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The precise and timely diagnosis of brain tumors is essential for accelerating patient recovery and 
preserving lives. Brain tumors exhibit a variety of sizes, shapes, and visual characteristics, requiring 
individualized treatment strategies for each patient. Radiologists require considerable proficiency 
to manually detect brain malignancies. However, tumor recognition remains inefficient, imprecise, 
and labor-intensive in manual procedures, underscoring the need for automated methods. This study 
introduces an effective approach for identifying brain lesions in magnetic resonance imaging (MRI) 
images, minimizing dependence on manual intervention. The proposed method improves image 
clarity by combining guided filtering techniques with anisotropic Gaussian side windows (AGSW). A 
morphological analysis is conducted prior to segmentation to exclude non-tumor regions from the 
enhanced MRI images. Deep neural networks segment the images, extracting high-quality regions of 
interest (ROIs) and multiscale features. Identifying salient elements is essential and is accomplished 
through an attention module that isolates distinctive features while eliminating irrelevant information. 
An ensemble model is employed to classify brain tumors into different categories. The proposed 
technique achieves an overall accuracy of 99.94% and 99.67% on the publicly available brain tumor 
datasets BraTS2020 and Figshare, respectively. Furthermore, it surpasses existing technologies in 
terms of automation and robustness, thereby enhancing the entire diagnostic process.
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Today, specialists are inundated with various medical data, including electronic health records, patient medical 
histories, and test results. However, the ability to evaluate, accumulate and manage such vast amounts of data 
is restricted, raising concerns about the potential for fatigue to impede the ability of healthcare professionals 
to assist their patients and affect their health. This presents a substantial obstacle for the healthcare sector, as 
providing accurate and timely diagnoses is imperative to achieve favorable patient outcomes1. The processing of 
medical images is essential for planning treatment and other purposes, as they comprise 90% of healthcare data. 
As a result, there is an increasing demand for medical image analysis, which presents a significant opportunity 
to develop innovative IT-based healthcare solutions2. These technologies can improve the diagnostic experience 
of a patient by reducing the duration of the diagnostic process, improving the precision of the diagnostic, and 
helping hospitals and medical professionals optimize their operations3.

Image processing, a fundamental aspect of computer vision technology, has attracted considerable interest 
in the healthcare sector due to its diverse applications and continuous advancements4. In numerous healthcare 
specialties, including orthopedics5, neurology6, dentistry7, cardiology8, and oncology9, image processing 
techniques such as enhancement10, segmentation11, detection12, and classification13 are widely recognized and 
commonly applied for the diagnosis of disease. The capability of these image processing technologies to reliably 
assess and extract features from images obtained through various imaging methods significantly enhances the 
effectiveness and accuracy of disease diagnosis. These technologies show considerable effectiveness, allowing 
physicians to identify and diagnose irregularities within images14.The healthcare sector has undergone significant 
changes due to the progress in medical imaging technology, offering a non-invasive approach to examine and 
gather accurate information about different parts of the body, thus facilitating the diagnosis of a wide range 
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of diseases. Computed tomography (CT), positron emission tomography (PET), ultrasound imaging (UI), 
magnetic resonance spectroscopy (MRS), single-photon emission computed tomography (SPECT) and MRI are 
the most widely used techniques15. Each of these methods has its own distinct advantages and disadvantages, 
which make them suitable for specific medical conditions. MRI is the most widely used and valuable technology, 
as it can provide a wealth of information on the anatomy of the human body 16. Brain tumors are among the 
most complicated and dangerous conditions that affect the human brain. A tumor is an abnormal mass resulting 
from excessive cell division and is one of the leading causes of death worldwide17. Brain tumors are commonly 
classified based on their location and behavior, i.e., benign or malignant, low grade or high grade, cancerous 
or non-cancerous, and tumors that are found in specific areas such as the pituitary gland. Brain tumors are 
heterogeneous in size, location, form, and type, complicating diagnosis and therapy18. MRI, the most reliable and 
common approach for the detection of brain malignancies, detects any kind of brain tumor and provides high-
contrast images. It is the most used approach for classifying brain tumors and provides high-resolution imaging 
with detailed information19. Correct classification of brain tumors is crucial for favorable patient outcomes, as 
misdiagnoses will ultimately lead to ineffective therapy and a drastic decrease in patient quality of life. A timely 
and accurate diagnosis is essential for effective treatment planning because a delayed diagnosis can worsen the 
disease and reduce survival rates20.

However, BTC is a challenging task as the imaging characteristics of brain tumors are unpredictable 
and there are many different types of tumor. Although many frameworks have been developed to diagnose 
brain lesions in MRI images recently, most do not reach satisfactory classification performance21. Traditional 
approaches typically rely on hand-designed features that are labor intensive, susceptible to subjective bias, 
and cannot generalize to various datasets. Although deep learning models are much more advanced, they still 
struggle with limited training data, overfitting, and managing the large variation in tumor shape, size, and 
imaging characteristics. Issues such as challenging tumor locations, substandard image segmentation, and low-
quality image features can significantly degrade the accuracy and reliability of classification systems. Therefore, 
much research should be done to construct more efficient classifiers to help patients with accurate and precise 
diagnoses. Building a classification algorithm that can handle these issues simultaneously while delivering state-
of-the-art performance is a challenging endeavor. This work will ultimately contribute to the advancement of 
ongoing research, helping researchers, academics, and practitioners continue to gather evidence to clarify the 
link between BTC and patient survivability, which is necessary to suggest better treatment plans and improve 
patient health.

The system under consideration can significantly improve computer-aided diagnosis (CAD) and alleviate 
the burden on healthcare professionals, thus resolving resource imbalances and physician-patient disputes. 
Because BTC in medical imaging involves several technical considerations that could significantly affect medical 
diagnosis and treatment, these difficulties must be addressed. However, interdisciplinary research on medical 
image classification is still in its infancy.  Although the accuracy of medical diagnosis depends on classification 
accuracy, the technological challenges surrounding medical image categorization are still being investigated. 
These challenges directly affect the way computer science is applied in the medical field. More study and 
development are needed to overcome these obstacles and guarantee that computer science can be applied to 
medical picture classification efficiently, improving patient outcomes. The primary contribution of this work is 
detailed as follows:

•	 The overall accuracy of the classification is enhanced by the proposed automated technique to supplant the 
traditional invasive classification of brain tumors.

•	 A preprocessing strategy is used to enhance the quality of brain tumor images by integrating guided filtering 
methods with AGSW.

•	 To obtain a high level of classification accuracy on a limited dataset, data augmentation techniques are used, 
and the impact of overfitting on classification performance is also investigated.

•	 Deep learning-based segmentation is employed to extract high-quality ROIs from MRI images, enhancing 
the categorization capability.

•	 To enhance the contextual connection between the discriminative representation and the extracted multiscale 
features, an attention method is employed.

•	 Ensemble learning algorithms are used to categorize brain tumors and the classification accuracy is improved 
by integrating multiple classifiers.

•	 The proposed solution is being assessed compared to the established advanced BTC algorithms. The classifi-
cation accuracy of the proposed technique surpasses that of existing methods.

The remaining parts of the paper are organized as follows: “Related work” section reviews the research on BTC. 
The proposed paradigm is discussed in more detail in “Proposed methodology” section. “Evaluation and results” 
section presents and analyzes the results of the experiments. This study concludes with suggestions for further 
research in “Model interpretability, trustworthiness, and generalization across datasets” section.

Related work
The classification of brain tumors is a significant and well-researched topic in medical image analysis due 
to the importance of timely and accurate diagnosis for patient safety and treatment planning. The preferred 
method for classifying brain tumors is automated techniques, which are efficient, accurate and require minimal 
human involvement. The use of machine learning in the development of automated disease diagnosis systems 
has expanded, particularly in the context of newly induced brain tumor categorization techniques. Traditional 
machine learning- and deep learning-based methods are the two varieties of machine learning-based methods 
that are used to classify brain tumors in MRI images. Preprocessing, localization, feature extraction, and 
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classification are required for both methods. Classical machine learning-based algorithms require the extraction 
of hand-made features, which affect classification performance, to achieve high classification accuracy. In 
contrast, deep learning-based methodologies outperform conventional machine learning-based methodologies. 
This is because deep learning architectures, such as CNN and its variants, leverage their ability to generalize and 
learn independently to offer automatic and reliable quantitative analyses of image attributes. A greater amount 
of training data is required, as the capacity to generalize may be impaired by the limited number of datasets 
and low-resolution images. To achieve high classification accuracy, this study closely examines each stage of 
the brain cancer classification process and provides a concise overview of recent research endeavors and work 
conducted to classify brain tumors using MRI images and the corresponding issues. Significant advances in the 
classification of brain tumors are presented in Table 1.

