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Current diagnostic procedures for attention deficit hyperactivity disorder (ADHD) are mainly subjective 
and prone to bias. While research on potential biomarkers, including EEG, brain imaging, and 
genetics is promising, it has yet to demonstrate clinical utility. Dopaminergic signaling alternations 
and executive functioning, crucial to ADHD pathology, are closely related to voice production. 
Consistently, previous studies point to alterations in voice and speech production in ADHD. However, 
studies investigating voice in large clinical samples allowing for individual-level prediction of ADHD 
are lacking. Here, 387 ADHD patients, 204 healthy controls, and 100 psychiatric controls underwent 
standardized diagnostic assessment. Subjects provided multiple 3-minutes speech samples, yielding 
920 samples. Based on prosodic voice features, random forest-based classifications were performed, 
and cross-validated out-of-sample accuracy was calculated. The classification of ADHD showed the best 
performance in young female participants (AUC = 0.87) with lower performance in older participants 
and males. Psychiatric comorbidity did not alter the classification performance. Voice features were 
associated with ADHD-symptom severity as indicated by random forest regressions. In summary, 
prosodic features seem to be promising candidates for further research into voice-based digital 
phenotypes of ADHD.
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Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental condition defined by symptoms 
of inattention, hyperactivity, and impulsivity, which impair quality of life, social, and academic outcome1. The 
condition is highly prevalent worldwide, with estimates of 5% prevalence in childhood and about 2.5% in 
adults2. Current ADHD diagnostic procedures, according to international guidelines, are built around rater-
dependent assessments, including a diagnostic interview, as well as self- and third-party-reports and rating 
scales3. These are, however, subjective procedures and therefore prone to biases4. The limitations of current 
diagnostic criterion standards are widely acknowledged, and the clinical practice is criticized for mis-, over- or 
under-diagnosing ADHD5. Thus, developing biomarkers is an important field in psychiatric research to help 
improve the diagnostic accuracy and provide treatment guidance in the context of precision psychiatry.

Extensive research has been dedicated to exploring biomarkers in ADHD, including neuropsychological 
tests, electroencephalography (EEG), structural and functional brain imaging, and genetics6,7. However, to 
date, research does not support immediate clinical applications of these biomarkers for ADHD, mostly because 
they lack convincing accuracy and/or have limited practicality. The importance of confirming the reliability 
of these biomarkers through larger cohort studies that also account for sex differences has been emphasized8. 
One possible avenue to develop clinically feasible biomarkers is the development of high-dimensional digital 
biomarkers based on multiple clinically feasible objective measures and appropriate statistical models, including 
machine learning (ML)6.
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One component of future, high-dimensional biomarkers could be based on voice assessments. The study of 
voice in ADHD is motivated for several reasons. First, from a neurobiological perspective, altered dopamine 
signaling is thought to play an important role in the pathophysiology of ADHD, amongst others related to 
deficits in executive functioning (EF) and motor control9. Moreover, dopamine is intimately involved in motor 
behaviors and plays a central role in vocal production10. Speech production is rated as one of the most complex 
motor behaviors, based on the coordination of more than 100 muscles, including laryngeal, supralaryngeal, and 
respiratory muscles. Thus, based on the hypothesis of altered dopamine signaling in ADHD, changes in speech 
production will possibly occur in individuals with ADHD. Secondly, EF deficits are core symptoms of ADHD 
and are linked to speech production. Stronger EF is associated with more accurate articulation in children and 
better speech performance (articulatory control and fluency of language output) in adults11-14.

Consistent with this, speech production deficits in ADHD have been linked to impairments in working 
memory and EF15,16. Children with ADHD, and sometimes their parents, poorly modulate voice volume, often 
speak louder and for longer periods and show signs of hyperfunctional voice disorder17,18. They have higher 
subglottal pressure and lower transglottal airflow, likely due to increased muscle tone in the glottis17,19.

Adults with ADHD show lower articulatory accuracy and slower speech rates compared to controls, with 
articulatory accuracy negatively correlated with symptom severity20. Articulation requires complex motor 
control dependent on self-regulation and inhibition. Lastly, recent work by Li et al. suggests that prosodic and 
deep-learned linguistic features can distinguish ADHD from healthy controls, achieving a classification accuracy 
of 0.78 22.

In summary, changes in voice and speech production likely occur in ADHD and thus could serve as part of 
a high-dimensional biomarker. The aim of this study is to determine whether prosodic voice features recorded 
in brief speech tasks may allow for a differentiation of ADHD from healthy controls and subjects with other 
psychiatric diseases using a machine learning -based approach.

