Table 2 Predictive model based on machine learning algorithms.

From: Radiomics-based machine learning model for diagnosing internal abdominal hernias: a retrospective study

Model_name

Accuracy

AUC

95% CI

Sensitivity

Specificity

PPV

NPV

Task

LR

0.972

1.000

1.000–1.000

0.944

1.000

1.000

0.947

train

LR

0.900

1.000

1.000–1.000

0.800

1.000

1.000

0.833

test

SVM

0.972

1.000

1.000–1.000

0.944

1.000

1.000

0.947

train

SVM

0.900

1.000

1.000–1.000

0.800

1.000

1.000

0.833

test

KNN

0.861

0.965

0.916–1.000

0.833

0.889

0.882

0.842

train

KNN

0.800

0.940

0.799–1.000

0.800

0.800

0.800

0.800

test

RandomForest

0.944

0.985

0.952–1.000

0.944

0.944

0.944

0.944

train

RandomForest

0.900

1.000

1.000–1.000

0.800

1.000

1.000

0.833

test

ExtraTrees

0.944

0.997

0.988–1.000

0.889

1.000

1.000

0.900

train

ExtraTrees

0.900

1.000

1.000–1.000

0.800

1.000

1.000

0.833

test

XGBoost

0.917

0.998

0.994–1.000

0.833

1.000

1.000

0.857

train

XGBoost

0.900

1.000

1.000–1.000

0.800

1.000

1.000

0.833

test

LightGBM

0.500

0.500

1.000–1.000

0.000

1.000

0.000

0.500

train

LightGBM

0.500

0.500

1.000–1.000

0.000

1.000

0.000

0.500

test

MLP

0.944

0.988

0.961–1.000

0.889

1.000

1.000

0.900

train

MLP

0.900

1.000

1.000–1.000

0.800

1.000

1.000

0.833

test