Study Method used Dataset Key contributions Advantages Limitations
Computational 
efficiency

Othman et al. (2011) SVM with Wavelet Features 60 MRI images Extracted 17,689 feature 
vectors per image Good feature extraction Low accuracy (65%), small 

dataset Moderate

Sindhmol et al. 
(2013) ICA + SVM 60 MRI images

98% accuracy with 
spectral distance 
technique

Effective with small 
datasets

Limited dataset, lacks deep 
learning automation Low

Abd-Ellah et al. 
(2016)

Discrete Wavelet Transform 
+ SVM 80 MRI images 100% accuracy on a 

small dataset
High accuracy on limited 
data Not tested on large datasets Moderate

Kalbkhani et al. 
(2013)

2D DWT + GARCH + LDA 
+ PCA 3064 MRI images Achieved 97.62% 

accuracy with SVM
Strong statistical feature 
extraction

Complex preprocessing, 
computationally expensive High

Saritha et al. (2013)
Wavelet Transform + 
Probabilistic Neural 
Networks

50 MRI images 100% accuracy Good for pattern 
recognition

Small dataset, lacks 
generalization Moderate

Deepa et al. (2012) ANN + RBFN 30 training, 12 
testing 85.71% accuracy Fast training Low accuracy, limited dataset Low

Chandra et al. (2009) Particle Swarm 
Optimization (PSO)

110 abnormal, 
62 normal MRI 
images

94.42% accuracy Good optimization 
approach

Complex model, may not 
generalize well High

Xuan et al. (2007) Segmentation + Statistical 
Features

10 patient MRI 
images

96.82% accuracy on 
selected MRI segments Effective segmentation Small dataset, segmentation 

errors Moderate

Cheng et al. (2015) BoW + SVM 3064 MRI images
Tumor region 
augmentation for better 
classification

Simple and interpretable Feature extraction limitations High

Ismael et al. (2018) 2D DWT + Gabor Filter + 
Neural Network 3064 MRI images 91.9% accuracy Good texture analysis Lower accuracy than deep 

learning methods Moderate

Tahir et al. (2019) Daubechies Wavelet + SVM 3064 MRI images 86% accuracy Effective wavelet-based 
approach Feature extraction constraints Moderate

Paul et al. (2017) CNN 989 axial MRI 
images

Achieved 90.26% 
accuracy Strong feature learning Small dataset, lacks 

segmentation High

Afshar et al. (2018) Capsule Network (CapsNet) 3064 MRI images More robust to spatial 
variations

Handles rotation better 
than CNNs

Lower accuracy (86.56%), 
requires large training data Very High

Afshar et al. (2019) CapsNet with Bounding Box 3064 MRI images
90.89% accuracy, 
improved over prior 
CapsNet

Improves localization of 
tumors High computational cost Very High

Zhou et al. (2018) DenseNet + LSTM 989 MRI images 92.13% accuracy Good sequence modeling Requires more data High

Pashaei et al. (2018) CNN + Extreme Learning 
Machine (ELM) 3064 MRI images 93.68% accuracy Fast training Lacks segmentation High

Abiwinanda et al. 
(2018) CNN 2100 MRI images 84.19% accuracy Simple CNN-based 

approach Lower than ensemble models High

Ghassemi et al. 
(2020) GAN + CNN 3064 MRI images Improved data 

augmentation
Generates synthetic data 
for training Computationally expensive Very High

Guo et al. (2019) Graph CNN for PET ADNI dataset 
(Alzheimer’s)

93% accuracy (2-class), 
77% (3-class)

Effective for brain 
mapping Limited to Alzheimer’s High

Anaraki et al. (2019) Genetic Algorithm + CNN 3064 MRI images 94.2% accuracy Adaptive feature selection GA-based tuning is complex Very High

Ayadi et al. (2021) Deep CNN 3064 MRI images Improved classification Strong classification 
accuracy High training time High

Deepak & Ameer 
(2019) CNN + Transfer Learning 3064 MRI images 97.10% accuracy Pre-trained model 

improves performance
May not generalize to unseen 
data Moderate

Sejuti & Islam (2021) CNN + SVM 3064 MRI images 97.10% accuracy Hybrid model improves 
classification

Feature extraction 
dependency High

Kumar et al. (2021) ResNet50 + Global Average 
Pooling 3064 MRI images 97.48% accuracy Deep residual learning Risk of overfitting High

Kakarla et al. (2021) CNN with 8 pooling layers 3064 MRI images 97.42% accuracy Effective pooling strategy Parameter tuning required High

Guan et al. (2021) CNN + Bounding Box 3064 MRI images 98.04% accuracy Optimized for efficiency May not handle small-scale 
tumors well Very High

Table 1.  A review of current approaches for BTC and their effectiveness.
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Traditional machine learning-based BTC methods
The standard machine-learning classification of brain tumors using MRI images involves several fundamental 
procedures, including preprocessing, localization or segmentation, feature extraction, and classification. It is 
imperative to analyze the unique contributions of each stage in the BTC process to achieve effective classification 
performance. Feature extraction is one of the primary components contributing to these models’ enhanced 
classification accuracy. Local feature extraction (low-level features) and global feature extraction (high-level 
features) are the primary categories of traditional feature extraction methods. Most local features (low-level) 
are composed of approaches based on wavelet transform, symmetry, texture, intensity, Gabor feature, and 
shape. These techniques employ statistical features for feature extraction, such as the mean, standard deviation, 
skewness, and grey level co-occurrence matrix (GLCM). In contrast, global features (high-level) such as scale-
invariant feature transformation (SIFT), fisher vector (FV), and bag of words (BoW) capture broader, more 
abstract representations of the image. The accumulated features are subsequently fed into machine learning-
based classifiers, including Naive Bayes, support vector machine (SVM), random forest (RF), and artificial 
neural network (ANN), to determine the type of tumor. In this regard, the subsequent section examines a variety 
of methodologies that have been developed and are currently under investigation: Othman et al.22 proposed a 
model for classifying brain MRI images that utilizes wavelet transform and SVM features. The model extracted 
17,689 feature vectors from a single MRI image and categorized 39 out of 60 images with 65% accuracy. Sindhmol 
et al.23 published a BTC model that employs SVM for classification, independent component analysis (ICA) for 
enhanced feature extraction, and the spectral distance technique for aggregating the MRI image. The model 
achieved a 98% accuracy rate in identifying 40 normal and 20 aberrant brain MRI images. Similarly, Abd-Ellah 
et al.24 employed the discrete wavelet transform to extract features and subsequently employed SVM to identify 
brain tumor images from MRIs. A small sample of 80 photographs was used to test the efficacy of 32 MRI 
pictures, and the model achieved 100% accuracy. Kalbkhani et al.25 developed a brain MRI image classification 
model using 2D DWT coefficients and a generalized autoregressive conditional heteroscedasticity (GARCH) 
statistical approach. These were refined through linear discriminate analysis (LDA) and principal component 
analysis (PCA). For two distinct cases, the accuracy of the model was 97.62% and 98.21%, respectively, when 
using KNN and SVM classifiers. Saritha et al.26 employed the wavelet transform to extract features from MRI 
images, and probabilistic neural networks were employed for classification. After completing 50 MRI scans of 
training, the model was assessed on 23 scans and yielded 100% accurate results. Deepa et al.27 developed an 
artificial neural network for tumor classification using MRI images. The network was classified using the radial 
basis function (RBFN) and back-propagation network (BPN) after retrieving textural statistical features. The 
RBFN model achieved an accuracy of 85.71% after being trained on 30 images and tested on 12 images. Chandra 
et al.28 constructed a BTC model that was based on particle swarm optimization (PSO) and utilized GLCM 
features extracted from MRI scans. The image was divided into multiple clusters until they were merged into a 
single cluster. The model achieved an accuracy of 94.42% when trained on a dataset consisting of 110 aberrant 
brain MRI images and 62 normal brain MRI images. Xuan et al.29 developed a segmentation-based BTC model 
using symmetry-, texture-, and intensity-based features extracted from MRI images. The most effective features 
were selected to identify the class of MRI images, as evidenced by a 96.82% accuracy rate on 24 segments of MRI 
images from 10 patients. Cheng et al.30 developed a model for enhancing the classification performance of brain 
tumors by augmenting and partitioning tumor regions. The model’s various features, such as BOW, intensity 
histogram, and GLCM, were tested on a 3064 brain MRI images dataset. The Smythe model was employed to 
classify the results, achieving an accuracy of 91.28%. Ismael et al.31 introduced a neural network-based model 
for BTC that employs 2D DWT and 2D Gabor filter features. The classification performance was enhanced, and 
91.9% accuracy was achieved by integrating these statistical characteristics. Tahir et al.32 developed a model 
for the classification of brain tumors by utilizing MRI imaging. Daubechies wavelets were employed to derive 
2D DWT features, and SVM was employed for classification. The model ensured classification accuracy by 
demonstrating an accuracy of 86% on a dataset of 3064 brain MRI images.

