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Angina is a condition characterized by chest pain or discomfort due to insufficient blood flow to 
the heart muscle. Effective management focuses on reducing symptoms and preventing disease 
progression through lifestyle modifications, medications, and interventional procedures. Timely 
diagnosis and treatment are crucial for enhancing patient quality of life. Designing and developing 
experimental drugs is challenging and costly, which makes mathematical and computational methods 
essential for efficient drug discovery. In this article, we introduce a novel molecular descriptor based on 
a graph theory-driven degree partitioning technique, integrated into a quantitative structure-property 
relationships (QSPR) framework. Using quadratic regression, we determine the optimal predictors 
for four key properties boiling point, enthalpy of vaporization, flash point, and index of refraction for 
sixteen anti-angina drugs based on nine degree-based topological indices. Furthermore, by combining 
these descriptors with the multi-attribute decision-making additive ratio assessment technique, we 
achieve robust and reliable drug rankings. Our innovative integration of a new molecular descriptor 
with advanced statistical and decision-making methods not only improves predictive accuracy but 
also provides a novel and efficient approach for the development and optimization of angina drug 
therapies.
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Graph theoretical applications in chemistry have increased significantly in the recent years. Chemical graph 
theory is a branch of mathematical chemistry based on topology and applies graph theory to the mathematical 
explanation of chemical procedures. In many areas of chemistry, graphs play an important part in the modeling 
of chemical compounds through the use of molecular structure. A molecular descriptor offers a more precise 
mathematical representation of a possible molecular structure. Molecular descriptors that are most frequently 
utilized are chemical bonding indices. The term topological indices is commonly utilized to characterize these 
chemical bonds. Since the concepts behind topological indices are derived from the concepts of graph theory, 
these are viewed as graph invariants. These molecular descriptors can be distance, degree, and neighborhood-
based, as discussed by Balaban1; Gutman2; Mondal et al.3.

To create novel medications, research is constantly conducted to treat angina patients and cure the illness. 
Although the procedure of designing and developing experimental drugs is expensive, time-consuming, and 
difficult. Mathematical and computational methods are crucial to accomplishing this objective in the best 
possible way. Topological indices: one of these computational and mathematical methods is widely employed in 
the medications utilized to treat different diseases. The topological index is a useful part or the result of specific 
standardized tests that are produced through a logical and computational method that transforms the chemical 
data given within a graphical representation of a molecules, as explained by Arockiaraj et al.4 and Paul et al.5.

The rising resistance of angina to existing medical treatments has discovered novel angina drugs as a 
significant topic to study in pharmaceutical research. QSPR modeling is essential for forecasting the biological 
impact of these medications based on the molecules. Using topological descriptors, which summarize the 
molecular structure in terms of connectivity and can significantly simplify drug property estimation is a crucial 

1Department of Mathematics, COMSATS University Islamabad, 61100 VehariVehari Campus, Islamabad, Pakistan. 
2Department of Mathematics, Division of Science and Technology,University of Education, Lahore, Pakistan. 
3Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan. 4Department of 
Biomedical Engineering, University of Science and Technology, Aden, Yemen. email: a.alameri2222@gmail.com

OPEN

Scientific Reports |        (2025) 15:29324 1| https://doi.org/10.1038/s41598-025-02473-2

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-02473-2&domain=pdf&date_stamp=2025-8-11


component of QSPR modeling. Imani et al.6 examined the quantitative structure activity relationship modeling 
of molecular properties for alzheimers disease using random forest. Abubakar et al.7 evaluated the QSPR analysis 
of 15 antituberculosis medicines using support vector regression and computed the neighborhood degree-based 
topological indices of these medications. Support vector regressions effectiveness was calculated by comparing 
it with classical linear regression. Awan et al.8 explained the topological indices and linear regression models 
of various compounds with potential antimalarial compounds, including quinine, primaquine, artemether, 
artelinic acid, modified triazoles, and others. Different beta-blockers used to treat cardiac disease and computed 
degree-based topological indices for each based on the M-polynomial were explored by Hasani and Ghods9. 
Kirana et al.10 analyzed Quinolone antibiotics using curvilinear regression models and the computation of 
eleven topological indices through QSPR analysis. The application of topological indices for estimating the 
usefulness of various medications utilized to treat blood cancer was the main objective of Zhang et al.11. For a 
family of benzenoid hydrocarbon molecules, Ravi and Desikan12 computed the reduced reverse degree based 
indices in the QSPR analysis. Hui et al.13 utilized topological descriptors as independent variables in both 
linear and multiple regression models to assess the chemical and physical properties of antiemetic medications. 
Degree-based topological descriptors and curvilinear regression models for thirteen skin cancer medications 
were analyzed by Khan et al.14.

An essential field of decision science that deals with difficult decision issues involving several different 
factors is multi-attribute decision-making. This method is crucial in scenarios where judgments cannot be made 
using a single criterion and substitutes for taking into consideration many variables to get a reasonable result. 
Applications of multi-attribute decision-making are found in many fields, such as public policy, engineering, 
business, and healthcare, where decisions frequently have important and far-reaching effects. For example, in 
the healthcare industry, multi-attribute decision-making can help choose the best course of action by weighing 
patient preferences, expenses, adverse reactions, and efficient implementation. The additive ratio assessment 
technique eliminates the influence of different measurement units and simplifies complex decision-making 
problems by using a relative indicator (utility degree) to identify the best alternative. This indicator can indicate 
the differences between the alternatives and the optimal solution. Zavadskas and Turskis15 introduced the additive 
ratio assessment method in 2010. Junior et al.16 developed a decision support system that used the additive ratio 
assessment method to calculate criteria, sub-criteria, and alternative assessment data to provide appropriate 
housing for potential purchasers. Arshad17 utilized the additive ratio assessment and entropy methodologies 
to help decision-makers evaluate potential warehouse locations that best satisfy the organizations operational 
and strategic goals. To determine a final ranking of company assessment data on supplier services, Wahyudi18 
purposed to measure the extent of company experience with supplier services by applying the additive ratio 
assessment approach.

Recent advances in molecular descriptor development have significantly contributed to the field of QSPR 
modeling. For instance, innovative descriptor optimization techniques have enhanced the prediction of chemical 
properties30,31. Other recent works have successfully integrated graph theory-based methodologies to capture 
complex molecular topologies, thereby improving model accuracy32,33. Furthermore, the potential of degree 
partitioning techniques in representing finite graphs has been underscored in contemporary research34–38. In 
our study, we build on these developments by introducing a new molecular descriptor based on a graph theory-
based degree partitioning technique, which provides a robust and efficient representation of molecular topology. 
Comparative analysis with these recent studies confirms the enhanced predictive performance and novelty of 
our approach in the context of anti-angina drug evaluation.