Materials and methods
Participants
A large heteroneous group of 563 adults were recruited at our specialized adult ADHD outpatient clinic, 387 of 
whom were subsequently diagnosed with ADHD (Table 1), and 100 of whom were diagnosed with other mental 
disorders (psychiatric controls PC) (Table S3) but did not fulfill the diagnostic criteria for ADHD. Further, 76 
patients were excluded due to positive drug screenings (n = 55), technical deficits of the recordings (n = 7), or 
because they showed subclinical ADHD symptoms but did not fulfill the criteria for ADHD or other mental 
disorders after the diagnostic evaluation (n = 14). All participants were asked to provide voice samples before 
undergoing a standardized diagnostic procedure. In addition, 204 non-patient adults were recruited as healthy 
controls (HC) through public announcement. Healthy controls had no history of past or present neuropsychiatric 
conditions. All participants were aged between 18 and 59 years, and gave written informed consent (Box S1 for 
full inclusion/ exclusion criteria). A detailed sample description is provided in Table 1 and Table S2.

The authors assert that all procedures contributing to this work comply with the ethical standards of the 
relevant national and institutional committees on human experimentation and with the Helsinki Declaration 
of 1975, as revised in 2008. All procedures involving human subjects/patients were approved by the ethics 
committee of the Charité Universitätsmedizin, Berlin, Germany; the approval number is EA4/014/10. The study 
was registered as a clinical trial (ClinicalTrials.gov Identifier: NCT01104623).

Diagnostic procedure
All patients were assessed by trained and licensed psychologists and psychiatrists affiliated with the specialized 
ADHD adult outpatient clinic of the Charité University Hospital, Berlin, Germany. A full diagnostic workup, 
including ADHD diagnoses, was obtained through a multi-informant, multi-method approach with psychological 
and medical assessments. The diagnostic procedure was structured in accordance with recommended practice 
of national and international guidelines23 and represents criterion standards for the diagnosis of ADHD in 
adults. It included a diagnostic interview of mental diseases according to DSM criteria, a review of client history 
(including developmental, medical, academic, and social background) and relevant documentation, behavioral 
observations, completion of self- and third party-report, and standardized ADHD-specific rating scales both 

male female total

All participants 388 379 767

Age in years / mean (SD) 34.3 (10.5) 33.4 (9.8) 34.4 (10.6)

ADHD (all) 221 166 387

ATT 117 81 198

COM 104 85 189

ADHD with comorbidity 117 84 201

HC 75 129 204

PC 36 64 100

Excluded 56 20 76

Table 1.  Sample description. ATT  inattentive ADHD subtype, COM combined inattentive and hyperactive / 
impulsive ADHD subtype, HC  healthy controls, PC  psychiatric controls
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for childhood and adulthood. These evaluations were completed over two sessions with up to 8 h of assessment 
(Table 2). To evaluate ADHD-related symptom severity, a clinical interview was performed by a senior clinician 
according to DSM-related criteria23, using the ADHD-DC scale24. In addition to 18 items covering inattention, 
hyperactivity, and impulsivity symptoms, the age of onset, symptoms related burden, general burden, and 
reduced social contacts were rated on 0–3-point Likert scales: 22 items in total with sum scores ranging from 0 
to 66.

Voice recordings
High-quality audio recordings were obtained by a recording technician in a quiet, dedicated room free of 
external noise sources before each clinical evaluation, ensuring that participants and recording technicians were 
unaware of the diagnostic results. Prior to the actual recording, instructions for the participants were recorded 
and played back through an interface ( “Fast Track” Interface (MediTECH Electronic GmbH) to minimize 
the effects of interactions with the recording technicians and ensure a standardized recording procedure. The 
recording instructions included a brief rehearsal phase, during which no data was recorded. This was done to 
ensure that participants were familiar with the instructions and the recording process. Participants spoke into 
a headset microphone (C555L AKG), and signals were recorded in 16-bit/22.5  kHz sampling rate on a PC, 
followed by cutting and labeling procedures as preparation for the sound analysis via the “Fast Track” Interface 
(MediTECH Electronic GmbH).

All participants were asked to speak the following utterances: spoken single vowels and consonants, reading 
out single words, counting from one to ten (two trials), and free speech of around 2 min duration on a free topic, 
e.g. the last weekend or holidays (Table S4). Previous research indicates that voice production varies depending 
on the cognitive demands of the specific speech task25,26 .