Deep learning-based BTC methods
It has been observed that conventional machine learning-based methods for BTC, which rely on manually 
generated features, tend to produce significantly poorer classification results. However, deep learning-based 
techniques overcome this limitation by autonomously extracting characteristics through self-learning, which 
enhances accuracy. Conversely, these models necessitate a more extensive dataset and substantial computational 
expenditures. The classification performance and accuracy are reduced when working with a limited dataset. 
Additionally, a high level of expertise is required for the practical application of deep learning model design 
and selection for a specific task. To overcome these challenges, a variety of strategies have been developed. 
For instance, Paul et al.33 introduced a deep learning-based model for classifying brain lesions that employ a 
CNN to enhance classification accuracy. The model’s accuracy on brain tumor imaging after five-fold cross-
validation (5-fold CV) was 90.26% . This suggests that the efficacy of training can be improved and that physicians 
can more effectively treat patients by reducing the scale of the image. Similarly, Afshar et al.34 developed a 
capsule network (CapsNet) model for effectively categorizing brain tumors. This model enhances classification 
accuracy by utilizing spatial relations between the tumor and adjacent tissues, a limitation of previous CNN-
based classification methods. Their model outperforms previous counterparts 11,12 17,18 by achieving an accuracy 
of 86.56% and 72.13%, respectively, with and without segmentation. Furthermore, Afshar et al.35 proposed a 
modified capsule network (CapsNets) to classify brain lesions that circumvent the limitations of CNN. Their 
model is more robust than CNN because it does not require significant training data and can accommodate 
input modifications such as rotation and affine transformation. Outperforming its competitors, this model 
achieved a classification accuracy of 90.89%. Zhou et al.36 enhanced classification accuracy by employing a 
comprehensive strategy. Using a recurrent neural automated segmentation of regions technique, they utilized 
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a dense convolutional neural network (DenseNet) to categorize the characteristics derived from axial slices of 
images. The high accuracy of 92.13% of their model serves as evidence of its efficacy. Pashaei et al.37 developed 
a CNN-based model for BTC in a similar manner. This method employs a CNN to extract features and a kernel 
extreme learning machine (KELM) network to classify images based on these characteristics. The experimental 
results of this joint-based mechanism of CNN and KELM are promising in terms of accuracy, with a score of 
93.68%, when compared to other traditional machine learning classifiers such as radial basis function neural 
network (RBFNN), k-nearest neighbor (KNN), and SVM. In addition, Abiwinanda et al.38 have created a CNN 
model for classifying brain lesions. They generated seven distinct CNN iterations without segmentation. Their 
second variant exhibited the highest training and testing accuracies compared to their predecessors, with values 
of 98.51% and 84.19%, respectively. Ghassemi et al.39 introduced an additional multiclass BTC model based 
on deep neural networks. Using data augmentation techniques, their model can extract features and learn the 
structure of images by pretraining a neural network as a discriminator in a generative adversarial network 
(GAN). The augmentation strategies prevent the network from overtraining. The model is trained to function as 
a classifier to differentiate between the tumor types, and the wholly connected layers of the network have been 
replaced. The model’s accuracy was 95.6% and 93.01% for inserted and random divisions, respectively, when 
using 5-fold CV criteria. Furthermore, investigations have investigated using CNN in the graph domain for 
tumor classification. Guo et al.40 have introduced a graph CNN model for the prognosis of Alzheimer’s disease 
based on positron emission tomography (PET). Their model has demonstrated robustness on the alzheimer’s 
disease neuroimaging initiative (ADNI) dataset, unlike other cutting-edge models. It has achieved an accuracy 
of 93% for two-class classification problems and 77% for three-class classification problems. Furthermore, their 
computational paradigm is relatively cost-effective. Anaraki et al.41 examined the potential of genetic algorithms 
to enhance CNN’s capacity to classify brain lesions. They employed a genetic algorithm to optimize the design 
of CNN in their study and tested it on the Figshare dataset (​h​t​t​p​s​:​​/​/​f​i​g​s​​h​a​r​e​.​c​​o​m​/​a​r​t​​i​c​l​e​s​​/​b​r​a​i​n​​t​u​m​o​r​d​​a​t​a​s​e​t​​
/​1​5​1​2​4​2​7), achieving an accuracy of 94.2%. Nevertheless, the genetic algorithm could not select the optimal 
CNN architecture, resulting in sub-par accuracy. In an endeavor to enhance the efficacy of tumor classification, 
Ayadi et al.42 have proposed a deep CNN with multiple layers for BTC. Their model demonstrated exceptional 
performance when assessed on three datasets and necessitated significantly less pre-processing than previous 
methodologies. In an analogous vein, Deepak et al.43 have implemented transfer learning to enhance the 
precision of their three-class BTC. Their model outperformed other existing methods by obtaining a classification 
accuracy of 97.10% with a restricted number of training instances. Additionally, their model investigated the 
phenomenon of misclassification. Sejuti et al.44 created a CNN classifier to categorize different brain cancers. The 
classifier is trained using a dataset of 3064 photographs, which are divided into three distinct groups to represent 
different types of tumor images. The research work’s final efficiency was determined to be 97.1%. Kumar et al.45 
created a sophisticated neural network model to tackle the problems of overfitting and vanishing gradients. This 
model utilizes global average pooling and ResNet50. When data augmentation was utilized, the study achieved 
an accuracy of 97.08%, compared to a slightly higher accuracy of 97.48% without data augmentation. Kakarla et 
al.46 proposed employing a CNN with eight average-pooling layers to categorize brain lesions into three groups. 
This model consists of a softmax layer and a dense layer, which are coupled to three convolution blocks. To 
improve the learning speed and achieve an accuracy of 97.42%, they used a sparse-categorical cross-entropy loss 
function and a Nesterov-accelerated adaptive moment estimation (Nadam)  optimizer.

Despite these advancements47, existing models and research techniques still have several drawbacks. This 
work seeks to solve this issue by developing a highly accurate classifier for BTC using MRI images.

Proposed methodology
A comprehensive overview of the proposed technique is provided in Fig. 1, which highlights the critical stages 
and components of BTC. The sequential working mechanism of the proposed model is illustrated in Fig. 2, 
which demonstrates the interaction of components to generate the final result. The proposed strategy improves 

Fig. 1.  The block diagram of the critical stages involved in the classification of brain tumors.
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classification accuracy by expanding the potential for image enhancement, data augmentation, segmentation, 
and feature extraction.