Motivation
We used nine degree based topological indices to develop the QSPR model and evaluated the physiochemical 

properties of sixteen different medications. For the first time, angina drugs are being studied using degree based 
topological indices. We emphasize the importance of selecting medications for treating angina with prioritization 
based on factors such as patient preferences, cost-effectiveness, efficacy, safety, and accessibility. The results of the 
study may help determine which drug is most effective for helping angina patients in managing their symptoms, 
improving their quality of life, and taking better care of their illness. This study also identify the best-ranked 
angina medications that have not been previously studied.

Contribution
The following points summarize our work contribution to this study:

	– There are nine topological indices and sixteen drug structures. By comparing topological indices with four 
physicochemical properties of the medications, QSPR models were developed to evaluate reliability. The com-
putation procedure is carried out for angina drugs such as Acebutolol, Ranolazine, Metoprolol, Amlodipine, 
Atenolol, Carvedilol, Nitroglycerin, Nadolol, Amyl nitrite, Nicorandil, Propranolol, Molsidomine, Nicardip-
ine, Nifedipine, Diltiazem, and Ivabradine. Then, using linear and quadratic regression analysis, the obtained 
values are assessed through QSPR modeling to investigate different physicochemical properties of the medi-
cations, including boiling point, enthalpy of vaporization, flash point, and index of refraction.

	– The analysis of the graphical data is conducted using Microsoft Excel and Matlab to make a graph.
	– We examined the relationship between the rankings produced by the multi-attribute decision-making tech-

nique and the computed topological indices.

Basic definitions
The structure of the medications is represented as a network known as a molecular graph, where every vertex 
represents an atom and every edge represents a chemical bond between the atoms, to compute topological indices. 
Consider a molecular graph G = (V, E) with vertex set V(G) and edge set E(G). In graph G, the numbers |V(G)| 
and |E(G)| stand for the number of vertices and edges, respectively. The degree of vertex u ∈ V(G) is expressed 
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by deg(u) or d(u) and is the number of vertices that are adjacent to u. The expression e = uv, where e ∈ E(G), 
represents the edge between the vertices u and v. Hydrogen atoms are often not included in chemical graphs 
because they have a valence of one since they only make one bond in many organic molecules, as presented by 
Kirmani et al.19. The following degree-based topological indices are utilized in this paper:

First and second Zagreb index
The Zagreb indices developed by Das and Gutman20, Gutman and Trinajstić21 and Gutman et al.22:

	
M1(G) =

∑
uv∈E(G)

[du + dv].

	
M2(G) =

∑
uv∈E(G)

[du.dv].

Harmonic index
Fajtlowicz23 was the one who initially introduced the harmonic index.

	
H(G) =

∑
uv∈E(G)

2
du + dv

.

Forgotten index
The forgotten topological index was introduced by Furtula and Gutman24 in 2015.

	
F =

∑
uv∈E(G)

[d2
u + d2

v].

Inverse sum indeg index
The inverse sum index was presented by Vukičević and Gašperov25 in 2010. Extreme inverse sum index values 
were discovered in 2015 by Sedlar et al.26 for various kinds of graph types, such as chemical trees, connected 
graphs, molecular graphs, and trees. The inverse sum index is defined as follows:

	
ISI(G) =

∑
uv∈E(G)

dudv

du + dv
.

Augmented Zagreb index

	
AZI(G) =

∑
uv∈E(G)

(
dudv

du + dv − 2

)3
.

Atom bond connectivity index
Estrada et al.27 created the degree-based topological index atom bond connectivity index, which is defined as 
follows:

	
ABC(G) =

∑
uv∈E(G)

√
du + dv − 2

dudv
.

Hyper Zagreb index
An enhanced form of the Zagreb index, the hyper Zagreb index was proposed by Shirdel et al.28 in 2013. The 
hyper Zagreb index formula is defined as follows:

	
HM(G) =

∑
uv∈E(G)

(du + dv)2.

Geometric arithmetic index
Vukicevic and Furtula29 described the geometric arithmetic index in 2009. The geometric arithmetic index has 
the following computational definition:

	
GA(G) =

∑
uv∈E(G)

2
√

dudv

du + dv
.

Methods and materials
In this section, we evaluate the topological indices of angina drugs. We analyze sixteen drugs: Acebutolol, 
Ranolazine, Metoprolol, Amlodipine, Atenolol, Carvedilol, Nitroglycerin, Nadolol, Amyl nitrite, Nicorandil, 
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Propranolol, Molsidomine, Nicardipine, Nifedipine, Diltiazem, and Ivabradine. The values of the topological 
indices shown in Table 1 are calculated using the described mathematical techniques. The data in Table 2 are 
obtained from ChemSpider. Fig 1 displays the corresponding drug structures. Additionally, we evaluated various 
topological indices, including the first and second Zagreb index, harmonic index, forgotten index, inverse sum 
indeg index, augmented index, atom-bond connectivity index, hyper Zagreb index, and geometric arithmetic 
index, based on the physicochemical properties of angina medications. These properties include boiling point 
(BP), enthalpy of vaporization (EV), flash point (FP), and index of refraction (IR). We utilized analytical 
approaches, edge partition techniques, degree-counting processes, and theoretical graph utilities to complete 
the mathematical computations. ChemDraw software is a useful tool for drawing chemical structures in two 
dimensions. Microsoft Excel and Matlab are effective tools for constructing line or correlation graphs. Matlab is 
used to create 2D graphs that compare topological indices and drug properties.

Regression models
A regression model is a statistical method used to estimate the relationships between a dependent variable and 
one or more independent variables. It can be used to predict the future strength of the relationship between 
variables and to measure the degree of that relationship. A linear regression model is used to predict the value 
of one variable depending on the value of another variable. The factors we used to predict the value of the 
dependent variable are known as independent or explanatory variables, while the variable we seek to forecast is 

Drugs name BP  (◦C) EV  (kJ/mol) FP  (◦C) IR (cm−1)

Acebutolol 564.1 89.2 295.0 1.543

Ranolazine 624.1 97.2 331.2 1.586

Metoprolol 398.6 68.5 194.9 1.508

Amlodipine 527.2 80.2 272.6 1.546

Atenolol 508.0 81.9 261.1 1.540

Carvedilol 655.2 101.4 350.1 1.657

Nitroglycerin 295.8 51.4 145.7 1.489

Nadolol 526.4 84.3 272.2 1.574

Amyl nitrite 99.1 32.4 10.0 1.425

Nicorandil 456.7 71.7 230.0 1.548

Propranolol 434.9 72.8 216.8 1.581

Molsidomine 354.8 60.0 168.4 1.606

Nicardipine 603.4 89.8 318.7 1.582

Nifedipine 475.3 73.9 241.2 1.559

Diltiazem 594.4 88.6 313.3 1.621

Ivabradine 626.9 92.8 332.9 1.560

Table 2.  Sixteen angina drugs and their physicochemical properties.

