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Machine learning algorithms that integrate multiple biomarkers are increasingly used in disease 
detection, yet economic considerations are often overlooked. Medial vascular calcification (mVC), a 
pathology associated with elevated cardiovascular risk in chronic kidney disease (CKD), requires cost-
effective diagnostic approaches. This pilot study evaluated the cost-effectiveness of machine learning 
models for mVC detection using traditional risk markers and circulating biomarkers in 152 CKD patients 
undergoing living donor kidney transplantation. Patients were classified as having no/minimal (n = 93) 
or moderate/extensive (n = 59) mVC. Five classification frameworks with automatic variable selection 
identified predictors of mVC. Age and copeptin were selected by all algorithms, while diabetes, male 
sex, choline, and osteoprotegerin were chosen by four methods. The number of features selected 
ranged from 5 to 21. Although accuracy differences among classifiers were limited to 3%, models using 
more features nearly tripled the procedure’s cost. By incorporating the incremental cost-effectiveness 
ratio, the study highlighted significant disparities in performance versus cost among classifiers. The 
present findings suggest that machine learning has the potential to complement imaging techniques 
for mVC detection and uncover novel biomarkers. However, modest performance improvements may 
not justify higher costs, underscoring the importance of considering cost-effectiveness when selecting 
classification models.
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Medial vascular calcification (mVC) is a pathological condition, with estimated prevalence rates ranging from 27 
to 80% in the chronic kidney disease (CKD) population1–3. The pathology contributes to the high cardiovascular 
morbidity and mortality in this group of patients4,5. Moreover, a recent study has revealed that it is associated 
with the progression of CKD6. While the pathogenesis of mVC is not fully understood and a causal therapy is 
not available as of today, new therapeutic possibilities are currently being studied7–10. Moreover, the feasibility of 
slowing down mVC progression in patients with CKD has been demonstrated11,12. Therefore, improved methods 
for mVC detection, especially at early stages, is highly warranted.

At present, there is a lack of a dedicated and reliable method of mVC assessment in clinical practice2,13,14. 
Invasive techniques such as artery biopsy15 or transcutaneous ultrasound16 are rarely performed and cannot 
be considered as screening procedures. Both direct semi-quantitative methods such as computed tomography, 
plain X-rays, or ultrasound13, and indirect methods such as measurement of pulse wave velocity that reflects 
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increased arterial stiffness in calcified arteries17,18, are not always available and not easy to perform; therefore, 
the presence of mVC is likely underestimated. Moreover, currently used tools struggle to differentiate between 
the two types of vascular calcification: medial and intimal19–21; this is clinically significant, as these types have 
distinct implications and require different patient care strategies. Recently, a method enabling this differentiation, 
involving the identification of mVC patterns on PET-CT scans, has been introduced22. Nonetheless, the expense 
and limited availability of PET-CT scans highlight the need for an approach that can indicate the presence of 
mVC and readily determine which patients truly require this imaging technique.

Machine learning algorithms, which are designed to detect patterns in data, are thought to have the potential 
to radically improve our ability to diagnose and treat diseases. The large number of potential mVC markers 
complicates mVC diagnosis and statistical feature selection procedures may therefore play a crucial role in 
establishing future diagnostics. In previous studies, numerous biomarkers have been linked with vascular 
calcification including serum biomarkers23, vitamin-K dependent proteins24, various phenotypic features25,26 
and risk factors such as high age, male sex, and diabetes mellitus20. While models for mVC detection have 
demonstrated promising performance quality25, the variability in their cost-effectiveness across different 
frameworks remains unexplored.

In a clinical setting, besides evaluating the statistical performance of the newly introduced methods, their 
overall applicability is a crucial consideration. This covers factors such as the procedure’s availability, safety, 
and the overall expense of the diagnostic procedure. One of the indicators that can characterize the latter is the 
incremental cost-effectiveness ratio (ICER) which provides insights into the method’s cost in relation to the 
potential benefits for patients27.