The critical phases of the proposed model that are necessary for BTC are summarized as follows:

Enhancement and morphing analysis
To enhance the quality of brain tumor images, a preprocessing technique is used, which combines both guiding 
filtering and AGSW methods48. The goal is to improve the visibility of the important features in the images 
and to reduce the noise to help the overall detection process. Their gradients are first obtained to estimate the 
local structure in the tumor images. Then, using the gradients as supplementary information, the guidance 
image is filtered using AGSW. This filtering process improves the quality of the guidance image and preserves 
its edges and intricate details. The guided filter uses this improved guidance image to improve visibility in the 
original brain tumor images. Generally, before using reference images, they need to be resized and converted to 
appropriate color spaces or representations to guarantee their compatibility and alignment with the target image. 
To achieve better visibility, the goal of restoring or enhancing the target image must align with the selection of 
reference images. For example, the gradients of the local structure in the tumor image are highlighted in the 
reference image to improve the visibility of specific structures within the image. A clean variant of the identical 

Fig. 2.  The sequential working mechanism of the proposed model.
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image can be utilized as a suitable reference to reduce noise. The relationship between the guided image Yi and 
the filtering output Zi  is governed by a local linear model. In the window Nk,θ  it is specified that Zi is a linear 
transformation of Yi. Equation (1) represents the filtered output:

	 Zi = akYi + bk; n ∈ Nk,θ � (1)

In this context, Nk,θ  denotes the window, while ak  and bk  represent the gain and deviation coefficients, 
respectively. To acquire accurate edge information, the anisotropic Gaussian weighting factor is converted into 
the square error loss function E(aa, bk) of the guided filter, as denoted by Equation (2). Subsequently, the error 
between O and the input image I is reduced to obtain the optimal parameters.

	

E (ak, bk) =
∑

i∈Nk,θ

wi.θ (akYi + bk + ak − pi)2 + εa2
k � (2)

The weight of pixel i in window Nk,θ  is represented by the symbol wi,θ . The regularization parameter is indicated 
as ε. The gain coefficient is denoted as ak . The input image from the dataset is represented as Pi. The guided 
image is designated as Yi. In order to obtain accurate and exact values for the parameters ai and bi, as shown in 
Equation (3), the relevant weighting operations Gij  and Gi are performed:

	

ai = 1
ξ

∑
k∈Ni,θ

wk,θak

bi = 1
ξ

∑
k∈Ni,θ

wk,θbk

� (3)

The term wk,θ  represents the weight assigned to the pixel k within the window Nk,θ . The weighted sum is 
represented by the symbol ξ, while ak  and bk  are used to denote the gain coefficients. The output processed by 
the filter, represented as Equation (4), is obtained by computing the values of ai and bi for each individual pixel:

	 Zi = aiYi + bi� (4)

In this particular situation, Zi represents the output of the filtering process, Yi represents the guided image, and 
ai and bi signify the steady linear parameters of the gain coefficient. The effect of the improvement is evident 
in Fig. 3.

Before identifying the precise position of the tumor in enhanced images,it is necessary to remove non-tumor 
regions to ensure accurate and reliable results20. The structuring element (SE) is utilized to acquire the required 
image structures. The value of each pixel is determined by the surrounding pixels and the corresponding value 

Fig. 3.  MRI images prior to and following the enhancement operation.
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in the input. The resulting image generated by this morphological technique maintains the dimensions of the 
augmented image. Fig. 4 elucidates the methodology of the morphological operation.

ROIs generation
After improvement, the brain tumor MRI image must be divided into segments. The goal is to extract ROIs of 
high-quality from the tumor image to improve classification accuracy. For this purpose, the U-Net architecture 
is implemented. The remarkable performance of the various U-Net arbitrators has been seen in the field of 
medical segmentation49. For this experiment, the U-Net encoder used is SE-ResNet101. In this 101-layer 
residual network, Squeeze replaces the residual blocks and extinction blocks through integration. By including 
SE blocks, the parameter can be added to each channel of the convolutional block, allowing for the adjustment 
of the weights assigned to every feature map in the network.

Global pooling on each individual channel is implemented to obtain a comprehensive understanding by 
combining feature maps into a single numerical vector. These techniques yield a vector of size n, where n 
represents the convolutional channels C. This vector was fed into a two-layer neural network comprising fully 
connected (FC) layers with Rectified Linear Unit (ReLu) activation and Sigmoid function. This produced a 
vector of similar dimensions that was used as a weight in the original feature maps. Each channel is assigned a 
scale based on its level of importance in this complete approach. The dataset was partitioned into two sets for 
analysis: training sets and test sets. The training sets comprise 70% of the dataset and the test set comprises 30%. 
Empirical methods determined the two model hyperparameters: the batch size was fixed at 4, and the number 
of epochs was set at 60. Fig. 5 shows the results of segmenting brain tumors following the training and testing 
process. Conversely, Fig. 6 shows the projected tumors.

Feature extraction
DenseNet was chosen for feature extraction due to its proficiency in handling complex features, making it suitable 
for BTC task. In contrast to traditional CNN, DenseNet creates direct connections among layers, facilitating 
feature reuse and ensuring a consistent gradient flow. This design emphasizes intricate features in MRI scans, 
minimizing redundancy and improving efficiency and accuracy. DenseNet collects more comprehensive data 

Fig. 5.  Accuracy of the segmentation method during training and testing.

 

Fig. 4.  The steps involved in morphological process.
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while using fewer parameters than deeper networks such as ResNet, which face challenges in medical imaging 
due to the variability in tumor size, shape, and intensity.

Before the finalization of DenseNet, a thorough assessment was performed comparing it with leading 
architectures, including ResNet, InceptionNet, MobileNetV2 and Inception-ResNet. Each model possesses 
different advantages: MobileNetV2 is particularly strong in its lightweight architecture, while Inception-based 
networks demonstrate effectiveness in extracting features across multiple scales. However, DenseNet reliably 
exhibited higher accuracy tailored to our specific requirements. Ensemble classification techniques and attention 
mechanisms were integrated into DenseNet to improve performance. The effectiveness of this combination in 
diagnosing brain cancer led to a notable improvement in patient outcomes. The extensive trials validated our 
conclusions, affirming the reliability and precision of the proposed approach in real-world clinical applications.

DenseNet processes segmented images to accurately identify brain tumors. The architecture effectively 
addresses the issue of gradient vanishing by minimizing the gap between the input and output50. The network 
streamlines data representation across various levels by providing a map format with reduced features. This 
minimizes the risk of overfitting, maintains data integrity during transmission, and improves CNN understanding 
when dealing with limited datasets. Regularization techniques and the loss function method supervise each layer, 
effectively minimizing overfitting by decreasing connections between layers and facilitating a more manageable 
training process. DenseNet consists of three primary components: the dense block, the transition layer, and the 
growth rate. The structure comprises O dense units organized into groups, where each dense block encompasses 
N stages. The feedforward methodology facilitates the establishment of connections between each step and the 
subsequent stages within a dense block, ultimately producing the result Bn after completing the dense section. 
Equation (5) provides a mathematical representation of the nth layer.

Fig. 6.  The model’s segmentation results.
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	 Bn = In([B1, B2, ..........Bn−1])� (5)

This variable describes the concurrent measurement technique and fusion process that is currently taking place. 
To further decrease the size of the feature maps between each dense segment, a transition layer is introduced, 
which consists of a 1 × 1 convolutional layer followed by an 2 × 2 average pooling layer. The results of each stage 
are combined to create a final feature map. The dimension of the layers at the location N is defined by a function 
that incorporates the growth rate. This is defined as: g(n − 1) + g0, where g0 is the number of sections in the 
original input image. To improve the effectiveness of the variable and maintain authority over the entire network, 
the size of the growth rate H size g is limited. This could aid in the preparation for dealing with overfitting or the 
complexity of the model. The growth rate parameter regulates the amount of fresh data or information added to 
each network layer or stage.

Multiscale feature maps
Due to the concatenation of features from one layer to another, DenseNet can produce duplicate data. With 
regard to the execution of numerous computations, the network exhibits exceptional efficiency. A multiscale 
strategy is implemented to address this problem. In contrast to conventional DenseNet one-scale convolutional 
kernels, the multiscale assisted convolutional kernels effectively manage anomalies and streamline intricate data 
processing. As a result, Fig. 7 illustrates the GoogleNet Inception-based multiscale feature extraction model used 
in this study. This model can simultaneously input images and convolving filters of varying sizes51. Concatenate 
the convolution output into the channel dimension to obtain the multiscale feature map. By decreasing the 
scale of feature maps before applying a filter of greater magnitude and utilizing the pooling technique for 
spatial downsampling, the capability of representing the network is further enhanced. After aggregating data 
from different branches, the low- and high-level characteristics were documented. Using this network, more 
comprehensive visual representations of the contextual intricacies present in brain tumor MRI images at 
different magnifications have been acquired.