Each clinical appointment was preceded by the standardized recording task described above. Since most 
participants had multiple clinical visits, multiple recordings were obtained from the same individuals using 
identical procedures. All recordings followed this consistent protocol, including repeated voice recordings 
before each follow-up appointment. For the final analysis, a maximum of three recordings per participant were 
included as separate data points.

From an initial 1029 voice recordings from 767 participants (including participants that were later excluded), 
24 recordings were excluded due to technical problems of the recordings (e.g., low volume) or multiple recordings, 
i.e., more than three recordings of the same person. From the remaining 1005 recordings, 85 recordings were 
excluded: (a) due to positive drug screenings of the subjects (n = 60), because participants showed subclinical 
ADHD-symptoms but did not qualify for ADHD or other mental disorders (n = 24) or due to severe cold (n = 1). 
Thus, a total of 920 recordings were included in the classification steps, using 1 to 3 recordings per participant. A 
total of 71 recordings were made while patients were on medication (Methylphenidate or Atomoxetine), either 
prescribed prior to their initial presentation at our clinic or initiated following our diagnostic assessment.

Feature generation and machine learning
Paralinguistic features were calculated, focusing solely on prosodic information without analyzing semantic 
content. Only utterances based on free speech and counting were included in the analyses. Following a Fourier 
transformation of the voice recordings27, paralinguistic features were calculated in two feature groups pertaining 
to (1) the contour of loudness and (2) the contour of speech melody (i.e. the course of F0)28-31. In brief, loudness 
was transformed to loudness as perceived by humans (i.e. Sone) based on the model of subjective loudness by 
Zwicker32. The transformed loudness was then averaged over 24 different time spans with durations, ranging 

Psychiatric assessment

Patients Healthy controls

Psychiatric/ psychological examination, psychiatric history + +

SCID I - screening + +

SCID I / II – diagnostic interview +

BDI II +

Medical examination +

Medical and psychiatric history + +

Blood tests, including screening for thyroid conditions +

Drug tests + +

ADHD specific assessment

Patients Healthy controls

ADHD-checklist for DSM-IV 1 + +

Wender Utah rating scale, short version 2 + +

Semi-structured clinical interview following DSM-IV-TR +

Second party reports, school reports +

Table 2.  Diagnostic procedure. 1: Diagnostic procedure according to the guidelines of the German Society 
for Psychiatry, Psychology and Neurology, Psychosomatics (DGPPN)24, 2: citation 65, German version 66; 
SCID  structured clinical interview part I/ II; BDI II – Beck Depression Inventory-II
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from 0.020 s (s) to 4.032 s (Box S2). Thus, we obtained 24 contours of loudness, each representing temporal 
characteristics of speech sound across two orders of magnitude of time scales: from very short timespans (20 
ms) informative of ‘micro prosodic’ structures up to longer time spans (4 s) capturing voice relations between 
words. The first derivative of all timeframes was calculated and subsequently means, standard deviations, peaks 
and quantiles were calculated.

For a second set of features pertaining to changes pitch, F0 was extracted and transformed on a logarithmic 
scale. The resulting values were again averaged over the same 24 different time spans (Box S2), and again after 
calculating the first derivative means, standard deviations, peaks and quantiles were calculated33. To account for 
statistical effects related to the dimension time of the recordings, the curves of the respective features were fitted 
to multiple high-dimensional vectors using proprietary code of “PeakProfiling”. In total 6145 raw features were 
calculated. Differences of this approach with frequently used voice analyses are given in Table 3.

Prior to the classification, initial filtering was performed to eliminate features with very low (< 2.2 e -16) 
variance (n = 0) and variables with less than 100 unique values (n = 4), resulting in 6141 features that were 
included in further analyses. Random forest (RF) classifications were conducted using MATLAB Version 2023a, 
employing the TreeBagger algorithm. The model comprised 500 decision trees, and performance evaluation 
was achieved through 10-fold cross-validation repeated 100 times to ensure robustness and mitigate overfitting. 
Prior to classification, potential confounding variables, namely sex, age, and education, were accounted for. Each 
feature underwent linear regression to regress out these confounds in a cross-validation consistent manner. This 
involved estimating the regression model on the training fold and then applying the model to both the training 
and validation folds, ensuring that the residuals, which are the confound-free features, were retained for further 
analysis. Classification performance was quantified using the area under the receiver operating characteristic 
curve (AUC-ROC), referred to as AUC.