 

Drugs Name M1(G) M2(G) H(G) F(G) ISI(G) AZI(G) ABC(G) HM(G) GA(G)

Acebutolol 110 120 10.7333 276 25.3667 171.0313 17.5460 516 22.9167

Ranolazine 154 175 14.4667 384 36.5667 255.6719 23.6508 734 32.0634

Metoprolol 80 85 8.2667 192 18.7176 130.125 13.0561 362 17.3590

Amlodipine 136 160 12.9667 346 32.4 240.625 20.6201 666 28.1511

Atenolol 86 91 8.5 212 19.75 128.875 13.9820 394 18.1281

Carvedilol 154 180 14.5333 378 37.5167 276.3281 23.2417 738 32.5462

Nitroglycerin 62 62 6.4 154 13.7 84.25 10.5558 278 13.0749

Nadolol 112 126 9.6333 304 25.2833 163.4080 16.9471 556 21.7590

Amyl nitrite 28 26 3.5667 62 6.3667 46.75 5.1685 62 6.6547

Nicorandil 66 70 6.9333 156 15.55 109.5156 10.8943 296 14.5173

Propranolol 92 103 8.8667 226 21.85 152.9063 14.3894 432 19.4364

Molsidomine 82 92 8.1 198 19.7167 142.7656 12.7969 382 17.6270

Nicardipine 176 205 16.0333 452 41.5167 290.75 26.6052 862 35.7423

Nifedipine 126 151 11.2333 334 29.5333 210.7656 18.6772 636 24.9605

Diltiazem 148 173 13.3667 380 35.0167 245.2188 22.2246 726 30.0103

Ivabradine 186 223 16.1857 496 43.8476 311.8975 26.9839 942 36.7746

Table 1.  Sixteen angina drugs and the values of nine topological indices.
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known as the dependent variable. This model assumes that the relationship is linear, meaning that changes in the 
independent variables produce proportional changes in the dependent variable. A quadratic regression model 
is used when the relationship between the variables is expected to be curved rather than linear. This model 
fits a parabolic curve to the data by incorporating squared terms of the independent variables, allowing it to 
capture more complex, non-linear relationships. In this section, we examined the connection between computed 
topological indices and physicochemical properties using regression models. We summarized the calculations of 
topological indices and physicochemical properties of molecular structures in Table 1 and Table 2, respectively. 
The resulting values can be used to develop regression models. To establish a connection between the dependent 
and independent variables, we have two regression models for each considered property. For these models, we 
typically have an equation.

	 X = B(Yi) + A

	 X = C(Yi)2 + B(Yi) + A

where X is dependent variable, Yi(i = 1, 2, 3,...) are independent variables, A is the regression model constant, 
and B and C are the coefficients for descriptor.

First Zagreb index
Linear regression

	

BP = 2.8813[M1(G)] + 160.267
EV = 0.345[M1(G)] + 38.4867
FP = 1.7309[M1(G)] + 52.6224
IR = 0.0008141[M1(G)] + 1.4663

Quadratic regression

Fig. 1.  Chemical structures of the drugs that help fight angina disease.
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BP = −0.0220[M1(G)]2 + 7.785[M1(G)] − 71.9402
EV = −0.0028[M1(G)]2 + 0.9697[M1(G)] + 8.9052
FP = −0.0135[M1(G)]2 + 4.7389[M1(G)] − 89.8173
IR = 0.0000[M1(G)]2 + 0.0033[M1(G)] + 1.3473

Second Zagreb index
Linear regression

	

BP = 2.2579[M2(G)] + 195.8964
EV = 0.2693[M2(G)] + 42.891
FP = 1.3551[M2(G)] + 74.1823
IR = 0.0006473[M2(G)] + 1.4752

Quadratic regression

	

BP = −0.0150[M2(G)]2 + 6.0844[M2(G)] − 4.708
EV = −0.0019[M2(G)]2 + 0.7634[M2(G)] + 16.9859
FP = −0.0091[M2(G)]2 + 3.6873[M2(G)] − 48.0778
IR = 0.0000[M2(G)]2 + 0.0027[M2(G)] + 1.3698

Harmonic index
Linear regression

	

BP = 34.9958[H(G)] + 112.6942
EV = 4.2065[H(G)] + 32.6182
FP = 21.0229[H(G)] + 24.0447
IR = 0.009857[H(G)] + 1.4532

Quadratic regression

	

BP = −3.2839[H(G)]2 + 104.1444[H(G)] − 209.1402
EV = −0.4077[H(G)]2 + 12.7911[H(G)] − 7.3365
FP = −2.0149[H(G)]2 + 63.45[H(G)] − 173.4218
IR = −0.0016[H(G)]2 + 0.0433[H(G)] + 1.2977

Forgotten index
Linear regression

	

BP = 1.0558[F(G)] + 183.8097
EV = 0.1259[F(G)] + 41.4652
FP = 0.6344[F(G)] + 66.7236
IR = 0.000291[F(G)] + 1.4751

Quadratic regression

	

BP = −0.0031[F(G)]2 + 2.8319[F(G)] − 26.5146
EV = −0.0004[F(G)]2 + 0.3563[F(G)] + 14.1782
FP = −0.0019[F(G)]2 + 1.724[F(G)] − 62.3027
IR = 0.0000[F(G)]2 + 0.0012[F(G)] + 1.3653

Inverse sum indeg index
Linear regression

	

BP = 11.9335[ISI(G)] + 168.7892
EV = 1.4302[ISI(G)] + 39.4728
FP = 7.1637[ISI(G)] + 57.8769
IR = 0.003456[ISI(G)] + 1.4665

Quadratic regression
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BP = −0.3874[ISI(G)]2 + 32.2857[ISI(G)] − 56.5686
EV = −0.0490[ISI(G)]2 + 4.0046[ISI(G)] + 10.967
FP = −0.2365[ISI(G)]2 + 19.59[ISI(G)] − 79.7183
IR = −0.0002[ISI(G)]2 + 0.0139[ISI(G)] + 1.3514