Discerning the more salient features is critical for a complete understanding of brain MRI images. 
Implementing an attention module enables the acquisition of more discriminative attributes while ignoring 
extraneous input. The spatial attention block extracts interdependencies between features at any position, 
whereas the self-attention block extracts interdependencies between features along spatial locations. To generate 
a comprehensive spatial relationship in MRI images, the refined feature map is formed by combining the two 
attention maps3.

Self-attention block
To fully capture spatial dependencies, the input image feature is initially reshaped into RY ×D , where 
Y = H × W  and D represent the channel length and spatial domains, respectively. This transformation is 
denoted as Fij =

[
f1

ij , f2
ij , f3

ij , . . . , fD
ij

]
∈ RHi×W j×D . We assigned the input features to the three heads Q, 

K, and V. The calculations are as follows:

	 Qi = F W Q
i + eQ � (6)

	 Ki = F W K
i + eK � (7)

	 Vi = F W V
i + eV � (8)

Fig. 7.  The process of multiscale feature extraction.
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where W Q
i ∈ RD×Ck , W K

i ∈ RD×Ck , and W Q
i ∈ RV ×Ck  are the parameter matrices. The letters Ck , Dk , 

and Ck  represent the dimensions of Q, K, and V in each cranium, respectively, while the deviation terms are 
denoted as eQ ∈ RCk , eK ∈ RCk , and eV ∈ RCk . The subsequent equation may be used to determine the 
spatial attention map for each head:

	
head i = Attention (Qi, Ki, Vi) = Softmax

(
Qi, KT

ii

Ck

)
Vi� (9)

where headi ∈ RN×Cv . Following this, concatenation and addition operations are used to obtain the final self-
attention features:

	 FSA = (Q, K, V ) = Concat(head1, head2, ........headh)W σ + bσ � (10)

In the given context, the projection matrix W σ ∈ RY ×D , the bias term bσ ∈ RD , and multi-head attention are 
denoted as M(·).

Spatial attention block
To extract the interdependencies of features along spatial positions, a spatial attention block is implemented due 
to the considerable variation in size and shape of brain lesions. This segment evaluates the importance attributed 
to each spatial location on the feature map. Assume that the input feature map for the network is represented as 
follows: F ∈ RH×W ×D . Initially, cross-channel average pooling (CAP) and cross-channel maximum pooling 
(CMP) are executed concurrently in this block to construct feature maps F1 ∈ RH×W ×1 and F2 ∈ RH×W ×1, 
correspondingly. The output F ′ ∈ RH×W ×2 is obtained by combining the values of F1 and F2, is generated 
using the ReLU activation function. This output can be mathematically represented as:

	 F ′ = ψ(concat(CAP (F ), CMP (F )))� (11)

Following activation of the intermediate output F ′ with the sigmoid function and a convolutional layer of size 
1 × 1, a spatial attention map F ′′ ∈ RH×W ×1 is generated. Fsab ∈ RH×W ×D  is the result of element-wise 
multiplication between F ′′ and F; the result is denoted as:

	 Fsab = σ
(
ϕ1,1,1 (

F ′))
⊙ F � (12)

Where σ is the sigmoid activation and ⊙ is the element-wise multiplication operation.

Aggregation
The network integrates the attention maps produced by the spatial attention block (SAB) and self-attention block 
(SB) to build a polished feature map named Fagg ∈ RH×W ×C . The feature map precisely captures the spatial 
correlation observed in MR images:

	 Fagg = FSAB ⊕ FSB � (13)

Channel attention block (CAB)
Channel-wise dependencies are identified during the process of traversing irrelevant channels, as class-specific 
characteristics may have been lost in the aggregated feature map. In order to determine the importance of 
individual channels in the feature map Fagg ∈ RH×W ×C , channel-wise attention weights F ∗ ∈ R1×1×C  are 
generated via two 1 × 1 conv layers with ReLU and sigmoid activation and global max pooling (GMP). Using 
element-wise multiplication in conjunction with Fagg , the following computations produce the final channel-
wise attention feature maps:

	 FCAB = σ
(
ϕ1,1,C

(
ψ

(
ϕ1, 1, Ĉ (GMP (F agg ))

)))
⊙ F agg � (14)

The symbols σ and ψ denote the ReLU and sigmoid activations, respectively. The constant Ĉ = C/8 is a value 
that was determined through empirical calculation.

Classification
Ensemble models have experienced notable improvements in accuracy and effectiveness when applied to 
classification tasks52. These models have become increasingly popular in recent times. In this investigation, brain 
lesions are diagnosed using ensemble learning techniques, as the highest degree of precision is achieved by 
integrating numerous classifiers. In order to partition brain tumors detected on MRI scans into three discrete 
categories, the suggested methodology employed a voting classifier that soft-voted on the RF, SVM, and KNN 
models. The ultimate result is determined by the class that accumulates the most votes. The subsequent section 
explains the operation of the ensemble model.
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p̂ =

n∑
i

RFi,

n∑
i

SV Mi,

n∑
i

KNNi� (15)

Equation (15) produces the forecast probabilities for each test sample. The probabilities are further evaluated 
using the soft voting criterion, and the probabilities for each test case are calculated using RF, SVM, and KNN. 
Using the dataset comprising brain tumor MRI images, the efficacy of the proposed model is assessed in two 
ways. Each available feature of a brain tumor is utilized in the detection procedure to filter it. The second step 
is to acquire convolutional features for machine learning models via preprocessing imagery.  In order to assess 
the performance of the proposed model, we have employed 5-fold CV, which is a standard method in machine 
learning. In this, the data is divided into five equal subsets. In each run, four subsets are used for model training, 
and the remaining subset for testing. By doing so, each sample is tested only once, and the model is tested on 
unseen data repeatedly. By calculating the outcome over all five folds, we have a better and more balanced 
estimation of the accuracy and generalization of the model outside of training data53.

Evaluation and results
Dataset
The effectiveness of the proposed model was assessed using the publicly accessible brain tumor dataset that was 
initially provided by Cheng et al.30. This dataset comprises 3064 T1-weighted enhanced contrast brain MRI 
scans with a voxel spacing of and a resolution of pixels per image. Data were collected from 233 patients treated 
in two state institutions in Guangzhou and Tianjin, China, between 2005 and 2010. The collection includes 
930, 708, and 1426 occurrences of brain malignancies in the Pituitary, Meningioma, and Glioma, respectively, 
in axial, coronal, and sagittal views. In addition to a comprehensive description of the dataset, tumor masks, 
tumor class labels, tumor borders, and patient IDs, the dataset is available in the MATLAB format (.mat). In 
general, the visual quality of MRI images is improved by preprocessing them to enhance their brightness and 
contrast54. These images may contain artifacts and inconsistencies in intensity levels as a result of the use of 
various imaging modalities. Consequently, they require cleansing and enhancement to enhance their contrast 
value. Table 2 provides a comprehensive description of the dataset, while Fig. 8 illustrates preprocessed samples 
of the three categories of brain tumors. The primary objective is to enhance the visual quality of the photographs 
by expanding the dynamic range of grayscale values.

Preprocessing and data augmentation
 Normalization techniques are widely used to improve the quality of input data used for classification and ensure 
consistent and reliable network convergence55. The convolutional kernel is a technique that can be used to assess 
pixel intensity in brain MRI images. Regrettably, the efficacy of this approach is contingent upon the brightness 
of the pixels. Normalizing the data is essential prior to performing network optimization procedures, regardless 
of the existence of substantial participant differences and data collection conditions, due to the substantial 
variation in values between and within individuals. The Min-Max method significantly improved the network 
training process by rescaling the intensity values of the input images to a range of 0 to 1. In addition, contrast 
enhancement techniques were implemented to enhance the visual clarity and distinctiveness of the MRI images, 
which can be altered by incorrect intensity levels and defects. The quantity of the dataset was increased using 
data augmentation techniques, including image rotation at varying angles and vertical and horizontal flipping. 
These augmentations were applied to reduce overfitting and improve the model’s generalization by effectively 
expanding the sample size. As a result, the dataset has quadrupled in size to contain 12,256 sample images at 
present. The efficacy of data enhancement procedures is illustrated in Fig. 9, and additional details regarding 
contrast enhancing techniques are offered in “Enhancement and morphing analysis” section.

