Table 4 Performance comparison of different methods under varying signal-to-noise ratios.

From: RS-SCBiGRU: a noise-robust neural network for high-speed motor fault diagnosis with limited samples

Methods

0

2

4

6

8

Accuracy (%)

F1 (%)

Accuracy (%)

F1 (%)

Accuracy (%)

F1 (%)

Accuracy (%)

F1 (%)

Accuracy (%)

F1 (%)

Proposed method

57.65

53

72.00

68.89

84.49

83.28

91.80

91.31

95.04

94.84

SCBiGRU

51.91

45.75

64.44

60.45

76.05

73.59

83.54

82.08

88.13

87.22

BiGRU

43.11

33.10

53.94

47.03

67.06

62.31

77.69

74.71

85.47

83.60

BiLSTM

41.56

31.66

52.98

45.29

64.51

57.84

74.27

69.06

81.27

77.83

DAMN

28.13

15.91

31.82

19.81

35.45

23.84

37.71

26.53

45.29

36.52

MSCNN

10.00

1.82

10.00

1.82

10.09

1.99

13.73

6.28

22.87

15.72

MSCNN-LSTM

27.76

18.35

30.36

20.11

33.02

23.04

36.00

26.80

41.35

33.57

RNN-WDCNN

58.18

53.01

71.84

69.86

81.31

79.95

87.25

86.62

90.04

89.49

WDCNN

47.51

41.11

56.04

51.30

62.78

59.76

69.09

67.41

73.95

72.77