46.59 156.10 42

DeepLabV3 75.3 97.4 66.4 81.9 73.22 144.28 45

EGA-UNet 77.8 97.8 70.0 83.9 4.73 34.28 91

Table 3.  Comparison of the performance of different models on the Crack500.

 

Fig. 7.  Comparison pictures of various methods test results (The first three rows are for the crack500, the 
middle three rows are for the DeepCrack, and the last three rows are for the CrackTree206).
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Method Dice(%) IoUb(%) IoUf(%) mIoU(%) Params(M) FLOPs(G) FPS

FCN - - - - 134.27 144.92 45

U-Net 72.4 99.8 63.8 81.8 4.32 25.86 96

SegNet 65.1 99.7 52.3 76.0 29.48 121.26 50

PSPNet 42.5 99.4 32.6 66.0 46.59 126.75 49

DeepLabV3 33.8 99.1 25.5 62.3 73.22 114.74 56

EGA-UNet 75.2 99.8 71.1 85.5 4.73 23.97 101

Table 7.  Comparison of the performance of different models on the CFD. Raw UNet EGA-UNet.

 

Dataset
Method Crack500 DeepCrack CrackTree206

Okran et al53. 78.30 - -

Jia et al54. 50.54 - -

Saberironaghi et al55. 77.00 83.90 -

Xie et al56. - - 78.10

Wang et al. 57 77.19 76.59

ours 83.90 86.40 78.90

Table 6.  mIoU comparison of the latest models on three datasets.

 

Method Dice(%) IoUb(%) IoUf(%) mIoU(%) Params(M) FLOPs(G) FPS

FCN - - - - 134.27 370.64 26

U-Net 70.1 99.8 55.5 77.6 4.32 74.16 61

SegNet 61.2 99.7 45.0 74.2 29.48 311.67 28

PSPNet 28.2 99.2 16.4 57.8 46.59 325.16 27

DeepLabV3 20.8 98.8 12.2 55.5 73.22 300.54 30

EGA-UNet 73.1 99.8 58.1 78.9 4.73 71.46 64

Table 5.  Comparison of the performance of different models on the CrackTree206.

 

Method Dice(%) IoUb(%) IoUf(%) mIoU(%) Params(M) FLOPs(G) FPS

FCN 67.7 97.4 57.7 77.6 134.27 197.38 41

U-Net 79.2 98.5 71.4 84.9 4.37 32.29 91

SegNet 79.8 98.5 69.9 84.5 29.48 135.79 46

PSPNet 77.5 98.3 68.6 83.4 46.59 141.54 43

DeepLabV3 78.9 98.4 70.1 84.2 73.22 130.82 49

EGA-UNet 82.6 98.7 74.0 86.4 4.73 31.12 95

Table 4.  Comparison of the performance of different models on the deepcrack.
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Fig. 8.  Test on the CFD dataset

 

Scientific Reports |        (2025) 15:33818 15| https://doi.org/10.1038/s41598-025-01983-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 9.  Compare the segmentation of various complex background images.
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Data availability
The data that support the findings of this study are available upon reasonable request from the corresponding 
author.
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Fig. 9.  (continued)

Method Dice(%) IoUb(%) IoUf(%) mIoU(%) Params(M) FLOPs(G)

U-Net(c = 32) 75.5 97.5 67.8 82.6 4.32 35.59

U-Net(c = 64) 74.8 97.4 66.3 81.9 17.26 141.20

+EG-Block 76.7 97.7 68.9 83.3 4.38 35.68

+EG-Block(GSConv)& RepViT Block 76.9 97.7 69.3 83.5 4.65 35.90

+ EG-Block(GSConv)& A-RepViT Block 77.3 97.7 69.5 83.6 4.53 31.80

EGA-UNet 77.8 97.8 70.0 83.9 4.73 31.93

Table 8.  Effectiveness of each improved module.
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