Competitors
The reliability and utility of the proposed BTC approach were evaluated compared to a variety of cutting-edge 
methods20,21,30–47. The results of the experiments indicate that the proposed method is highly effective.

Evaluation matrix
A variety of evaluations were implemented, including the F1-score, sensitivity, precision, specificity, and 
precision of the proposed model, to verify its functionality. Four measures were used to evaluate the predicted 
classes: false positives (FP), false negatives (TN), true positives (TP), and false negatives (FN). The mathematical 
representation of each of these numbers is as follows:

Tumor’s group No. participants in each group No. MRI in each group MRI images in various planes/views

Glioma 89 1426 Coronal: 437, sagittal: 495, transverse (axial): 494

Meningioma 82 708 Coronal: 268, aagittal: 231, transverse (axial): 209

Pituitary 62 930 Coronal: 319, sagittal: 320, transverse (axial): 291

Overall 233 3064 Coronal: 1024, sagittal: 1046, transverse (axial): 994

Table 2.  Summary of MRI images and participant distribution for each tumor group.
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accuracy = T PN + T NN

T PN + T NN + F PN + F NN
� (16)

	
specificity = T NN

T NN + F PN
� (17)

	
sensitivity (recall) = T PN

T PN + F NN
� (18)

	
precison = T PN

T PN + F PN
� (19)

	
f1 − score = 2 × recall × precision

recall + precision
� (20)

Hyperparameters
To improve the quality of input images, normalization and enhancement techniques are implemented, while 
data augmentation techniques are used to facilitate the training process. Instead of taking a constant train-test 
split, we have used 5-fold CV for better estimation of the model. This process distributed the dataset into five 
subsets of nearly equal size. With each fold, approximately 80% of the data was assigned for training and 20% 
was used for testing. With this setup, every sample appeared once as test data and four times as training data. By 
averaging across all five folds, we could estimate the model’s classification performance more accurately, with 
better balance, higher accuracy, and greater reliability. The training sets within all the folds were also used to 
carry out experiments for selecting the optimal hyperparameters to employ for the final model. The results are 
presented in Tables 3, 4, and  5. The model exhibits high accuracy with a batch size of 32, a dropout rate of 0.5, 
100 epochs, and a learning rate of 0.003. The results are presented in Tables 7 and  8, and we employ a 5-fold 
CV according to the method outlined by Cheng et al.30 to evaluate the effectiveness of the proposed model. 
In general, the proposed model significantly mitigates overfitting, converges more rapidly, and offers precise 
retrieval capabilities with minimal processing power. It is a straightforward and user-friendly approach that can 

Fig. 8.  Illustration of the sample brain tumor images.
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help radiologists determine the appropriate classification for an object. Ultimately, our proposed approach is a 
robust framework that is effective for brain sorting tasks.

Evaluation and results
To evaluate the effectiveness of the proposed method, we constructed a confusion matrix that considers both 
correct and incorrect predictions of the model. The confusion matrix presented in Table 6 and Fig. 10 shows 
that the proposed model correctly classified 3049 samples and only 15 cases were misclassified. This yields 
an overall accuracy of 99.67%. Significantly, the most accurate predictions for Glioma were obtained, mainly 

Dropout rates 0.1 0.3 0.5 0.7

Overall accuracy (%) 99.05 99.10 99.67 98.98

Table 5.  Exploring average accuracy of proposed system at different dropout rates.

 

Number of epochs 50 100 150 200

Overall accuracy 99.21 99.67 98.97 99.09

Table 4.  Measures of average accuracy for the proposed system at various epochs.

 

Optimization algorithms 0.1 0.01 0.001 0.002 0.003 0.004

Adam 81.82 83.11 84.79 85.46 86.27 88.72

SGD 87.83 93.62 89.22 91.77 91.06 92.43

Adadelta 89.02 85.87 81.31 82.18 83.69 83.85

RMSprop 82.79 84.88 80.52 81.17 83.47 81.14

Adagrad 84.88 92.85 98.00 97.33 99.67 98.56

Table 3.  Exploring optimization techniques and learning rates for improved accuracy.

 

Fig. 9.  The results obtained using data augmentation techniques.
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due to the extensive training dataset created through many augmentation procedures. The inclusion of a well-
balanced dataset resulted in a notable improvement in classification accuracy. The performance of the classifier 
was evaluated in terms of accuracy, sensitivity (recall), specificity, precision, and F1-score for each category 
of tumor using the confusion matrix previously mentioned. The performance of the classifier for each brain 
tumor category is illustrated in Table 7. It is important to note that the confusion matrix presented in Table 6 
corresponds to a single representative fold from the 5-fold CV performed on the original dataset of 3,064 images, 
yielding a fold-specific accuracy of approximately 99.51%. The class-wise metrics shown in Table  7 are also 
derived from this same fold, and their macro-average accuracy is 99.67%, which coincides with the average 
overall accuracy obtained from the complete 5-fold evaluation using the augmented dataset. Presenting both 
perspectives provides clearer insight into the model’s performance: Table 6 illustrates its behavior in one specific 
run, while Table 7 highlights its consistency and robustness across the entire dataset. The proposed technique 
demonstrated extraordinary performance in the areas of precision, sensitivity, specificity, accuracy, and F1-score 
for Pituitary, Glioma, and Meningioma tumors. The proposed model exhibited a sensitivity (recall) of 0.9944% 
for Meningioma, 0.9937% for Glioma and 0.9978% for Pituitary, as well as specificities of 0.9953%, 0.9994% and 
0.9986%, respectively. In addition, it had an accuracy of 0.9951% for Meningioma, 0.9967% for Glioma, and 
0.9984% for Pituitary. Our technique is highly beneficial for the accurate diagnosis of brain lesions using MRI 
data, as evidenced by the exceptional precision of the model and F1-score values.

As a result of these findings, the proposed method for classifying malignancies in sample images is highly 
effective. Notable is that our method obtained high specificity values for all classes, indicating an accurate 
diagnosis of sample images that do not contain the condition in question. Our approach shows greater efficiency 
and performance compared to previous methods. The increase in the number of sample images improved 
the efficiency of the model while resolving the issue of overfitting. The proposed method eliminates the need 
for manual segmentation and does not require prior knowledge of the to-be-retrieved feature types, which 

Tumor type Accuracy Sensitivity (recall) Specificity Precision F1-score

Meningioma 0.9951 0.9944 0.9953 0.9846 0.9895

Glioma 0.9967 0.9937 0.9994 0.9993 0.9965

Pituitary 0.9984 0.9978 0.9986 0.9968 0.9973

Overall accuracy 0.9967

Table 7.  Evaluation of proposed methodology using various quality measures.

 

Fig. 10.  The confusion matrix of the proposed model.

 

Actual values Meningioma Glioma Pituitary

Meningioma 704 1 3

Glioma 9 1417 0

Pituitary 2 0 928

Table 6.  Confusion matrix showing predicted and actual values for each class.
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impacts the generalization ability of the network. The results led us to the conclusion that our model is highly 
generalizable and stable. In addition, the proposed method is suitable for several applications, including the 
classification of breast cancer.

To perform a thorough assessment, the proposed model is compared with several prominent deep learning 
architectures, such as ResNet50, Inception-ResNet, MobileNet, InceptionNet and GoogLeNet. Table  8 
demonstrates the impressive accuracy of the proposed model i.e, 99.67%, surpassing that of GoogLeNet (99.15%), 
Inception-ResNet (98.89%), MobileNet (98.72%), InceptionNet (98.55%), and ResNet50 (98.39%). However, 
precision alone cannot fully convey the complete story. The model demonstrated outstanding performance on 
several key metrics, achieving a F1-score of 99.60%, specificity of 99.64%, precision of 99.35%, and sensitivity 
of 99.60%, leading to a balanced and highly reliable classification performance. This degree of accuracy and 
uniformity results from meticulously organized improvements. We improved image preprocessing, refined 
segmentation with U-Net and SE-ResNet101, extracted features on various scales, and implemented attention 
mechanisms to emphasize the most significant tumor characteristics. To improve overall classification accuracy, 
we employed an ensemble learning approach that integrates RF, SVM, and KNN, enabling the model to generate 
more reliable and insightful predictions. Our approach significantly reduces misclassifications and improves 
diagnostic accuracy, offering radiologists a reliable and effective tool to facilitate more accurate evaluations. 
This may result in prompt identification of conditions, improved therapeutic methods, and improved patient 
results,the ultimate benchmark of achievement in the field of medical artificial intelligence (AI).