To assess the prediction capacity of the voice features regarding continuous variables such as ADHD 
symptom severity according to the ADHD-DC scale, but also potential confounder such as age and education, 
we calculated RF based regression models with 100 trees again within the cross-validation folds described above 
with 100 repetitions. Mean absolute error of the regression and Pearson’s correlation coefficients between actual 
and predicted variables were calculated as performance measures. To compare Pearson’s coefficients, we first 
calculated Fisher r-to-z transformations and then performed a conservative version of t-tests as proposed by 
Nadeau and Bengio34 to account for the possibility of bias related to cross-validation analyses.

To assess prediction accuracy across different subgroups (e.g., sex and age groups), we repeated all analyses 
in the subgroups male, female and in two age groups of similar sample size, split at the median age of 32 years. 
To explore differences between these subgroups, group comparisons were performed using t-tests in a similar 
manner as described above. To evaluate the relevance of specific features and speech tasks for the classification 
of ADHD, the feature importance was assessed as defined by the permutation of out-of-bag predictions as 
implemented in MATLAB35. The top ten features were extracted for further evaluation.

Results
Descriptive results
ADHD subjects exhibited higher symptom severity than HC and PC subjects (Table  4). Comparisons with 
excluded subjects remained non-significant. Within the ADHD group, symptoms in the subscale ‘inattention’ 
were more pronounced than in the subscale ‘hyperactivity/impulsivity’; however, the latter showed a higher 
variance, as indicated by a significant Levene’s test. Moreover, female ADHD participants showed more 
pronounced ‘hyperactivity’ than male ADHD participants. Symptom severity was similar among age groups of 
comparable sample sizes after a median split of age (i.e., 18–31.9 years and 32–59 years).

Classification
RF classification was calculated, controlling for effects of age, sex, and education based on voice features. 
Cross-validated out-of-sample accuracies are provided in Table 5; Fig. 1. The classification over the complete 
sample (ADHD patients versus HC based on 801 recordings) resulted in an AUC of 0.77, which is invariant to 
classification threshold. Repeating the classification with speaker-stratified cross-validation produced largely 
consistent results (AUC differences ranging from 0.00 to 0.03 in subanalyses, detailed in Supplementary Table 
S6), with no change in AUC for the complete sample.

general approach current approach

Spectrogram employing short-time Fourier transform Spectrogram employing short-time Fourier transform

Calculating the root-mean-square value for each time frame of the spectrogram
Generating a single contour of energy over time

Calculating the loudness value (Zwicker) for each time frame of the spectrogram
Generating a contour of loudness over time

Smoothing the contour by 24 time spans 1, so obtaining 24 different contours

Calculating statistics of the single contour – e.g. max, min, mean, standard deviation
Calculating statistics of the 24 contours - max, min, mean, standard deviation, 
and higher level features derived from the slopes including the curvature, the 
number of peaks and valleys and the relations between them

Table 3.  Comparison of general and current approach to loudness analysis. 1 time spans range between 20 ms 
and 4032 ms, details in Box S2 of the supplement
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ADHD-subtype, sex, age
The classification showed a largely similar performance in subjects with combined symptoms (i.e., including 
hyperactivity and impulsivity) compared to predominantly inattentive subjects. Analyzing both sexes separately 
pointed toward a higher AUC in females than in male participants (t = 3.3, p = 0.001). A higher AUC in female 
subjects was also evident when analyzing separate age groups (age < 32: tmale/ female = 2.2, p = 0.03; age > 32: 
tmale/ female = 2.3, p = 0.03, Table 5) and in the non-comorbid ADHD sample (male: AUC = 0.68; female AUC = 0.79; 
t = 3.3, p = 0.001). Comparisons of age groups indicated superior classification performance in the younger 
sample (AUC = 0.80 vs. AUC = 0.71; t = 2.0, p = 0.04), with the highest performance in young female participants 
(AUC = 0.86).

Comorbidity, psychiatric controls, number of speech samples, medication
The classification of a subsample of ADHD subjects with no comorbidity resulted in a comparable AUC of 0.78. 
Calculating the classification of ADHD participants against a psychiatric control (PC) group, which presented 
for the evaluation of ADHD, but did not meet the clinical criteria of ADHD, showed a lower prediction accuracy 
(AUC = 0.60, Precision = 0.91, Recall = 0.61, F1 = 0.71). Notably, the PC group still exhibited elevated symptoms 
of ADHD as indicated by elevated symptom scores in the clinical interview of ADHD compared to HC (mean 
sum score psychiatric controls (PC): 23 vs. 5 in HC; mean sum score 40 in ADHD, Table 4). Subgroup details 
(age, sex) are provided in Supplementary Table S5.

