Table 4 The Logistic model that depicts the deterioration of the internal friction angle and the cohesion under dry–wet-freeze–thaw in silty clay.

From: Experimental study on shear strength and deterioration behavior of silty clay under dry-wet-freeze-thaw cycles

Moisture content/%

Logistic internal friction angle deterioration model (\(R^{2}\))

Logistic cohesion deterioration model (\(R^{2}\))

10

\({D_{WDFT}} = 27.61 - \frac{{27.61}}{{1 + {{\left( {\frac{{{N_{WDFT}}}}{{1.14}}} \right)}^{1.19}}}}\,\,(0.996)\)

\({D_{WDFT}} = 59.35 - \frac{{59.35}}{{1 + {{\left( {\frac{{{N_{WDFT}}}}{{1.51}}} \right)}^{1.38}}}}\,\,(0.993)\)

14

\({D_{WDFT}} = 25.91 - \frac{{25.91}}{{1 + {{\left( {\frac{{{N_{WDFT}}}}{{1.25}}} \right)}^{1.40}}}}\,\,(0.989)\)

\({D_{WDFT}} = 57.47 - \frac{{57.47}}{{1 + {{\left( {\frac{{{N_{WDFT}}}}{{1.65}}} \right)}^{1.45}}}}\,\,(0.978)\)

18

\({D_{WDFT}} = 24.10 - \frac{{24.10}}{{1 + {{\left( {\frac{{{N_{WDFT}}}}{{1.33}}} \right)}^{1.57}}}}\,\,(0.977)\)

\({D_{WDFT}} = 55.91 - \frac{{55.91}}{{1 + {{\left( {\frac{{{N_{WDFT}}}}{{1.82}}} \right)}^{1.61}}}}\,\,(0.991)\)

22

\({D_{WDFT}} = 22.50 - \frac{{22.50}}{{1 + {{\left( {\frac{{{N_{WDFT}}}}{{1.43}}} \right)}^{1.79}}}}\,\,(0.974)\)

\({D_{WDFT}} = 52.16 - \frac{{52.16}}{{1 + {{\left( {\frac{{{N_{WDFT}}}}{{2.06}}} \right)}^{1.73}}}}\,\,(0.943)\)

26

\({D_{WDFT}} = 21.28 - \frac{{21.28}}{{1 + {{\left( {\frac{{{N_{WDFT}}}}{{1.59}}} \right)}^{1.92}}}}\,\,(0.963)\)

\({D_{WDFT}} = 50.28 - \frac{{50.28}}{{1 + {{\left( {\frac{{{N_{WDFT}}}}{{2.11}}} \right)}^{1.85}}}}\,\,(0.907)\)