Table  9 compares the proposed method with a variety of well-established methods to classify three-class 
brain tumors using the same dataset. The table provides a summary of the classification results based on the 
standard accuracy metric used in all previous techniques. To guarantee optimal performance, the proposed 
model was tested based on the factors detailed in Tables 3,  4, and  5. Our method obtained a stunning 99.67% 
accuracy in only 100 epochs, outperforming other methods without requiring manual segmentation, as seen by 
the results. This remarkable accuracy demonstrates the effectiveness of our deep learning-based approach for the 
extraction and classification of brain tumor features. Moreover, our methodology outperformed the competition 
not only in accuracy, but also in all other quality metrics. Fig. 11a shows the ROC curve of the classification 
performance of the proposed model, which exhibits excellent results with correlation values of 0.9944, 0.9937, 
and 0.9978 for the Meningioma, Glioma and Pituitary classes. Compared to other forms of tumor, the Pituitary 
has the highest rate of true positives. The detection efficiency of our proposed method, based on the average 
accuracy curve, is shown in Fig.  11b, showing that our bounding box orientation consistently allows tumor 
detection. Our experiments provided a significant performance improvement, aligning us with the best through 
hyperparameter optimization and suitable architecture design. However, brain tumor classification remains a 
difficult task, as it is influenced by several factors. These include tumor shape, orientation, size, low contrast in 
MRI images, and the small number of training samples, which can increase overfitting and misclassification, 
thus lowering classification accuracy. Compared to previous approaches, our proposed scheme eliminates 
these challenges to a large extent while maintaining an acceptable level of accuracy. To further enhance the 
classification performance, we increased the sample data, improved the contrast, and correctly determined the 
tumor location before the final classification. This approach elevates our accuracy above that of competitors and 
differentiates our method from others. As a result, our model achieved great classification results and quickly 
reached its peak performance, dramatically eliminating the problem of overfitting. In addition, Fig. 11c and d 
depict the training and validation phases of our network. The accuracy and loss curves illustrate the remarkable 
performance and consistent training of our model in each stage.

Model interpretability, trustworthiness, and generalization across datasets
The efficacy of the proposed method was further evaluated to assess generalizability and robustness between 
different datasets using the BraTS2020 dataset (​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​a​​w​s​a​​f​4​9​​/​b​r​a​t​​​s​2​0​-​d​a​t​​a​s​e​t​-​t​r​a​i​​
n​i​n​g​-​v​a​l​i​d​a​t​i​o​n)

obtained from the Kaggle database. This dataset comprises 3,929 brain MRI scans, consisting of 2,756 images 
showing tumors and 1,173 images without tumors. The photographs affected by tumors are classified into two 
types: 1,290 images illustrate malignant tumors, and the remaining 1,466 portray benign tumors. The images 
were obtained from 3,929 people between 2005 and 2020 using MRI scanning technology. The dataset was first 
published in 2015 and subsequently updated in 2021. Augmentation techniques were used to enrich the dataset, 
resulting in 7858 samples. This dataset is especially appropriate for tumor classification due to its intrinsic 
imbalance, which helps to evaluate the robustness of the proposed approach.

The evaluation of the proposed model is shown in Table 10.The results of the BraTS2020 dataset highlight 
the effectiveness of the proposed model in all key metrics compared to existing models such as ResNet50, 

Model Accuracy (%) Sensitivity (recall) (%) Specificity (%) Precision (%) F1 score (%)

ResNet50 98.39 98.30 98.87 96.50 97.40

InceptionNet 98.55 98.50 99.02 96.83 97.65

MobileNet 98.72 98.60 99.15 97.05 97.80

Inception-ResNet 98.89 98.81 99.28 97.40 98.10

GoogleNet 99.15 99.02 99.40 97.85 98.43

Proposed 99.67 99.60 99.64 99.35 99.60

Table 8.  Classification performance of the proposed model with other state-of-the-art deep learning networks.
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InceptionNet, MobileNet, Inception-ResNet, and GoogLeNet. The proposed model achieves high performance 
metrics, including accuracy (99.94%), sensitivity (99.96%), specificity (99.92%), precision (99.96%) and F1-
score(99.96%), highlighting its effectiveness in tumor identification and its ability to reduce false positives and 
negatives. This performance is significant due to the imbalance of the dataset, characterized by more images 
representing malignancies. ResNet50 demonstrates robust performance; however, sensitivity and F1-score 
enhancements are necessary. InceptionNet and MobileNet produce similar results, and it is noteworthy that the 
proposed model outperforms them in all metrics. Although GoogLeNet demonstrates strong performance, the 
proposed model exceeds all metrics. The findings indicate that the proposed model performs exceptionally well 
on the Figshare dataset and adapts efficiently to the BraTS2020 dataset, underscoring its considerable potential 
for practical clinical applications. Future efforts will evaluate the model’s applicability to additional datasets and 
clinical settings to improve its generalization and practical use.

In healthcare technology applications, a primary challenge is ensuring that the system’s decisions are 
accurate, intelligible, and reliable for medical practitioners. Significant effort has been dedicated to ensuring 
that the model is transparent rather than an opaque “black box.” The objective is to ensure that physicians have 
confidence in its reliability and thoroughly understand its performance. Various elements have been incorporated 
to clarify the rationale underlying the model’s predictions. The integration of attention mechanisms was a critical 
measure that was implemented. This enables the model to focus on the most important aspects of the MRI 
images. However, the essential aspect is that they enable physicians to observe precisely on which regions the 
model focuses when generating its predictions. This clarity is essential because it helps healthcare professionals 
understand why the model reached specific conclusions. In addition, saliency maps are other methods used. It 
highlights the areas in the image that played a prominent role in the model’s ability to make decisions. It gives 
doctors a kind of visual cheat sheet to understand the essential elements of the model. The presented model has 
been evaluated on different datasets to confirm its robustness and to show that it can produce consistent results 
across various conditions. Healthcare professionals who had offered their input on the predictions were now 
involved in a feedback loop. This iteratively enhances the consultative model and lays the path for it to become 
a trusted and reliable solution. Finally, all of the model’s processes, from training to evaluation, are transparent 
and comprehensible to medical clinicians. By doing so, the hope is to provide an application that is functional 
and reliable, so that it can be implemented in real clinical practice.

Refs. Methodology Key features Segmentation method No. of images used Overall accuracy Evaluation method
30 BoW-SVM BOW Yes 3064 91.28 Introduced split
31 NN DWT-Gabor Yes 3064 91.9 Training-validation

32 Preprocessing-SVM 2D DWT using
Daubechies wavelets base No 3064 86 10-fold CV

33 ConvNet (CNN) CNN No 989 (axial only) 84.52 5-fold CV
33 ConvNet CNN No 989 (axial only) 90.26 5-fold CV

34 CapsNet CNN Both 3064 86.56 (via segmentation),
72.13 (via raw images) Not mentioned

35 CapsNet CNN Bounding box 3064 90.89 Not mentioned

36 8Holistic-RNN
(LSTM-autoencoder) Dense CNN No 989 (axial only) 92.13 Training-validation testing

37 ELM CNN Not mentioned 3064 93.68 Training-validation

38 Different ConvNet Model-based No 82100 (700
from each tumor type) 84.19 Training-validation

39 GAN-ConvNet CNN No 3064 93.01 8Introduced split,
5-fold CV

40 PETNet CNN No 327 82 classes: 93%,
3 classes: 77% Not mentioned

41 GA-CNN CNN No 3064 94.2% Not mentioned
42 CapsNet CNN No 3064 94.74 5-fold CV
43 DeepCNN-SVM CNN No 3064 97.10 5-fold CV
44 CNN-SVM CNN No 3064 97.10 5-fold CV