Furthermore, utilizing a single recording per subject yielded a classification performance that was nearly 
equivalent to that achieved with multiple recordings (0.76 vs. 0.77). Excluding subjects who took ADHD 

Group AUC Precision Recall F1

All 0.77 0.60 0.75 0.66

Male 0.70 0.51 0.90 0.66

Female 0.83 0.71 0.78 0.74

one recording/ participant 0.76 0.63 0.73 0.67

excl. stimulants 0.78 0.64 0.77 0.70

excl. comorbid ADHD 0.78 0.70 0.73 0.72

ADHD, subtype ATT 0.79 0.73 0.75 0.74

ADHD, subtype COM 0.80 0.72 0.75 0.73

Age 18–31 All 0.80 0.68 0.79 0.73

(n = 385 recordings)
Male (n = 202) 0.75 0.53 0.72 0.62

Female (n = 183) 0.87 0.82 0.81 0.81

Age 32–59 all 0.72 0.55 0.75 0.63

(n = 416 recordings)
Male (n = 193) 0.59 1 0.50 NaN 0.50

Female (n = 223) 0.74 0.57 0.73 0.64

Table 5.  Classification ADHD vs. HC. ATT   inattentive ADHD subtype, COM  combined inattentive and 
hyperactive/impulsive ADHD subtype, HC   healthy controls,  1: This calculation should be interpreted with 
caution, as it suffers from class imbalance with only 30 HC

 

Clinical Interview
M ± SD

Inattention
M ± SD

Hyperactivity/ Impulsivity
M ± SD

WURS-k
M ± SD

BDI - II
M ± SD

ADHD (all) 40.0 ± 8.3 7.0 ± 1.7 2 4.9 ± 2.5 2 38.9 ± 12.9 13.3 ± 8.9

ADHD - male 40.5 ± 8.3 7.0 ± 1.7 4.7 ± 2.5* 39.4 ± 12.9 12.7 ± 8.7

ADHD - female 39.3 ± 8.3 6.9 ± 1.6 5.2 ± 2.6* 38.3 ± 12.9 14.0 ± 9.2

ADHD - ATT 35.1 ± 7.3** 7.0 ± 1.6 2.8 ± 1.6** 36.6 ± 11.6** 13.3 ± 9.0

ADHD - COM 44.7 ± 6.6** 6.9 ± 1.8 7.0 ± 1.1** 41.5 ± 13.7** 13.0 ± 8.9

ADHD < 32 y 1 40.2 ± 8.0 7.0 ± 1.5 4.7 ± 2.6 38.0 ± 11.8 13.7 ± 9.0

ADHD > = 32 y 1 39.5 ± 8.9 6.8 ± 1.8 5.0 ± 2.5 39.8 ± 13.7 12.8 ± 8.8

HC 5.2 ± 4.4*** 0.5 ± 0.8*** 0.5 ± 0.8*** 6.6 ± 6.5*** 3.2 ± 2.8***

PC 23.3 ± 12.2*** 3.3 ± 2.5*** 2.7 ± 2.3*** 23.7 ± 13.8*** 14.9 ± 8.8***

Excl. Particip. 35.9 ± 11.6 5.5 ± 2.4 4.5 ± 2.6 39.1 ± 15.4 16.5 ± 9.3

Table 4.  Test psychology. ATT  inattentive ADHD subtype, COM  combined inattentive and hyperactive/
impulsive ADHD subtype, HC   healthy controls, PC  psychiatric controls, WURS-k  Wender-Utah-rating-scale 
short form, BDI  Beck’s depression inventory; * p < 0.05 in comparisons of sex; ** p < 0.001 in comparisons ATT 
vs. COM; *** p < 0.001 in comparisons ADHD vs. HC and ADHD vs. PC; 1: Comparisons between age-groups 
of ADHD-participants remained non-significant; 2: Comparing the variance of inattention and hyperactivity 
with Levene’s test indicates higher variance in hyperactivity than in inattention
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medication (methylphenidate, atomoxetine) before the voice recording did not alter the classification 
performance, however the number of affected recordings was modest (n = 71; 8.9% of the analyzed sample).

Correlations of symptom severity using random forest regression
Correlations of true and predicted symptoms based on voice features were calculated using RF regressions. The 
results are given in Table 6; Fig. 2. Analyses performed in the ADHD group only indicated a higher association 
of true and predicted hyperactive/ impulsive symptoms than inattention symptoms (r hyper = 0.39; r inattention = 
0.19; comparison: t = 3.6, p < 0.001). Extending the analysis of ADHD symptom severity and voice features to all 
participants (ADHD, PC, HC) yielded a higher association of true and predicted symptoms (r = 0.45, t = 14.7, 
p < 0.001), in particular in female subjects (rfemale = 0.49; rmale = 0.29; comparison t = 3.4, p < 0.001).