Augmented Zagreb index
Linear regression

	

BP = 1.5949[AZI(G)] + 188.9077
EV = 0.1908[AZI(G)] + 41.9405
FP = 0.9558[AZI(G)] + 70.2513
IR = 0.0004742[AZI(G)] + 1.4701

Quadratic regression

	

BP = −0.0079[AZI(G)]2 + 4.5234[AZI(G)] − 37.8644
EV = −0.0010[AZI(G)]2 + 0.5618[AZI(G)] + 13.214
FP = −0.0047[AZI(G)]2 + 2.7209[AZI(G)] − 66.4361
IR = 0.0000[AZI(G)]2 + 0.002[AZI(G)] + 1.3522

Atom bond connectivity index
Linear regression

	

BP = 20.8665[ABC(G)] + 122.3617
EV = 2.5058[ABC(G)] + 33.8211
FP = 12.5447[ABC(G)] + 29.685
IR = 0.005819[ABC(G)] + 1.4569

Quadratic regression

	

BP = −1.0740[ABC(G)]2 + 57.5397[ABC(G)] − 151.3737
EV = −0.1348[ABC(G)]2 + 7.1075[ABC(G)] − 0.5269
FP = −0.6626[ABC(G)]2 + 35.1703[ABC(G)] − 139.1967
IR = −0.0005[ABC(G)]2 + 0.0239[ABC(G)] + 1.3218

Hyper Zagreb index
Linear regression

	

BP = 0.5399[HM(G)] + 194.4627
EV = 0.06431[HM(G)] + 42.7621
FP = 0.3246[HM(G)] + 73.0241
IR = 0.0001532[HM(G)] + 1.4756

Quadratic regression

	

BP = −0.0007[HM(G)]2 + 1.2694[HM(G)] + 41.0841
EV = −0.0001[HM(G)]2 + 0.1575[HM(G)] + 23.17
FP = −0.0004[HM(G)]2 + 0.7752[HM(G)] − 21.7045
IR = 0.0000[HM(G)]2 + 0.0005[HM(G)] + 1.3932

Geometric arithmetic index
Linear regression

	

BP = 14.854[GA(G)] + 138.9602
EV = 1.7853[GA(G)] + 35.7787
FP = 8.9204[GA(G)] + 39.8867
IR = 0.00427[GA(G)] + 1.4586

Quadratic regression
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BP = −0.5762[GA(G)]2 + 41.393[GA(G)] − 125.5436
EV = −0.0718[GA(G)]2 + 5.0924[GA(G)] + 2.8184
FP = −0.3528[GA(G)]2 + 25.1725[GA(G)] − 122.0911
IR = −0.0003[GA(G)]2 + 0.0174[GA(G)] + 1.3278

Computed statistical parameters
Different parameters in a regression model have different purposes. The number of items (population) in a 
sample is represented by the quantity N. The constant and coefficient of topological index are represented by A, 
B, and C, respectively. The correlation coefficient between the predicted and actual values of the physicochemical 
properties is represented by r. The r values can indicate a direct relationship (positive value) or an inverse 
relationship (negative value). The r2 provides an assessment of the relationship between independent variables 
changes and dependent variables. The regression model with the highest r2 value is considered highly efficient. 
When the F value in any test is greater than 2.5, it is considered significant. The significance of the obtained data 
is indicated by the value of p. If the value of p≤ 0.05, than the result is significant, otherwise insignificant. The 
regression model Tables 3-11 included the coefficients, the correlation coefficients, square of the correlation 
coefficients (r2), F-ratio test, p values, and significance level.

Implementation of the ARASS (Additive Ratio Assessment) method
The additive ratio assessment method simplifies complex decision-making by selecting the best alternative based 
on a relative indicator, or utility degree. This indicator shows the difference between alternatives and the ideal 
solution while eliminating the influence of varying measurement units. It is a compensatory method in which 
both beneficial and non-beneficial attributes are considered to achieve a feasible solution. The advantage of this 
type of multi-attribute group decision-making method is that it requires minimal computing time, is easy to use, 
and maintains the independence of attributes. The steps involved in evaluating the alternatives are as follows: 

	Step 1:	 Decision-making matrix. The first step is establishing decision-making matrix as shown in Table 12. 

Properties N A B C r r2 F(>2.5) P(≤0.05) Indicator

Linear regression model

BP 16 195.8964 2.2579 - 0.867 0.7516 42.368 0.0000 Significant

EV 16 42.891 0.2693 - 0.8364 0.6995 32.5964 0.0000 Significant

FP 16 74.1823 1.3551 - 0.8643 0.747 41.3373 0.0000 Significant

IR 16 1.4752 0.0006473 - 0.6676 0.4457 11.2584 0.0047 Significant

Quadratic regression model

BP 16 −4.708 6.0844 −0.0150 0.9236 0.853 37.7237 0.0000 Significant

EV 16 16.9859 0.7634 −0.0019 0.9001 0.8102 27.7447 0.0000 Significant

FP 16 −48.0778 3.6873 −0.0091 0.9224 0.8509 37.0974 0.0000 Significant

IR 16 1.3698 0.0027 0.0000 0.8049 0.6479 11.9593 0.0011 Significant

Table 4.  The QSPR model of M2(G) utilized statistical parameters.

 

Properties N A B C r r2 F(>2.5) P(≤0.05) Indicator

 Linear regression model

BP 16 160.267 2.8813 - 0.8837 0.7809 49.9092 0.0000 Significant

EV 16 38.4867 0.345 - 0.856 0.7327 38.3721 0.0000 Significant

FP 16 52.6224 1.7309 - 0.8818 0.7775 48.9319 0.0000 Significant

IR 16 1.4663 0.0008141 - 0.6707 0.4498 11.4454 0.0045 Significant

Quadratic regression model

BP 16 −71.9402 7.785 −0.0220 0.9359 0.876 45.9274 0.0000 Significant

EV 16 8.9052 0.9697 −0.0028 0.9131 0.8337 32.5761 0.0000 Significant

FP 16 −89.8173 4.7389 −0.0135 0.9361 0.8762 46.0228 0.0000 Significant

IR 16 1.3473 0.0033 0.0000 0.7937 0.63 11.0656 0.0016 Significant

Table 3.  The QSPR model of M1(G) utilized statistical parameters.
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X =




Xo1 · · · Xoj · · · X0n

...
. . .

...
. . .

...
Xi1 · · · Xij · · · Xin

...
. . .

