Table 7 Performance comparison of different methods under varying signal-to-noise ratios.

From: RS-SCBiGRU: a noise-robust neural network for high-speed motor fault diagnosis with limited samples

Methods

0

2

4

6

8

Accuracy (%)

F1 (%)

Accuracy (%)

F1 (%)

Accuracy (%)

F1 (%)

Accuracy (%)

F1 (%)

Accuracy (%)

F1 (%)

RS-SCBiGRU

51.41

45.41

64.48

59.68

74.10

72.67

81.45

79.55

86.51

85.66

SCBiGRU

41.94

33.61

55.20

48.53

68.81

66.89

80.45

78.30

85.97

84.28

BiGRU

42.46

36.02

52.67

47.16

62.87

63.87

69.21

67.50

74.12

73.23

BiLSTM

35.16

27.78

44.08

37.79

56.41

53.30

63.37

59.97

69.67

67.34

DAMN

12.63

3.09

14.08

4.01

18.55

7.53

23.01

13.01

31.23

22.68

MSCNN

19.35

9.25

21.86

11.46

27.60

14.57

29.19

18.28

35.57

25.38

MSCNN-LSTM

14.13

7.38

16.48

9.84

20.04

12.24

21.78

15.70

28.02

22.67

RNN-WDCNN

50.25

44.48

59.28

55.40

67.97

67.57

74.56

73.23

79.21

78.32

WDCNN

39.55

34.50

50.53

46.90

58.96

57.96

65.99

64.08

70.01

68.36