Group n r t MAE

ADHD clinical interview1 All 876 0.45 14.7 12.5

ADHD clinical interview1 Female 457 0.49 12.1 12.9

ADHD clinical interview1 Male 419 0.29 6.3 12.0

  Hyperactivity All 876 0.36 11.6 2.3

 Inattention All 876 0.39 12.9 2.6

Education All 920 0.33 10.5 0.7

Age (years) All 920 0.52 18.5 7.2

Beck’s depression inventory1 All 701 0.24 6.6 7.1

ADHD clinical interview1 adhd 554 0.30 6.7 6.3

  Hyperactivity adhd 554 0.39 9.2 2.0

  Inattention adhd 554 0.19 3.9 1.3

Table 6.  Correlation coefficients of true and predicted clinical variables.  Pearson’s correlation coefficients are 
given based on RF regression; MAE  mean absolute error,  BDI  Beck’s depression inventory; n = number of 
voice samples; 1: total symptoms score p-value for all analyses < 0.001

 

Fig. 1.  Classification ROCs for (all) ADHD patients versus healthy controls (801 recordings). Random-forest 
classification, 10-fold cross-validation; AUC = 0.77.
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Fig. 2.  Correlation of true and predicted symptom severity scores (from voice features) in ADHD subjects 
across scales of the ADHD Clinical Interview: total score symptoms, hyperactivity, inattention. Mean slope and 
95% confidence intervals depicted; r = Pearson’s correlation coefficient; all p < 0.001.
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Confounding variables
To analyze confounders likely influencing voice analysis, we performed predictions of sex, age, and education 
(highest educational level) using RF classification and RF regression as appropriate in the entire sample (ADHD, 
PC, HC). Sex was classified with AUC = 0.98. The correlations of true and predicted age (r = 0.52, t = 18.5, 
p < 0.001) and education (r = 0.33, t = 10.5, p < 0.001) likewise pointed to relevant associations with voice features 
and were thus included in all analyses as confounders of no interest. Moreover, sex (t = 5.4, p < 0.001), age (t = 
-1.7, p = 0.09) and education (t = 5.9, p < 0.001) were associated with ADHD status and therefore included as 
covariates of no interest, as described above. Given concerns about changes in results due to confound leakage36, 
we re-ran all analysis without confound removal. The results were largely identical, with changes of AUC between 
0.00 and 0.05.

Since depression has been linked to changes of loudness in past research37, we calculated associations of 
depression scores with voice features (r = 0.24, t = 6.6, p < 0.001). However, depression scores were not related 
to ADHD symptom severity; thus, we did not include it as covariate in the main analysis. Including depression 
severity as covariate in a secondary analysis did not change the results.

Analysis of feature importance for the prediction of ADHD
The ten most important features were equally (50%) distributed to free speech (2  min), based on loudness 
changes over time frames between 0.02 and 0.252 s, and changes of F0 in the counting task in timeframes of 0.02 
to 0.1 s.

Discussion
In the context of a growing interest in analyzing voice as a potential biomarker of mental health38, to the best 
of our knowledge, we have conducted the first study to investigate prosodic features in a large, heterogeneous 
sample of adults with ADHD. The results support and extend previous findings of paralinguistic abnormalities 
in ADHD and point toward the possibility of predicting ADHD in unseen individuals, particularly in early 
adulthood. The classification showed good prediction accuracy in differentiating ADHD from HC, and this was 
confirmed in associations of true and predicted symptom severity.

Previous studies in the emerging field of automatic assessments of mental disorders using speech were 
restricted to mood and psychotic disorders38, and they showed comparable prediction accuracies to those 
reported in this study. For instance, depression can be predicted from (paralinguistic) voice features with an 
accuracy of about 80% 39. The prediction of schizophrenia has been successful using linguistic features, such as 
semantic relatedness, differentiating between individuals with schizophrenia or those at a high risk to develop 
acute symptoms and healthy controls40. Studies that have investigated the prediction of ADHD from biological 
signals other than voice point towards a similar performance of approaches based on neuropsychological 
assessment41, EEG-measures42, questionnaires43 or resting state fMRI44. Thus, the findings in this study are 
comparable to previous research using voice to predict mental disorders and research relying on other biological 
signals to predict ADHD.