...
. . .

...
Xm1 · · · Xmj · · · Xmn




	Step 2:	  Identify the optimal performance rating for each attribute. The next step is to identify the best per-
formance evaluation for each attribute. When there are no preferences among decision-makers, the 
following formula is used to determine the ideal performance ratings: 

	
x0j = max

i
xij , if max

i
xij is preferable;� (1)

Properties N A B C r r2 F(>2.5) P(≤0.05) Indicator

Linear regression model

16 168.7892 11.9335 - 0.8815 0.7771 48.816 0.0000 Significant

16 39.4728 1.4302 - 0.8547 0.7304 37.9346 0.0000 Significant

16 57.8769 7.1637 - 0.879 0.7726 47.576 0.0000 Significant

16 1.4665 0.003456 - 0.6857 0.4702 12.4233 0.0034 Significant

Quadratic regression model

16 −6.5686 32.2857 −0.3874 0.9334 0.8713 44.0185 0.0000 Significant

16 10.967 4.0046 −0.0490 0.9105 0.8291 31.527 0.0000 Significant

16 −79.7183 19.59 −0.2365 0.9325 0.8695 43.3209 0.0000 Significant

16 1.3514 0.0139 −0.0002 0.8047 0.6475 11.9401 0.0011 Significant

Table 7.  The QSPR model of ISI(G) utilized statistical parameters.

 

Properties N A B C r r2 F(>2.5) P(≤0.05) Indicator

Linear regression model

BP 16 183.8097 1.0558 - 0.8692 0.7555 43.2551 0.0000 Significant

EV 16 41.4652 0.1259 - 0.8382 0.7025 33.0616 0.0000 Significant

FP 16 66.7236 0.6344 - 0.8675 0.7525 42.5736 0.0000 Significant

IR 16 1.4751 0.000291 - 0.6435 0.4141 9.8958 0.0072 Significant

Quadratic regression model

BP 16 −26.5146 2.8319 −0.0031 0.9268 0.8589 39.5707 0.0000 Significant

EV 16 14.1782 0.3563 −0.0004 0.9035 0.8164 28.9119 0.0000 Significant

FP 16 −62.3027 1.724 −0.0019 0.9273 0.8599 39.9054 0.0000 Significant

IR 16 1.3653 0.0012 0.0000 0.7858 0.6175 10.494 0.0019 Significant

Table 6.  The QSPR model of F(G) utilized statistical parameters.

 

Properties N A B C r r2 F(>2.5) P(≤0.05) Indicator

Linear regression model

BP 16 112.6942 34.9958 - 0.8905 0.793 53.6271 0.0000 Significant

EV 16 32.6182 4.2065 - 0.8659 0.7498 41.9456 0.0000 Significant

FP 16 24.0447 21.0229 - 0.8886 0.7895 52.5158 0.0000 Significant

IR 16 1.4532 0.009857 - 0.6738 0.454 11.64 0.0042 Significant

Quadratic regression model

BP 16 −209.1402 104.1444 −3.2839 0.9423 0.8879 51.5057 0.0000 Significant

EV 16 −7.3365 12.7911 −0.4077 0.9195 0.8455 35.5797 0.0000 Significant

FP 16 −173.4218 63.45 −2.0149 0.9424 0.8882 51.6158 0.0000 Significant

IR 16 1.2977 0.0433 −0.0016 0.7836 0.614 10.3415 0.0021 Significant

Table 5.  The QSPR model of H(G) utilized statistical parameters.
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x0j = min

i
x∗

ij , if max
i

x∗
ij is preferable.� (2)

	Step 3: 	 Compute a normalized decision matrix. The attribute, whose preferable values are maximum are nor-
malized as follows: 

	

xij = xij

m∑
i=0

xij

.
� (3)

	 The attribute, whose preferable values are minimum are normalized by applying two step procedure: 

Properties N A B C r r2 F(>2.5) P(≤0.05) Indicator

Linear regression model

BP 16 194.4627 0.5399 - 0.8831 0.7799 49.5966 0.0000 Significant

EV 16 42.7621 0.06431 - 0.8509 0.7241 36.735 0.0000 Significant

FP 16 73.0241 0.3246 - 0.8819 0.7777 48.9836 0.0000 Significant

IR 16 1.4756 0.0001532 - 0.6731 0.4531 11.5974 0.0043 Significant

Quadratic regression model

BP 16 41.0841 1.2694 −0.0007 0.9321 0.8689 43.0827 0.0000 Significant

EV 16 23.17 0.1575 −0.0001 0.9050 0.8191 29.438 0.0000 Significant

FP 16 −21.7045 0.7752 −0.0004 0.9335 0.8714 44.056 0.0000 Significant

IR 16 1.3932 0.0005 0.0000 0.7992 0.6387 11.4898 0.0013 Significant

Table 10.  The QSPR model of HM(G) utilized statistical parameters.

 

Properties N A B C r r2 F(>2.5) P(≤0.05) Indicator

Linear regression model

BP 16 122.3617 20.8665 - 0.8959 0.8026 56.9323 0.0000 Significant

EV 16 33.8211 2.5058 - 0.8703 0.7575 43.7204 0.0000 Significant

FP 16 29.685 12.5447 - 0.8946 0.8004 56.1255 0.0000 Significant

IR 16 1.4569 0.005819 - 0.6711 0.4504 11.4732 0.0044 Significant

Quadratic regression model

BP 16 −151.3737 57.5397 −1.0740 0.9447 0.8925 53.9761 0.0000 Significant

EV 16 −0.5269 7.1075 −0.1348 0.9220 0.8501 36.8534 0.0000 Significant

FP 16 −139.1967 35.1703 −0.6626 0.9459 0.8948 55.2621 0.0000 Significant

IR 16 1.3218 0.0239 −0.0005 0.7801 0.6085 10.1048 0.0023 Significant

Table 9.  The QSPR model of ABC(G) utilized statistical parameters.