45 8ResNet-50
Global average pooling CNN No 3064 97.48 5-fold CV

46 Average pooling CNN No 3064 97.42 5-fold CV
47 EfficientNet CNN Bounding Box 3064 98.04 5-fold CV
20 EfficientNet-B0, ResNet50 CNN Bounding Box 3064 98.95 5-fold CV
21 Combined deep features-SVM CNN Bounding Box 3064 98.98 5-fold CV

Proposed Multiscale features-ensemble CNN U-Net 3064 99.67 5-fold CV

Table 9.  A comparative evaluation with existing techniques.
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Discussion
This study tackles an important problem in medical imaging: correctly classifying brain tumors using MRI scans. 
Brain tumors can be of many shapes, sizes, and locations where they occur. Their timely diagnosis is the key to 
effective treatment planning and better clinical results. This task has traditionally been performed by radiologists 
through image analysis, a process that is slow, open to human error, and varies from practitioner to practitioner. 
To address these difficulties, we developed an automated categorization framework that aimed to increase the 
accuracy and reliability of the diagnosis while being much less dependent on humanization.

Model Accuracy Sensitivity (recall) Specificity Precision F1 score

ResNet50 99.61% 99.41% 98.99% 99.45% 99.43%

InceptionNet 99.62% 99.42% 99.23% 99.59% 99.50%

MobileNet 99.64% 99.59% 99.27% 99.61% 99.60%

Inception-ResNet 99.68% 99.81% 99.46% 99.70% 99.75%

GoogLeNet 99.72% 99.51% 99.64% 99.90% 99.71%

Proposed 99.94% 99.96% 99.92% 99.96% 99.96%

Table 10.  Performance comparison of different models for BTC on BraST2020 dataset.

 

Fig. 11.  Overall model’s performance.
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The experimental results validate the effectiveness of the proposed methodology. As shown in Table  2, 
diversity is evident in the dataset. It includes MRI images of the Glioma, Meningioma, and Pituitary tumor from 
the coronal, sagittal, and transverse planes. This and other types of creative diversity are important in helping the 
model train on a wide range of cases, boosting its generalizability.

Table 3 presents a comparative analysis of the optimization algorithms, with Adagrad achieving the highest 
accuracy (99.67%) at a learning rate of 0.003, while SGD and Adam demonstrate strong performance under 
specific conditions. These findings underscore the importance of hyperparameter tuning in optimizing model 
performance. Similarly, Table 4 reveals that the model reaches its maximum accuracy (99.67%) at 100 epochs, 
after which the performance slightly decreases, probably due to overfitting. Table 5 further demonstrates the 
impact of regularization, with a dropout rate of 0.5 that yields the best accuracy (99.67%), highlighting the need 
to balance the complexity of the modle and the prevention of overfitting.

The classification performance, as shown in Table 6, is highly robust, with minimal misclassification between 
tumor types. In particular, of the 704 cases of Meningioma, only four instances were misclassified, and of the 
1,426 cases of Glioma, only nine misclassifications were observed. Table 7 further confirms the efficacy of the 
model, achieving an overall accuracy of 99.67%, sensitivity of 99.60%, specificity of 99.64%, precision of 99.35%, 
and an F1-score of 99.60%. These metrics indicate that the model is highly reliable, well-balanced, and effective 
in identifying true positives and minimizing false negatives.

In comparative performance analysis, as shown in Table 8, the proposed methodology consistently outperforms 
state-of-the-art deep learning models, such as ResNet50, InceptionNet, and GoogLeNet, achieving an accuracy 
of 99.67%. Further validation on the BraTS2020 dataset Table 10 demonstrates even stronger performance, with 
an accuracy of 99.94%, reinforcing the robustness and adaptability of the model across different datasets. Table 9 
further supports these results, illustrating that our approach surpasses previous methodologies, including BoW-
SVM, CapsNet, and DeepCNN-SVM, particularly in terms of automation and classification accuracy.

Despite these promising results, certain limitations must be acknowledged. One key challenge lies in the 
preprocessing steps required for filtering and morphological analysis, which add complexity to the overall 
workflow. Further work will focus on refining and optimizing the model to create an end-to-end framework that 
performs preprocessing, segmentation, and classification in one step. A second constraint is the computational 
cost of adopting an ensemble learning methodology that requires high-performance hardware and, thus, may be 
challenging to employ in a resource-limited context. Moreover, despite the fact that the datasets we used in this 
study are extensive and diverse, they do not represent all the diversity of tumors presented in clinical practice. 
The model could be improved with generalizability and clinical applicability by extending the datasets to include 
more rare tumor types, demographic data from patients, and larger sample sizes.

Many aspects of current research directions can be improved, and there are exciting opportunities to do 
so. Multimodal medical imaging, such as the fusion of CT with standard PET images, though more expensive, 
would offer additional diagnostic information, which allows the system to be even more generalizable and 
more cross-diagnostic. Instead of 2D slices, 3D imaging techniques have the potential to provide a better tumor 
morphology and size. It could offer even greater diagnostic precision. Another primary direction for future work 
is to increase the interpretability of the model. Deep learning models are often “black boxes”, keeping clinicians 
in the dark about how decisions are made for specific patients. We would integrate the attention map and the 
saliency map to justify the predictions made by the model, which would help build more trust and adoption 
among medical professionals. The techniques developed in this work can be adapted to other areas of medical 
diagnostics. AI-enabled techniques like this can even be custom-built to spot potential malignancies for breast 
cancer, lung nodules, liver lesions, and numerous other forms of cancer, illustrating an area of health services 
that may potentially be immense. By continually refining and adapting these technologies, AI-driven medical 
diagnostics can play a pivotal role in helping physicians, improving patient outcomes, and transforming modern 
healthcare.

Ultimately, while challenges remain, such as computational constraints, dataset variability, and the need for 
greater interpretability, this study represents a significant step forward in AI-powered BTC. By bridging the 
gap between technology and clinical expertise, this research paves the way for a future where AI improves the 
accuracy, efficiency, and accessibility of medical diagnostics, ultimately improving patient care and saving lives.

Conclusion
Extensive research has been conducted on BTC in recent years. By introducing various classification methods, 
an adequate level of accuracy has been achieved in classifying different malignancies. The classification of 
cancers remains ambiguous, and there is always room for new research. Even greater classification accuracy can 
be achieved by employing a pragmatic framework. This study introduces a method to classify brain lesions using 
MRI images. Initially, the visual quality of images is improved by filtering techniques, which combine AGSW 
with guided filtering. These methods facilitate the identification of tumor regions by sharpening images and 
reducing noise. Morphological analysis was used to eliminate irrelevant areas, thereby directing the attention of 
the model solely to the significant regions of the image. The images were segmented using a deep neural network, 
which led to the acquisition of high-quality ROIs. A multiscale technique is then used to extract features, 
simplify complex data processing, and efficiently manage anomalies. To ensure that the model remained focused 
on essential aspects, an attention mechanism that functions as a spotlight is incorporated to emphasize the most 
salient characteristics of the tumor. Finally, to determine the category of the tumor in images, RF, SVM and 
KNN classification models integrated into an ensemble. This enables the network to capitalize on the advantages 
of each model and produce more reliable predictions. Implementing data augmentation strategies reduces the 
incidence of network overfitting. Two datasets that are readily accessible on Figshare and Kaggle were used 
to validate the proposed model. Compared with other procedures of comparable nature, the experiments 
yielded consistent results. The proposed methodology obtains a precise classification rate of 99.67% for Figshare 
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and 99.94% for Kaggle (BraST2020) datasets, surpassing previous research using the same dataset. However, 
precision alone cannot fully convey the complete story. The model also demonstrated excellent performance in 
several key metrics, leading to balanced and highly reliable classification performance. This proposed approach 
eliminates the need for manual segmentation of the lesion prior to classification, resulting in increased speed 
and resilience. The proposed procedure appears to be a suitable classification tool for BTC. The proposed system 
is expected to contribute considerably to the preservation of lives and provide a high level of precision in the 
diagnosis of brain tumors once it is operational.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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