The objective of this pilot study was to investigate the cost-effectiveness of various machine learning 
frameworks for mVC detection in the chronic kidney disease population. For each of the tested models, in 
addition to conventional classification correctness metrics, ICER was calculated to incorporate both performance 
and cost considerations into evaluation. The most favorable model in terms of ICER was further investigated 
to showcase its possible clinical utility. Finally, we discussed possible pathophysiological associations between 
mVC and the variables selected by the applied algorithms.

Methods
Data investigation, model building process, and performance evaluation were implemented in R version 4.0.5 
and Python version 3.7.

Patients and study design
In this retrospective study, a cohort of patients with advanced CKD undergoing living donor kidney 
transplantation at Karolinska University Hospital was included. The study’s eligibility criteria aligned with 
those established for patients eligible for kidney transplantation. Exclusion criteria were age under 18 years and 
unwillingness to participate in the study. The clinical procedures and protocol of measurements were described 
previously28. The patients gave their informed consent for all performed procedures. The study was approved by 
the regional ethical review board in Stockholm and adhered to the Declaration of Helsinki.

The participants were classified into two groups according to the extent of medial calcification in inferior 
epigastric artery biopsies assessed by an experienced pathologist. ‘Group 0’ included patients with no and 
minimal signs of VC (n = 93), whereas patients having moderate and extensive signs of VC were classified into 
‘Group 1’ (n = 59). The procedure of histological mVC examination was presented in detail in25,28.

The dataset consisted of 60 features in 152 patients. All 60 features were available in 71% of the patients; in 
total, 8.3% of the data were missing. The full data flow is described in25. The dataset included demographic and 
clinical data, circulating biomarkers, body composition and anthropometric measurements, and skin content 
of advanced glycation end products measured by autofluorescence. The investigated features are presented in 
Table 1.

Data preprocessing
First, we standardized the predictors proportionally within the range from 0 to 1. Missing values imputation 
was performed using the k-nearest neighbors algorithm with k = 3 and Euclidean distance measure between 
the patients. mVC, as an outcome variable, was not involved in the imputation process. The distributions of the 
imputed and non-imputed variables did not exhibit statistical differences (Kolmogorov-Smirnov and Chi-square 
test for continuous and discrete distributions, respectively). Feature selection and patient classification were 
performed on the complete, standardized set of variables, while the univariable analysis was performed on the 
raw data.

Data investigation
To choose the appropriate feature selection and classification algorithms, a preliminary data investigation was 
conducted. Firstly, the Spearman rank correlation coefficient was used to reveal interdependencies between the 
analyzed features. Categorical variables (sex, smoking, and diabetes mellitus) were excluded from the analysis. 
Secondly, logistic regression was carried out to assess the interrelationship between a single feature and mVC. To 
account for multiple comparisons, p-values were adjusted using Benjamini-Hochberg correction29.

Methods of feature selection and patient classification
In the process of feature selection and patient classification, the following methods were applied: logistic 
regression with forward Akaike feature elimination process (LR)30, support vector machine with recursive 
feature elimination (SVM)31, random forest with permutation importance (RF)32, logistic regression with elastic 
net penalty (EN)33,34, and, less explored, relaxed linear separability method (RLS)35.
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Feature Median [IQR] ornumber (%)
Univariable logistic regression
OR (95% CI), p-valuea P-value adjustedb

Clinical and demographic

 Age, years 46 [32–56] 4.14 (2.08–8.48), < 0.001 < 0.001

 Diabetes mellitus 14 (9%) NAc)

 Mean arterial blood pressure (meanBP), mmHg 103 [93–111] 1.10 (0.57–2.12), 0.77 0.94

 Sex, male 100 (66%) 3.44 (1.63–7.73), 0.002 0.03

 Smoker 63 (41%) 1.59 (0.80–3.18), 0.19 0.54

Biomarkers

 Albumin, g/L 35 [33–38] 0.79 (0.41–1.52), 0.48 0.78

 Alkaline phosphatase (ALP), U/L 66.2 [51.7–85.1] 1.48 (0.77–2.86), 0.25 0.57

 Angiopoietin 2, pg/mL 4368 [3353–5987] 2.17 (1.08–4.44), 0.03 0.17

 Apolipoprotein A1 (ApoA1), mmol/L 1.38 [1.19–1.56] 0.68 (0.35–1.31), 0.25 0.57

 Apolipoprotein B1 (ApoB1), mmol/L 0.87 [0.72–1.04] 0.91 (0.47–1.76), 0.79 0.94

 Betaine, µmol/L 43.0 [29.0–63.0] 1.36 (0.68–2.72), 0.39 0.70

 Bone alkaline phosphatase (BALP), µg/L 16.40 [11.3–25.5] 1.06 (0.55–2.03), 0.87 0.99