 

Properties N A B C r r2 F(>2.5) P(≤0.05) Indicator

Linear regression model

BP 16 188.9077 1.5949 - 0.8617 0.7425 40.3752 0.0000 Significant

EV 16 41.9405 0.1908 - 0.8341 0.6957 32.0045 0.0000 Significant

FP 16 70.2513 0.9558 - 0.8578 0.7358 38.9833 0.0000 Significant

IR 16 1.4701 0.0004742 - 0.6882 0.4736 12.5948 0.0032 Significant

Quadratic regression model

BP 16 −37.8644 4.5234 −0.0079 0.9156 0.8383 33.6856 0.0000 Significant

EV 16 13.214 0.5618 −0.0010 0.8923 0.7962 25.3936 0.0000 Significant

FP 16 −66.4361 2.7209 −0.0047 0.9120 0.8317 32.1246 0.0000 Significant

IR 16 1.3522 0.002 0.0000 0.8125 0.6602 12.627 0.0009 Significant

Table 8.  The QSPR model of AZI(G) utilized statistical parameters.
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xij = 1

x∗
ij

;� (4)

	

xij = xij

m∑
i=0

xij

.
� (5)

	 See Table 13

	Step 4:	  Compute a weighted normalized decision matrix. The weighted normalized performance evaluation 
are determined as follows: 

	 vij = xij .wj .� (6)

	 where wj  is the weight (importance) of the j attribute and xij  is the normalized rating of the j attribute as shown 
in Table 14.

	Step 5:	  Compute the overall performance index for every alternative. The total of the weighted normalized 
performance evaluation can be used to determine the overall performance index for every alternative, 
as shown following. 

Alternatives M1(G) M2(G) H(G) F(G) ISI(G) AZI(G) ABC(G) HM(G) GA(G)

Optimization direction max max max max max max max min min

Weights 0.20 0.12 0.231 0.19 0.08 0.04 0.13 0.002 0.007

Optimal values 186 223 16.1857 496 43.8476 311.8975 26.9839 62 6.6547

Acebutolol 110 120 10.7333 276 25.3667 171.0313 17.5460 516 22.9167

Ranolazine 154 175 14.4667 384 36.5667 255.6719 23.6508 734 32.0634

Metoprolol 80 85 8.2667 192 18.7176 130.125 13.0561 362 17.3590

Amlodipine 136 160 12.9667 346 32.4 240.625 20.6201 666 28.1511

Atenolol 86 91 8.5 212 19.75 128.875 13.9820 394 18.1281

Carvedilol 154 180 14.5333 378 37.5167 276.3281 23.2417 738 32.5462

Nitroglycerin 62 62 6.4 154 13.7 84.25 10.5558 278 13.0749

Nadolol 112 126 9.6333 304 25.2833 163.4080 16.9471 556 21.7590

Amyl nitrite 28 26 3.5667 62 6.3667 46.75 5.1685 62 6.6547

Nicorandil 66 70 6.9333 156 15.55 109.5156 10.8943 296 14.5173

Propranolol 92 103 8.8667 226 21.85 152.9063 14.3894 432 19.4364

Molsidomine 82 92 8.1 198 19.7167 142.7656 12.7969 382 17.6270

Nicardipine 176 205 16.0333 452 41.5167 290.75 26.6052 862 35.7423

Nifedipine 126 151 11.2333 334 29.5333 210.7656 18.6772 636 24.9605

Diltiazem 148 173 13.3667 380 35.0167 245.2188 22.2246 726 30.0103

Ivabradine 186 223 16.1857 496 43.8476 311.8975 26.9839 942 36.7746

Table 12.  Decision matrix.

 

Properties N A B C r r2 F(>2.5) P(≤0.05) Indicator

Linear regression model

BP 16 138.9602 14.854 - 0.8906 0.7931 53.6651 0.0000 Significant

EV 16 35.7787 1.7853 - 0.8659 0.7497 41.9428 0.0000 Significant

FP 16 39.8867 8.9204 - 0.8884 0.7892 52.4001 0.0000 Significant

IR 16 1.4586 0.00427 - 0.6877 0.473 12.5634 0.0032 Significant

Quadratic regression model

BP 16 −125.5436 41.393 −0.5762 0.9408 0.8852 50.1069 0.0000 Significant

EV 16 2.8184 5.0924 −0.0718 0.9183 0.8433 34.9822 0.0000 Significant

FP 16 −122.0911 25.1725 −0.3528 0.9404 0.8844 49.7393 0.0000 Significant

IR 16 1.3278 0.0174 −0.0003 0.7970 0.6353 11.3243 0.0014 Significant

Table 11.  The QSPR model of GA(G) utilized statistical parameters.
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Si =

n∑
i=1

vij .� (7)

	 See Table 15.

	Step 6: 	 Determine the utility degree.

	
Ki = si

s0
� (8)

	 where si and s0 are the optimality attributes values as shown in Table 15.

Alternatives M1(G) M2(G) H(G) F(G) ISI(G) AZI(G) ABC(G) HM(G) GA(G)

Optimal values 0.0188 0.0118 0.0201 0.0187 0.0075 0.0038 0.0115 0.0005 0.0011

Acebutolol 0.0111 0.0064 0.0133 0.0104 0.0044 0.0021 0.0075 0.0001 0.0003

Ranolazine 0.0155 0.0093 0.0180 0.0145 0.0063 0.0031 0.0101 0.0000 0.0002

Metoprolol 0.0081 0.0045 0.0103 0.0072 0.0032 0.0016 0.0056 0.0001 0.0004

Amlodipine 0.0137 0.0085 0.0161 0.0130 0.0056 0.0029 0.0088 0.0001 0.0003

Atenolol 0.0087 0.0048 0.0106 0.0080 0.0034 0.0016 0.0060 0.0001 0.0004

Carvedilol 0.0155 0.0095 0.0180 0.0142 0.0064 0.0034 0.0099 0.0000 0.0002

Nitroglycerin 0.0063 0.0033 0.0079 0.0058 0.0024 0.0010 0.0045 0.0001 0.0005

Nadolol 0.0113 0.0067 0.0120 0.0114 0.0043 0.0020 0.0072 0.0001 0.0003

Amyl nitrite 0.0028 0.0014 0.0044 0.0023 0.0011 0.0006 0.0022 0.0005 0.0011

Nicorandil 0.0067 0.0037 0.0086 0.0059 0.0027 0.0013 0.0047 0.0001 0.0005

Propranolol 0.0093 0.0055 0.0110 0.0085 0.0037 0.0019 0.0061 0.0001 0.0004

Molsidomine 0.0083 0.0049 0.0101 0.0074 0.0034 0.0017 0.0055 0.0001 0.0004

Nicardipine 0.0177 0.0109 0.0199 0.0170 0.0071 0.0036 0.0114 0.0000 0.0002

Nifedipine 0.0127 0.0080 0.0140 0.0126 0.0051 0.0026 0.0080 0.0001 0.0003

Diltiazem 0.0149 0.0092 0.0166 0.0143 0.0060 0.0030 0.0095 0.0000 0.0002

Ivabradine 0.0188 0.0118 0.0201 0.0187 0.0075 0.0038 0.0115 0.0000 0.0002

Table 14.  Weighted normalized decision matrix.

