Table 6 Comparative performance evaluation of fault diagnosis methods across varying sample sizes.

From: RS-SCBiGRU: a noise-robust neural network for high-speed motor fault diagnosis with limited samples

Methods

10 samples

20 samples

30 samples

40 samples

Accuracy (%)

F1 score (%)

Accuracy (%)

F1 score (%)

Accuracy (%)

F1 score (%)

Accuracy (%)

F1 score (%)

RS-SCBiGRU

84.02

82.78

92.55

92.37

90.35

90.20

93.23

93.25

SCBiGRU

82.84

82.20

91.36

91.16

89.89

89.66

90.40

90.54

BiGRU

74.18

72.55

81.33

81.58

81.99

82.01

84.02

83.71

BiLSTM

73.88

72.13

78.05

77.82

82.21

82.94

85.96

85.59

DAMN

78.62

77.23

81.29

80.34

83.09

82.99

85.77

85.61

MSCNN

82.65

82.93

91.90

91.52

80.91

79.13

81.49

79.60

MSCNN-LSTM

38.32

37.36

56.90

55.09

73.95

72.00

82.40

80.86

RNN-WDCNN

74.51

73.30

86.28

86.07

86.82

86.52

90.16

89.85

WDCNN

58.75

57.12

76.85

75.62

86.30

85.96

88.72

88.63