 Calciprotein particles (CPPs), nm 57,170 [23221–134954] 1.00 (0.46–2.16),1.00 1.00

 Calcium, mmol/L 2.28 [2.18–2.41] 0.86 (0.45–1.66), 0.66 0.90

 Carboxylated osteocalcin (GlaOC), ng/mL 35.9 [19.8–67.3] 0.69 (0.35–1.33), 0.27 0.57

 Carboxy-terminal collagen crosslinks (CTX), pg/mL 1.88 [1.00–3.38] 0.79 (0.39–1.60), 0.52 0.78

 Cholesterol, mmol/L 4.4 [3.8–5.1] 0.69 (0.36–1.33), 0.27 0.57

 Choline, µmol/L 94 [77–115] 2.03 (1.01–4.13), 0.047 0.22

 Copeptin, pg/mL 386 [312–490] 2.96 (1.47–6.12), 0.003 0.04

 Desphospho-uncarboxylated MGP (duMGP), pmol/L 1323 [948–1687] 2.20 (1.07–4.62), 0.03 0.17

 Fibroblast growth factor 19 (FGF19), pg/mL 126 [67–194] 0.56 (0.28–1.09), 0.09 0.32

 Fibroblast growth factor 23 (FGF23), pg/mL 4055 [1634–14998] 1.18 (0.62–2.28), 0.62 0.88

 Folate, ng/mL 11.0 [8.8–16.0] 0.59 (0.29–1.20), 0.15 0.48

 Free thyroxine (fT4), pg/mL 14.4 [13.3–16.7] 1.13 (0.59–2.19), 0.71 0.92

 Free triiodothyronine (fT3), pg/mL 3.29 [2.57–3.94] 0.72 (0.37–1.39), 0.33 0.66

 Hemoglobin, g/L 114 [105–121] 1.04 (0.50–2.14), 0.92 0.99

 High-density lipoprotein (HDL), mmol/L 1.35 [1.10–1.60] 0.68 (0.35–1.30), 0.25 0.57

 High sensitivity C-reactive protein (hsCRP), mg/L 0.72 [0.31–2.10] 2.07 (1.07–4.07), 0.03 0.17

 Homocysteine, µmol/L 36 [27–47] 1.91 (0.95–3.89), 0.07 0.27

 Humanin, pg/mL 385 [358–421] 0.90 (0.43–1.85), 0.77 0.94

 8-hydroxydeoxyguanosine (8-OHdG), ng/mL 0.21 [0.15–0.30] 1.36 (0.70–2.66), 0.36 0.68

 IgM anti-MDA, U/mL 102 [67–139] 0.67 (0.33–1.37), 0.28 0.57

 IgM anti-PC, U/mL 102 [69–130] 0.45 (0.21–0.92), 0.03 0.17

 Insulin-like growth factor 1 (IGF1), ng/mL 236 [158–293] 0.35 (0.17–0.72), 0.005 0.05

 Interleukin 6 (IL6), pg/mL 1.20 [0.52–2.01] 0.96 (0.48–1.94), 0.91 0.99

 Interleukin 8 (IL8), pg/mL 5.41 [3.77–8.73] 1.28(0.64–2.54), 0.49 0.78

 Klotho, pg/mL 399 [296–537] 1.06 (0.55–2.04), 0.87 0.99

 Lipoprotein (a), (LPA), mg/L 122 [50–319] 1.29 (0.60–2.76), 0.52 0.78

 Mmitochondrial open reading frame of the 12 S rRNA-c (MOTSc), ng/mL 178 [140–226] 0.71 (0.34–1.47), 0.35 0.68

 Osteoprotegerin, pg/mL 6.26 [5.00–8.14] 4.32 (2.01–9.66), < 0.001 < 0.001

 Parathyroid hormone, intact (PTH), ng/L 253 [153–377] 1.91 (0.97–3.81), 0.06 0.25