Moreover, correlations between true and predicted symptom scores, both in the whole sample and within 
the ADHD group, indicate that voice features were able to predict ADHD symptom severity. The continuous 
association of voice-features and ADHD severity, in turn, may help to interpret the lower prediction accuracy of 
ADHD from a PC group. The PC group presented for a diagnostic workup to rule out ADHD and showed markedly 
elevated ADHD symptoms as compared to HC. After an extensive diagnostic procedure, the participants in this 
group were not diagnosed with ADHD but with various other mental disorders, mostly affective disorders. Thus, 
since the classifier seems to be sensitive to lower levels of ADHD symptoms as indicated by the RF-regression 
analyses of symptom severity above, the classification is likely less suited to differentiate between ADHD-suspect 
subjects with lower symptoms and ADHD subjects who fullfil the clinical criteria. Moreover, the PC group was 
heterogeneous with regards to mental disorders, and this may contribute to the limited differentiation from 
ADHD. Future studies with larger sample size may be able to predict ADHD with higher precision and better 
differentiate ADHD participants from individuals with low or moderate ADHD symptoms. Likewise, other 
studies investigating potential biomarkers of ADHD point to a restricted differentiation from PC, such as studies 
of neuropsychological tests in combination with actigraphy45 or studies using MRI46.

A strength of the current approach is related to a robust classification performance of ADHD in the presence 
of comorbid mental disorders. The classifier showed a similar performance to differentiate ADHD from HC 
with and without comorbidity. Regarding the role of comorbidity, we additionally controlled the analyses for 
depression symptom severity with no changes in the AUC. Of note, participants with severe clinical comorbidity, 
such as schizophrenia or severe affective disorders were excluded from the analysis. Adult ADHD patients 
frequently present with latent or lifetime comorbid conditions47, thus compromising the diagnostic accuracy of 
ADHD in clinical practice48. Overall, the limited influence of comorbidity in this study is encouraging in terms 
of potential clinical applications; replication of our results pending. Since our data point to a relatively robust 
accuracy particularly in younger and female participants - possibly independent of comorbidity - automated 
voice analysis could evolve as a valuable addition to support the diagnostic process, considering marked 
diagnostic challenges amongst others due to comorbidity in this patient group49.

Evaluating the prediction accuracy of inattentive and hyperactivity/impulsivity symptom scores, the RF-
regression analyses pointed to a higher correlation of true and predicted symptoms of hyperactivity than of 
inattention in the ADHD group. Importantly, we noted a higher variance of the hyperactivity/impulsivity 
symptoms than of inattention in the ADHD group, as indicated by a significant Levene’s test. Thus, the higher 
correlation of true and predicted hyperactivity/impulsivity scores may be explained by a better ability for the 
RF regression to learn from a sample with a larger variance. Using the whole sample (i.e., ADHD, PC, HC), 
inattention and hyperactivity subscales showed similar prediction scores of true and predicted symptoms (with 
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similar variance of both variables in this group). In line with this, the higher correlation of true and predicted 
hyperactivity/impulsivity symptoms did not translate into a significantly better prediction of the subgroup with 
combined (inattention and hyperactive/impulsive) symptoms.

With regard to emotion regulation or personality traits as a second important symptom cluster of ADHD, 
prior research has pointed to associations of personality traits and prosody of speech37,50, including associations 
of impulsivity and F0/ jitter51, that are related to the features in this study. Nilsen et al.18 reported higher speech 
volumes and pitch to be related to decreased inhibitory control, a key component of impulsivity. Moreover, a 
higher motor activity in ADHD, may result into higher subglottal pressures that have been reported in children 
with ADHD17. In summary, a relation of prosodic speech abnormalities and ADHD traits such as deficits in EF 
or hyperactivity/impulsivity seems plausible and should be evaluated in more detail in future research.

Discussing secondary findings, sex was classified with a high accuracy (AUC = 0.98) using voice features. 
The high accuracy is in line with recent studies on predicting sex from prosodic voice features52. Furthermore, 
our data indicate a better classification performance of ADHD in female over male subjects, and this pertained 
to subsamples with different age-groups and non-comorbid ADHD-subjects. To some extent the sex related 
differences may be explained by slightly higher hyperactivity scores in female ADHD, but other measures of 
symptom severity or comorbidity did not differ between sexes. Thus, we assume that the voice features vary 
between male and female subjects and are possibly more pronounced in female ADHD subjects, though this 
must be investigated in future studies including the underlying biological mechanisms. One possible explanation 
may be related to sex specific dopamine receptor expression and functioning53; given the important role of 
dopamine for voice production10, sex specific dopamine function may pertain to voice. Previous studies on voice 
in psychiatric disorders have mostly not differentiated between sex due to limited sample size, but this has been 
requested38.