 

Alternatives M1(G) M2(G) H(G) F(G) IS(G) AZI(G) ABC(G) HM(G) GA(G)

Optimal values 0.0938 0.0985 0.0870 0.0983 0.0940 0.0953 0.0887 0.2581 0.1530

Acebutolol 0.0554 0.0530 0.0577 0.0547 0.0544 0.0523 0.0577 0.0323 0.0444

Ranolazine 0.0776 0.0773 0.0778 0.0761 0.0784 0.0781 0.0777 0.0161 0.0318

Metoprolol 0.0403 0.0375 0.0445 0.0380 0.0401 0.0398 0.0429 0.0484 0.0586

Amlodipine 0.0685 0.0706 0.0697 0.0686 0.0694 0.0735 0.0678 0.0323 0.0361

Atenolol 0.0433 0.0402 0.0457 0.0420 0.0423 0.0394 0.0459 0.0323 0.0562

Carvedilol 0.0776 0.0795 0.0781 0.0749 0.0804 0.0844 0.0764 0.0161 0.0312

Nitroglycerin 0.0313 0.0274 0.0344 0.0305 0.0294 0.0257 0.0347 0.0645 0.0779

Nadolol 0.0565 0.0556 0.0518 0.0602 0.0542 0.0499 0.0557 0.0323 0.0468

Amyl nitrite 0.0141 0.0115 0.0192 0.0123 0.0136 0.0143 0.0170 0.2581 0.1530

Nicorandil 0.0333 0.0309 0.0373 0.0309 0.0333 0.0335 0.0358 0.0484 0.0701

Propranolol 0.0464 0.0455 0.0477 0.0448 0.0468 0.0467 0.0473 0.0323 0.0523

Molsidomine 0.0413 0.0406 0.0436 0.0392 0.0423 0.0436 0.0421 0.0484 0.0577

Nicardipine 0.0887 0.0905 0.0862 0.0896 0.0890 0.0888 0.0874 0.0161 0.0285

Nifedipine 0.0635 0.0667 0.0604 0.0662 0.0633 0.0644 0.0614 0.0323 0.0408

Diltiazem 0.0746 0.0764 0.0719 0.0753 0.0751 0.0749 0.0730 0.0161 0.0339

Ivabradine 0.0938 0.0985 0.0870 0.0983 0.0940 0.0953 0.0887 0.0161 0.0277

Table 13.  Normalized decision matrix.
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	Step 7:	  Rank the alternatives and select the most effective one. After calculating Ki, the alternatives are ranked 
accordingly. For the given attribute, the alternative with the highest K′

i value is considered the best 
compromise solution and is ranked first, with the remaining alternatives ranked in descending order as 
shown in Table 15 and graphically shown in Fig. 2.

Graphical analysis of correlation coefficients
The correlation coefficient is a crucial measure because it indicates how well the theoretical models align 
with actual experimental data. This information can be valuable for chemists and pharmacists in developing 
effective treatments, including medications for angina. The P-value indicates the significance of the correlation 
coefficients. For results to be considered statistically significant, the P-value must be less than or equal to 0.05, 
and the correlation coefficients should lie within the range of −1 to 1. Values of the correlation coefficient for 
linear and quadratic regression models are shown in Table 16. Various types of graphs can be used to represent 
the data, including bar charts, line graphs, area graphs, curved graphs, scatter plots, pie charts, pictographs, 
column charts, and bubble charts. Fig. 3 and 4 show the relationship between properties and topological indices 
using curved graphs. The x-axis displays the names of the nine topological indices, while the y-axis shows the 
corresponding correlation values. Boiling point, enthalpy of vaporization, flash point, and index of refraction are 
physical properties of substances that often exhibit strong correlations with one another. All of the graphs have 
a positive x-axis because the topological indices (predicted values) and the properties (experimental values) are 
positively correlated. Ultimately, we find that the correlation coefficients and topological indices are significant.

Fig. 2.  Ranking of angina treatment medications via ARASS.

 

Alternatives Si Ki ARASS ranking

Optimal values 0.0938 1.0000

Acebutolol 0.0556 0.5928 8

Ranolazine 0.0770 0.8209 4

Metoprolol 0.0410 0.4371 13

Amlodipine 0.0690 0.7356 6

Atenolol 0.0436 0.4648 11

Carvedilol 0.0771 0.8220 3

Nitroglycerin 0.0318 0.3390 15

Nadolol 0.0553 0.5896 9

Amyl nitrite 0.0164 0.1748 16

Nicorandil 0.0342 0.3646 14

Propranolol 0.0465 0.4957 10

Molsidomine 0.0418 0.4456 12

Nicardipine 0.0878 0.9360 2

Nifedipine 0.0634 0.6759 7

Diltiazem 0.0737 0.7857 5

Ivabradine 0.0924 0.9851 1

Table 15.  Optimality function, utility degree and ranking.

 

Scientific Reports |        (2025) 15:29324 13| https://doi.org/10.1038/s41598-025-02473-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Applications of multi-attribute group decision-making
Multi-attribute group decision-making is a field within decision science that focuses on decision-making 
processes where a group of decision-makers evaluates multiple attributes. Multi-attribute group decision-
making is widely applied across various fields because it effectively manages complex decision problems that 
involve multiple attributes and the input of various experts. Here are several key applications of multi-attribute 
group decision-making:

	– In drug formulation, multi-attribute group decision-making techniques can be used to balance factors like 
drug stability, release rate, and patient compliance. This helps in designing formulations that meet both sci-
entific and practical requirements. Multi-attribute group decision-making can assist in evaluating poten-
tial drug targets by assessing various attributes such as biological relevance, drug ability, and potential for 
off-target effects. This allows researchers to prioritize targets that are most promising for drug development. 
Multi-attribute group decision-making methods can help rank compounds based on multiple factors like 
biological activity, toxicity, and pharmacokinetics. This helps in selecting the most promising leads for further 
development.

	– In transportation networks, communication networks, or supply chain logistics, multi-attribute group deci-
sion-making can be used to select the optimal path based on multiple criteria like distance, cost, time, and 
reliability. For designing transportation systems, such as road networks or public transit systems, multi-at-
tribute group decision-making helps in selecting routes and connections by weighing factors like travel time, 
distance, cost, and safety. In designing communication networks (such as telecommunication or computer 
networks), multi-attribute group decision-making can be used to decide on the optimal network structure by 
considering multiple criteria like cost, bandwidth, latency, and reliability. Suppliers and manufacturers form 

Fig. 3.  Graphs of the correlation coefficient of the linear regression model.