 Pentraxin-related protein (PTX3), ng/mL 3.83 [2.00–6.39] 1.20 (0.62–2.32), 0.60 0.87

 Phosphate, mmol/L 1.7 [1.4–2.0] 0.90 (0.46–1.75), 0.76 0.94

 Sclerostin, pg/mL 436 [343–651] 2.22 (1.14–4.41), 0.02 0.16

 Soluble receptor activator of nuclear factor-κB ligand (RANKL), pmol/L 0.07 [0.03–0.12] 1.02 (0.47–2.22), 0.96 1.00

 Tartrate resistant acid phosphatase 5a (TRAP5a), U/L 4.01 [2.93–5.38] 0.64 (0.30–1.31), 0.22 0.57

 Thyroid-stimulating hormone (TSH), mIU/L 0.85 [0.52–1.36] 0.97 (0.50–1.86), 0.92 0.99

 Triglycerides (fPTG), mmol/L 1.3 [1.0–1.8] 1.57 (0.82–3.04) 0.18 0.53

 Trimethylamine N-oxide (TMAO), µmol/L 62.0 [42.0–96.0] 1.01 (0.51–2.01), 0.98 1.00

 Troponin T, µg/L 23.0 [14.0–38.5] 2.70 (1.30–5.76), 0.009 0.08

 Tumor necrosis factor (TNF), pg/mL 11.0 [8.96–14.12] 1.27 (0.63–2.58), 0.50 0.78

 Undercarboxylated osteocalcin (GluOC), ng/mL 17.4 [5.3–56.15] 0.97 (0.50–1.87), 0.92 0.99

 Uric acid (UricAcid), µmol/L 363 [308–442] 0.88 (0.44–1.74), 0.70 0.92

Continued
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Each of the methods was applied in its standard configuration, with algorithm-specific hyperparameter 
optimization conducted where appropriate. For feature selection, we opted for well-established algorithms 
commonly used within the applied classification frameworks. A brief description of the chosen methods can be 
found in the supplementary material. LR, EN, RF and SVM models were built using R caret package, for training 
RLS we used our own MATLAB implementation.

Performance evaluation
All methods were validated in the leave-one-out cross-validation (LOOCV) process. In the algorithms where 
hyperparameter tuning was required, a nested 5-fold cross-validation was incorporated aiming to maximize 
accuracy as the primary optimization criterion. The metrics used to evaluate the predictions were accuracy, 
area under the receiver operating characteristic curve (AUC), precision, recall, and F-score, which are discussed 
in the supplementary material. Additionally, confidence intervals for the LOOCV AUC values were estimated 
using the bootstrap method with 1,000 resamples.

Incremental cost-effectiveness ratio
The incremental cost-effectiveness ratio (ICER)27,36 represents the additional cost incurred for achieving an 
additional unit of health outcome, usually measured in quality-adjusted life years (QALYs). It allows decision-
makers to ensure that limited healthcare resources are directed towards treatments that provide the most 
substantial health benefits relative to their associated costs. Thus, the evaluation of ICER facilitates informed 
decisions about the adoption and funding of medical interventions. In our study, ICER was calculated as:

	
ICER = measure_cost + (prevalence*T P R + (1 − prevalence) *F P R) *ct_price

prevalence*T P R*years_gained

Where:

•	 measure_cost – expense associated with evaluating the biomarkers. For certain biomarkers, their costs are 
considered hyperparameters (parameters with unknown true value) since they are not routinely measured 
- see Supplementary Table S2 for a list. For the biomarkers with unknown costs, where only the kit price is 
available, we introduce an additional factor called the unavailability weight which used to scale the kit prices 
accordingly.

•	 prevalence – a hyperparameter indicating true prevalence of mVC among the advanced CKD population.
•	 TPR – the rate of correctly identified true positive cases by the evaluated method.
•	 FPR – the rate at which the evaluated method incorrectly identifies cases as positive when they are actually 

negative.
•	 ct_price – the price of a PET-CT scan to confirm mVC presence; sourced from a polish laboratory in June 

2023 and converted from PLN to USD at a rate of 0.23, was assumed to be 1127 USD.
•	 years_gained – quality of life years gained due to mVC detection. A hyperparameter.