With respect to age, the voice features in this study were able to predict age with a comparable if slightly lower 
performance to other approaches predicting age from prosodic features54. Research on changes of prosody in 
aging indicates higher scores of hoarseness, instability and breathiness in higher age55, reflected by a diminished 
harmony to noise ratio56. Moreover, with increasing age, the subglottal pressure decreases in line with a decrease 
in overall muscle mass, and subjects compensate for this with increased expiratory airflow57. In study with 
children, increased hoarseness has been reported in ADHD17,58 as well as an increased subglottal pressure and 
decreased airflow17. Thus, if healthy subjects in older age may show increased hoarseness, which could also occur 
in ADHD, a possible difference in prosodic features due to hoarseness may decrease with older age and thus 
explain the decreased classification performance in older subjects. Since the finding on hoarseness in ADHD 
have been reported in children, our hypotheses related to age should be tested in adult populations in future 
research.

Stimulants have been reported to impact voice and prosody in a few small studies, including reports of 
lower F0, increased jitter59, and increased hoarseness60. In our study, we did not note differences with regard to 
classification accuracy and intake of stimulants, however the subsample with intake of stimulants was relatively 
small.

To understand which features are relevant to differentiate ADHD from HC, the analyses of feature 
importance firstly point to changes in loudness as an important differentiating feature. This finding supports 
previous research that identified voice anomalies in ADHD, frequently pertaining to loudness15. Breznitz et al. 
reported differences in temporal speech patterns and physical features of vocalization in boys with ADHD61 
compared to PC (reading disabilities) and HC. Children with ADHD showed increased loudness, and children 
with combined ADHD type were louder, and showed lower F0

16,62. We assume that subtle changes in voice based 
on higher subglottal pressure in ADHD17 may result in relevant changes of loudness to differentiate ADHD from 
healthy subjects.

Secondly, feature importance data indicate that speech test selection plays an important role in the 
classification of ADHD. Five of the ten features with the highest feature importance were related to counting 
(from one to ten) and five to free speech. It has been shown in previous research, that speech task (complexity) 
is related to vocal features, e.g. vocal variability differs between spontaneous speech and reading aloud63 and a 
larger vocal variability was observed in a picture description task than in recalling autobiographical memories64. 
Since EF mirrored by task complexity is related to voice and EF is known to be compromised in ADHD, a 
combination of speech tasks with varying complexity may be relevant for the differentiation of ADHD from HC 
and should be included in future trials.

In summary, we were able to differentiate ADHD patients from HC using voice features with good results in 
early adulthood and in female subjects. Strengths of the present study include the large, heterogeneous sample, 
the assessment of HC and PC and the application of criterion diagnostic procedures. The study’s limitations 
include an imbalance in subgroup sizes, which may have particularly affected performance in male participants. 
Additionally, the exact time of day for each recording was not documented, which may have influenced the 
results.

We detected ADHD associated vocal patterns that likely reflect a disorder related vocal hyperfunction 
possibly related to altered dopamine signaling. These vocal patterns may be related to personality traits such as 
impulsivity, impaired EF, and changes in motor functioning pertaining to speech in ADHD. Neurobiologically, 
these traits are related to dopamine, which is thought to play an important role in the pathogenesis of ADHD9. 
Replication pending, a strength of voice-based features to predict ADHD might be the lack of impact from 
psychiatric comorbidity, that frequently occurs in ADHD and complicates the diagnostic process.

Given the feasibility and low cost to record and analyze voice, we see a potential value for future clinical 
application as a digital biomarker and encourage further investigation. A larger study sample including a larger 
PC group will be necessary to achieve a better differentiation of ADHD from PC with low or moderate ADHD 
symptoms. However, the clinical value of a voice-based screening might be in supporting the clinician to include 
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potential differential diagnoses rather than excluding differential diagnoses based on one test. In future research, 
the classification performance may increase with the addition of distinct speech features, such as speech pauses 
and the utilization of linguistic measures such as verbal fluency. Taken together, we consider voice analysis a 
promising avenue to support the diagnostic process in adult ADHD.

Data availability
The data that support the findings of this study are available from PeakProfiling GmbH with certain restrictions. 
The data were used under license for this study. Please contact co-author JL with requests. The code of the anal-
yses was written in MATLAB and is available from the corresponding author (GP) upon request.
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