 

Values of linear regression model
Values of quadratic regression 
model

Topological indices BP EV FP IR BP EV FP IR
M1(G) 0.8837 0.856 0.8818 0.6707 0.9359 0.9131 0.9361 0.7937

M2(G) 0.867 0.8364 0.8643 0.6676 0.9236 0.9001 0.9224 0.8049

H(G) 0.8905 0.8659 0.8886 0.6738 0.9423 0.9195 0.9424 0.7836

F(G) 0.8692 0.8382 0.8675 0.6435 0.9268 0.9035 0.9273 0.7858

ISI(G) 0.8815 0.8547 0.879 0.6857 0.9334 0.9105 0.9325 0.8047

AZI(G) 0.8617 0.8341 0.8578 0.6882 0.9156 0.8923 0.9120 0.8125

ABC(G) 0.8959 0.8703 0.8946 0.6711 0.9447 0.9220 0.9459 0.7800

HM(G) 0.8831 0.8509 0.8819 0.6731 0.9321 0.9050 0.9335 0.7992

GA(G) 0.8906 0.8659 0.8884 0.6877 0.9408 0.9183 0.9404 0.7970

Table 16.  Correlation coefficient of linear and quadratic regression models.
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a network, and multi-attribute group decision-making can help in selecting the best suppliers by considering 
criteria such as cost, quality, delivery time, and reliability. The network of suppliers is analyzed using graph 
theory, and decision-makers evaluate potential suppliers to optimize the supply chain. Decision-makers eval-
uate different paths (edges) and nodes (vertices) to determine the best route that satisfies all individuals.

	– In data analysis, graphs can represent relationships between data points, and multi-attribute group deci-
sion-making can be applied to cluster these data points based on multiple attributes like similarity, distance, 
or connectivity. Decision-makers evaluate different clustering options to find the most meaningful grouping. 
In large networks, identifying communities or clusters is crucial for understanding network dynamics. Mul-
ti-attribute group decision-making helps in partitioning the network into clusters by considering criteria like 
modularity, density, and edge.

	– In education, multi-attribute group decision-making techniques are used to rank universities or academic 
programs based on criteria like academic performance, research output, faculty quality, and student satisfac-
tion. Educational institutions apply multi-attribute group decision-making to design curricula that balance 
theoretical knowledge, practical skills, and industry relevance.

	– Governments and organizations use multi-attribute group decision-making to develop energy policies by 
considering criteria like sustainability, cost, energy security, and public acceptance. Multi-attribute group 
decision-making is applied in evaluating renewable energy projects (e.g., wind, solar) by assessing environ-
mental impact, cost, and energy output.

Results and discussion
QSPR models provide an overview of the relationship between chemical structures and biological activity, aiding 
in chemical analysis. QSPR models can predict the properties of novel molecular structures. This section discusses 
the relationship between physicochemical properties and chemical invariants as well as the results of linear and 
quadratic regression analyses. The approach developed in this study employs QSPR analysis to correlate the 
physical and chemical properties of angina drugs with specific topological descriptors. We analyzed the drugs 
using the assigned topological indices to achieve optimal outcomes. The goal is to identify the numerical values 
that exhibit a strong correlation.

In Table  17, we compare our degree-based topological indices with other commonly used molecular 
descriptor sets such as RDKit, Mordred, and alvaDesc. The table summarizes key aspects including the number 
of descriptors, computational complexity, interpretability, and predictive accuracy. Our approach uses only 9 
descriptors, resulting in low computational complexity and high interpretability while achieving comparable 

Descriptor Set Number of Descriptors Computational Complexity Interpretability Predictive Accuracy

Our Degree-Based Topological Indices ∼9 Low High Comparable

RDKit Hundreds Medium Medium Good

Mordred ∼1800 High Low–Medium Good

alvaDesc Several Hundred Medium–High Medium Good

Table 17.  Comparison of Molecular Descriptor Sets.

 

Fig. 4.  Graphs of the correlation coefficient of the quadratic regression model.
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predictive performance. In contrast, RDKit and alvaDesc offer approximately 300 and 500 descriptors 
respectively, with medium levels of complexity and interpretability, whereas Mordred provides around 1800 
descriptors, which can lead to higher computational demands and reduced interpretability. Figure 5 graphically 
illustrates these differences by depicting the number of descriptors for each descriptor set, further emphasizing 
the streamlined and efficient nature of our method.

Conclusions
This research observed the properties of sixteen angina drugs, namely Acebutolol, Ranolazine, Metoprolol, 
Amlodipine, Atenolol, Carvedilol, Nitroglycerin, Nadolol, Amyl Nitrite, Nicorandil, Propranolol, Molsidomine, 
Nicardipine, Nifedipine, Diltiazem, and Ivabradine. One effective technique employed by scientists to reduce 
unnecessary laboratory costs is QSPR analysis, which uses topological descriptors for medications treating 
various diseases. A QSPR model was developed using linear and quadratic regression analysis to estimate 
properties such as boiling point, enthalpy of vaporization, flash point, and index of refraction. All topological 
indices demonstrated a strong correlation with these properties of the angina drugs. The prioritization of drugs 
can be viewed as a multi-attribute group decision-making challenge. The ARAS method is particularly flexible in 
addressing diverse decision-making scenarios, especially when decision-makers possess varying levels of expertise 
or when criteria weights may change. The method is designed to be robust, ensuring that the final rankings are 
consistent and reflect the collective preferences of the group. This approach facilitates the integration of both 
qualitative and quantitative criteria, making it particularly suitable for complex decision-making scenarios that 
involve multiple factors. To demonstrate the application of this effective multi-attribute group decision-making 
technique, sixteen angina medications were evaluated. The methodology relies heavily on thorough evaluations 
and has been successfully applied within the framework of topological indices. We identified ivabradine as 
the most suitable medication, closely aligning with the optimal solution. Future research in the field of angina 
treatment should focus on advancing personalized medicine, developing innovative pharmacological therapies, 
and leveraging regenerative medicine. The potential of regenerative medicine, including stem cell therapy and 
tissue engineering, should be a priority to restore damaged cardiac tissue. Integrating digital health technologies 
and artificial intelligence to improve real-time patient monitoring and personalized treatment plans will also be 
crucial in shaping the future of angina care.

Data availability 
The datasets used or analysed during the current study available from the corresponding author on reasonable 
request
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