The pricing details for the biomarkers, sourced from Polish laboratories in June 2023 are presented in Table 2. 
The prices were converted from PLN to USD for clarity using an exchange rate of 0.23. Biomarkers denoted with 
an asterisk (*) represent hyperparameters. In addition, we performed a sensitivity analysis to assess how the 
assumed prices influence the results; see supplementary material. We decided to incorporate the cost of a PET-

Feature Median [IQR] ornumber (%)
Univariable logistic regression
OR (95% CI), p-valuea P-value adjustedb

 Vitamin D 25 (D25Vitamin), nmol/L 34 [26–48] 1.29 (0.66–2.50), 0.46 0.78

Anthropometric measurements

 Body mass index (BMI), kg/m2 24.3 [22.3–26.5] 3.33 (1.70–6.73), 0.001 0.02

 Fat body mass index (FBMI), kg/m2 6.29 [4.73–8.16] 2.13 (0.99–4.68), 0.06 0.24

 Hand grip strength (HandGripStrength), % of control 97.7 [78.1–108.1] 0.80 (0.41–1.57), 0.52 0.78

 Lean body mass index (LBMI), kg/m2 18.1 [16.4–19.7] 1.57 (0.73–3.39), 0.25 0.57

Other measurements

 Advanced glycation end products (skin autofluorescence), (AGEAF) 3.0 [2.6–3.4] 1.81 (0.86–3.87), 0.12 0.41

 Aortic augmentation index (AorticAI), % 20 [11–26] 1.17 (0.59–2.31), 0.66 0.90

Table 1.  The association of individual features, median with interquartile (IQR) range or frequency, with 
medial vascular calcification (VC) as an outcome of univariable logistic regression measured by odds ratio 
(OR) with a 95% confidence interval (95% CI). aThe analysis was performed per median value of each 
quantitative feature (e.g., odds ratio of 4.14 for age means that the odds ratio of mVC in patients above the 
age of 46 years was 4.14 times higher than in a group younger than the median age) or per each dichotomized 
categorical variable (e.g., males were 3.44 times more likely to have mVC than females). bAfter adjusting 
for multiple comparisons, age, male sex, copeptin, IGF1, osteoprotegerin, and BMI remained statistically 
significant (marked with bold font). cNA, not applicable, because all patients with diabetes belong to one 
group, i.e., mVC.
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CT scan in the equation as we presume that, irrespective of how well the classifiers perform, cases with a certain 
likelihood of being positive would be additionally verified using a more direct method.

Results
Data investigation
Spearman correlation analysis revealed the presence of collinearity among certain feature pairs. Associations are 
presented as a heat map in Fig. S1.

Using a univariable logistic regression model, we identified age, male sex, angiopoietin 2, choline, copeptin, 
duMGP, hsCRP, IgM anti-PC, insulin-like growth factor 1, osteoprotegerin, sclerostin, troponin T, and body 
mass index as factors associated with mVC (Table 1). However, after adjusting for multiple comparisons, only 
age, male sex, copeptin, IGF1, osteoprotegerin, and BMI remained statistically significant (Table 1).

Classification frameworks
In a multivariable analysis, we applied five classification frameworks with appropriate variable selection methods. 
To fine-tune SVM, RF, and EN, we conducted hyperparameter optimization. Table S1 in the supplementary 
material presents the calculated optimal values and short parameter descriptions.

The algorithms applied to the data differed regarding features identified as being potentially associated 
with mVC (Table 2). Only age and copeptin were chosen by all five methods (Table 2). The number of selected 
features varied between the methods with 21 features being selected by SVM, 16 by RLS, 11 by EN, 6 by RF, and 
5 features chosen by LR.

The classification ability of the applied methods was measured, among others, by the area under the receiver 
operating characteristic curve (AUC). In the cross-validation evaluation process, the highest AUC was achieved 

Feature LR SVM RF EN RLS Cost (USD) Sum

Age X X X X X 0 5

Copeptin X X X X X 58 5

Diabetes mellitus X X X X 2 4

Choline X X X X 9 4

Osteoprotegerin X X X X 5* 4

Sex, male X X X X 0** 4

BMI X X X 0** 3

FBMI X X X 0** 3

Sclerostin X X X 5* 3

CTX X X 29 2

duMGP X X 5* 2

Homocysteine X X 23 2

IgMantiPC X X 7* 2

AGEAF X 0** 1

Angiopoietin 2 X 5* 1

ApoB1 X 21 1

fT3 X 8 1

fPTG X 5 1

GlaOC X 23 1

GluOC X 5* 1

hsCRP X 7 1

IGF1 X 21 1

IgMantiMDA X 23 1

LBMI X 0** 1

PTX3 X 5* 1

TMAO X 44 1

TroponinT X 14 1

TSH X 9 1

Uric Acid X 9 1

Total number of features 5 21 6 11 16

Table 2.  Features selected using (1) logistic regression (LR), (2) support vector machine (SVM), (3) random 
forest (RF), (4) elastic net (EN), and (5) relaxed linear separability method (RLS). For full feature names, 
see Table 1. *Not measured in clinical practice. The cost is calculated based on the price of the kit per 
measurement. **Cost disregarded because of the relatively low machine expenses; the price per measurement 
is negligible when assuming testing of numerous individuals.
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by LR (0.85 [0.78–0.90]), followed by RLS (0.84 [0.77–0.90]), EN (0.80 [0.72–0.87]), RF (0.80 [0.73–0.86]), and 
SVM (0.78 [0.70–0.85]) (Fig. 1). The values in square brackets represent bootstrapped 95% confidence intervals.

All computed performance evaluation metrics are summarized in Table  3. None of the applied methods 
outperformed the others across all the assessed measures.

Incremental cost-effectiveness ratio
Figure 2 illustrates the Incremental Cost-Effectiveness ratio for the built models across three unknown 
parameters: unavailability weights (1, 10, 20, 30), reflecting the possible increase in procedure costs caused by 
the biomarkers with the unknown prices; true mVC prevalence in CKD population (0.4, 0.6, 0.8); and Quality 
Adjusted Life Years gained. In general, ICER decreases as QUALYs gained increase, indicating better cost-
effectiveness with more QUALYs. Higher unavailability weights lead to higher ICER values for models relying 
on features with unknown costs (all except LR). Additionally, higher disease prevalence tends to result in lower 
ICER values suggesting better cost-effectiveness of the models. Moreover, the examination of the ICER indicate 
that irrespective of the model employed, the procedural costs remain notably low37 when compared with the 
potential gain in quality-adjusted life years (Fig. 2). Logistic Regression (LR), a model requiring only five input 
features, of which only one incurs a substantial cost, remains the cheapest procedure, while SVM, which takes 
21 features as an input, remains the most expensive (Fig. 2). When sticking to the current state of knowledge 
about the prices, i.e., taking into account kit price for the features unavailable to examine in a laboratory, the 
order of ICER follows the order of the number of features. However, when considering the scenario where 
features not currently routinely measured are presumed to be significantly more expensive than the kit price, 
which is much more plausible, there is a shift in ICER outcomes among the methods evaluated. Averaged over 

Method Accuracy AUC Precision Recall F-score

LR 0.74 0.85 0.71 0.58 0.64

SVM 0.71 0.78 0.65 0.54 0.59

RF 0.74 0.80 0.74 0.49 0.59

EN 0.76 0.80 0.87 0.46 0.60

RLS 0.77 0.84 0.71 0.68 0.69

Table 3.  Performance evaluation metrics, including area under the curve (AUC), calculated for the applied 
classification frameworks using leave-one-out cross-validation: (1) logistic regression (LR), (2) support vector 
machine (SVM), (3) random forest (RF), (4) elastic net (EN) and (5) relaxed linear separability method (RLS).

 

Fig. 1.  Receiver operating characteristic (ROC) curves with area under the curve (AUC) for elastic net (EN), 
logistic regression (LR), random forest (RF), relaxed linear separability method (RLS) and support vector 
machine (SVM).
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prevalence, QUALYs, and unavailability weights, LR emerges as the most cost-effective option with mean ICER 
equal to $278, followed by RF ($412), RLS ($445), EN ($608), and SVM ($769). Sensitivity analysis revealed that 
the presented results are consistent regardless of the established feature prices. The only exception is sclerostin; 
assuming a 50% increase in its cost, RLS is favored over RF.

In the supplementary material we explored the LR model’s coefficients and showcase its possible clinical 
utility by calculating ICER for various probability thresholds.

Discussion
In our research, based on the data from 152 participants, we demonstrated the cost-effectiveness of five machine 
learning frameworks for detecting medial vascular calcification in CKD patients, a group susceptible to mVC. 
The algorithms were assessed in terms of statistical performance (Table 3) and cost-effectiveness assessed by the 
incremental cost-effectiveness ratio, ICER (Fig. 2).

Whereas the tested methods had similar predictive power with AUC values between 0.80 and 0.84 and 
most of them identified traditional risk factors including age, diabetes, male sex, and body mass index (BMI) 
as important predictors of mVC in patients with CKD, they yielded different results regarding mVC-related 
features (Table 2). However, the cost differs significantly between the frameworks with LR working on 5 features 
appearing as the most efficient option.

The accuracies of the models were not perfect, underscoring that there is still much to uncover regarding 
the biomarkers associated with mVC and that machine-learning-based algorithms cannot serve as a standalone 
method for assessing mVC presence in CKD patients. However, they can help reduce the frequency of 
performing unnecessary CT scans for individuals who are found to be less likely to have the pathology, based on 
the initial assessment of the biomarkers. This reduction can lead to significant savings in healthcare costs, limit 
radiation exposure, and decrease the time required for diagnostic procedures. In the supplementary material, 
we provide a detailed example using logistic regression to illustrate how model outputs can be translated into 
clinical decision-making. Lowering the cut-off threshold for recommending scans increases diagnostic accuracy 
but reduces potential savings from avoiding unnecessary imaging. The final choice of threshold should be guided 
by clinical context and resource availability, allowing practitioners to balance diagnostic performance with 
operational constraints.

In this pilot study, logistic regression emerged as the most effective method. Besides favorable cost-
effectiveness, as well as simplicity, and interpretability of the coefficients, it offered another advantage over 

Fig. 2.  ICER plots with respect to mVC prevalence, quality of life years gained, and unavailability weight. 
(a) unavailability weight = 1, (b) unavailability weight = 10, (c) unavailability weight = 20, (d) unavailability 
weight = 30. The prices were converted from PLN to USD for clarity.
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the other built classifiers: it required only 5 easily obtainable features (Table 2). This minimizes the likelihood 
of encountering missing values, a situation more common in complex models. However, this interpretation 
is possible only after looking at the models’ cost-effectiveness and the sets of their required features. Solely 
examining performance evaluation metrics (Table 3) makes determining the best of the built models much more 
complex.

Furthermore, examining a panel of different outcomes of the applied feature selection frameworks may 
provide valuable insights into biomarkers potentially related to mVC. A predictor that emerged as particularly 
important in our analysis is copeptin that was chosen by all utilized algorithms (Table 2). This confirms findings 
from a previous study on this topic38. Osteoprotegerin and sclerostin, chosen by 4 and 3 models, respectively, 
have also been demonstrated to be associated with mVC presence15,39. Hence, it would be worthwhile to perform 
a longitudinal study to assess whether it is justified to incorporate one or more of these three biomarkers into 
regular clinical practice.

Finally, we highlight some of the well-established or plausible underlying pathophysiological links between 
the selected variables and mVC (Table S4). This may reinforce the rationale for including some of the identified 
predictors when designing studies aiming at detecting mVC in future investigations.

In the context of applied biomedicine, it is increasingly recognized that the criteria for assessing a successful 
statistical model should extend beyond the predictive power of the classifiers; they ought to also be tailored to 
align with the medical facilities’ condition and capabilities. Thus, the cost of the procedure, the availability, and 
interpretability of the utilized features, should be also considered. Our findings demonstrated that, given certain 
conditions, a framework employing less expensive variables can outperform another that relies on fewer but 
costly ones. This was exemplified by RLS, which produced better results in terms of ICER when compared to 
EN despite utilizing 5 additional features (Fig. 2b–d) and obtaining far worse precision. Moreover, it produced 
equivalent results when compared to RF which employed 10 additional features (Fig. 2c, d). Although effective 
therapies specifically targeting mVC are currently lacking, there are interventions available that can slow its 
progression11,12. This supports the inclusion of years_gained in the ICER calculation, as early detection of mVC 
followed by appropriate clinical management may lead to gains in quality-adjusted life years. In the future, the 
development of therapies capable of reversing mVC would likely increase the expected years_gained, thereby 
reducing the relative cost of using biomarkers as a pre-screening tool, as illustrated in Fig. 2.

A major strength of our study is the comprehensiveness of the performed analysis and that it is based on a 
unique clinical material with histological identification of mVC in artery specimens. To the best of our knowledge, 
this represents one of the most extensive clinical datasets of arterial biopsies gathered from chronic kidney 
disease patients. The collected database includes, inter alia, an evaluation of several factors with documented 
involvement in the disturbed mineral metabolism in CKD and plausible involvement in the etiology of mVC 
such as sclerostin38 osteoprotegerin39, calciprotein particles40, FGF2341, klotho41, and parathyroid hormone42. 
We showed the interdependencies between features (Spearman rho, Fig. S1), univariable associations between 
mVC and each one of the 60 investigated features (Table 1) and performed a multivariable analysis that allowed 
us to select subsets of features associated with mVC, which entered classification models (Table 2). To the best 
of our knowledge, no previous studies on mVC detection analyzed ICER or any other price-related metrics of 
the evaluated procedures.

Our study has several limitations which should be considered when interpreting the results. First, the database 
includes missing values. Whereas their imputation can change the original dataset, including only complete 
cases may result in a considerable reduction of the number of included patients and features and therefore, a 
loss of statistical power. Additionally, many statistical tools and algorithms require a complete dataset; for this 
reason, and considering the relatively small sample size, we decided to fill in the missing data and ensured that 
the variable distribution did not alter significantly post-imputation. It should also be noted that imputation may 
interfere with the stability of feature selection. Furthermore, the lack of external validation is a key limitation, as 
it prevents us from fully assessing the generalizability and robustness of the developed models.

Moreover, due to the retrospective nature of this long-lasting study, some potentially relevant features were 
not analysed which may limit the comprehensiveness of our findings. Missing features include, for example, 
N-terminal pro b-type natriuretic peptide (NT-proBNP) and Gla-rich protein, a vitamin K dependent 
calcification inhibitor43,44.

Another issue is that the costs related to the measurements needed for ICER analysis can vary significantly 
between countries, laboratories, and over time. While the sensitivity analysis revealed the consistency of the 
presented results, it is important to emphasize that the conducted investigation is only a rough estimation of 
the potential costs associated with each procedure. Before implementation of such a detection method, medical 
facilities should estimate the costs based on their resources and capabilities.

Lastly, it is important to note that mVC distribution varies across different vascular beds45,46. In the past, mVC 
presence assessed in the inferior epigastric artery was linked with higher values of coronary artery calcification 
(CAC) score15, which altogether demonstrates the complexity and variability of the condition. However, further 
studies are needed to assess the impact of the selected features on calcification in different vascular beds, as the 
current findings may not be universally applicable.

Conclusion
Our findings showcase the importance of employing analysis that considers not only statistical accuracy but also 
economic implications of proposed machine learning frameworks. In the present study, the incremental cost-
effectiveness ratio (ICER), was found to provide a suitable criterion for model selection, as analysis using ICER 
is where the difference between the models becomes evident. This highlights the importance of considering cost-
effectiveness when selecting the final classifier, as a minor increase in model performance might not balance the 
costs related to measuring model-required inputs. While the findings from this pilot study warrant validation 
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on a larger dataset, we believe that it may encourage other researchers using machine learning algorithms for 
detection of medial vascular calcification to seek optimal solutions that consider not only predictive capabilities 
but also the applicability of the implemented methods.

Data availability
The data that support the findings of this study are not openly available due to reasons of sensitivity and are 
available from the corresponding author upon reasonable request. Data are located in controlled access data 
storage at Karolinska Institutet.
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