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Iron deficiency anemia (IDA) is a major public health concern among women of reproductive age 
leading to high maternal mortality. Pakistan being one of the Lower –Middle income countries (LMIC) 
is facing this challenge tremendously. The objective of this study is to determine the impact of IDA on 
gut microbial diversity as well as its relationship with microbial metabolites.16 S rRNA gene profiling 
of healthy and IDA affected meconium samples was performed with additional meta-data collected 
through questionnaire. The anemia was linked to different dietary parameters through chi-square test 
of independence and Generalized Linear Latent Variable Model (GLLVM). Anaerobic bacterial genera 
such as Coprococcus, Anaerovoracaceae, strongly associated with anemia and negatively correlated 
with red meat and fish consumption. Moreover, these microbes positively correlated with branched 
short chain fatty acids (BSCFAs) production. BSCFAs have strong implications in metabolic disorders. 
This study provides a snapshot of how anemia modulates gut microbial diversity and microbial 
metabolites production which may have an impact on iron metabolism.
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Iron deficiency anemia is the most prevalent condition that arises from inadequate intake or absorption of 
nutrients, leading to impaired erythrocyte production and subsequent decline in red blood cell (RBC) count 
and hemoglobin (Hb) levels1. Despite its global prevalence, it is overrepresented in low- and middle-income 
countries (LMICs) such as Sub-Saharan Africa and Southeast Asia due to low dietary iron intake imposing a 
significant economic burden2. Various factors including deficiencies in iron, folic acid, vitamin B12, and vitamin 
A3,4, and genetic disorders contribute to anemia. Iron deficiency occurs when the synthesis of hemoglobin 
and iron-harboring enzymes is restricted by iron primarily due to malnutrition, inadequate intestinal 
iron absorption, consumption of iron-deprived foodstuff, or increased iron absorption by the fetus during 
pregnancy5,6. In SouthAsia, 52% of children under five (CU5) and 49% of women of reproductive age (WRA) are 
anemic7. Pakistan has the second- highest prevalence of anemia in CU5 (53%) and fourth highest among WRA 
(41.3%)8. Severe gestational anemia has been documented to be associated with low birth weight9, increased 
risk of preterm birth, and neonatal or maternal mortality10. Moreover, poor cognitive development, and delayed 
mental and motor development have been reported in babies born to anaemic mothers4.

Key parameters for anemia estimation includes hemoglobin (Hb) levels, hematocrit, RBCs count, mean 
corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), and red cell distribution 
width (RDW), and Neutrophil-Lymphocyte ratio (NLR)11. In anemic patients, these values are typically lower 
than normal range, indicating the severity and type of anemia. MCV helps to classify microcytic, normocytic, 
or macrocytic anemia12. Haem and non-haem iron from dietary sources are absorbed in intestinal cells by 
employing multiple transporters and a peptide hormone i.e. hepcidin12. Regulation of intracellular iron is critical 
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not only for humans but also for the diverse gastrointestinal microbial communities13. The lack of intestinal 
absorption leads to unadsorbed iron that modulates gut microbiota. The unadsorbed iron initiates inflammation 
by influencing Streptococcus spp., Enterococcus spp., and Clostridia spp. and depletion of beneficial bacteria like 
Lactobacillus14. The close association of gut microbiota with anemia has postulated that gut microbes might 
contribute to hematopoiesis15. The human gut harbors an immense number of microbes termed microbiota 
that have a profound impact on nutrition, metabolism, and immunity16. Increased iron availability results 
in an increase in pathogenic bacteria such as Salmonella typhimurium, E.coli, and Enterobacteriaceae along 
with a reduction in the presence of beneficial ones including Bifidobacteria17,18. In iron-limiting conditions, 
the pathogenic microbes produce iron-scavenging molecules termed as siderophores. Apart from pathogenic 
bacteria, commensal bacteria including Escherichia19, Bifidobacterium20, Enterococcus21, and Bacteroides22 
produce siderophores or use siderophores produced by other species to scavenge iron. Iron deficiency anemia 
leads to gut dysbiosis where a low abundance of Lactobacillus23, Firmicutes23, genera like Coriobacteriaceae24, 
and a high abundance of Proteobacteria23 Enterobacteriaceae, Veillonellaceae24 has been reported previously. 
Moreover, microbial metabolites such as short-chain fatty acids (SCFAs) including acetate, propionate, 
and butyrate, have been proposed to mediate iron absorption22,25. A decrease in butyrate-producing genera 
including Roseburia, Coprococcus, and Butyricoccus has been associated with IDA without any change in fecal 
butyrate levels25. Gut microbiota produce metabolites that suppress an important effector molecule i.e. hypoxia-
inducible factor 2alpha (HIF-2 alpha) and increase the iron storage ferritin protein level resulting in decreased 
iron absorption by the host26.

The present study aims to identify the changes in the dynamic landscape of the gut of infants born to healthy 
and anaemic mothers, concerning the microbial communities present there. A comprehensive understanding of 
the impact of IDA on the gut microbiome and SCFAs will reveal the underlying features of its pathogenesis. This 
study revealed alteration in the microbiome in anemic meconium samples along with a shift in SCFAs signature 
that might lead to decreased iron absorption and consequently anemia.

Results
Association of anemia with anthropometric parameters
In the first step, we performed contingency analysis to find the linear dependence in the data set between the 
anemic status and all covariates of interest including dietary factors, sociodemographic features, complete blood 
count, education, pregnancies, and miscarriages with anemia. Amongst these, we found a very strong association 
of the covariables with between severe anemia, moderate anemia, and normal individuals. A self-administered 
questionnaire was designed to examine the characteristics of participants at the time of sample collection. We 
utilized the χ 2 test of independence to identify dependencies between these characteristics, focusing primarily 
on the current health status of participants—categorized as

normal, moderate anemic, and severe anemic. Statistically significant relationships were further explored 
through Pearson residuals to discern attractors (positive associations) and repellents (negative associations) 
within these categories. The results are shown in the Additional file (Figs), and then summarized in Table 1 in 
terms of most significant attractors.

Dietary association with anemic status
The contingency analysis revealed significant dietary influences on anemia status. Consumption of red meat 
and fish was strongly associated with normal health status (Supplementary Figure S1). Participants who do not 
consume fruits are found more likely to suffer from severe anemia, while those who consume, showed healthier 

2 P-value

Patient status: Education 13.350 0.101

Patient status: Socio-economic status 2.211 0.688

Patient status: Diet Fruits 8.017 0.012

Patient status: Diet Vegetables 1.887 0.420

Patient status: Diet Chicken 0.769 0.748

Patient status: Diet Red meat 26.487 0.000

Patient status: Diet Milk 1.275 0.529

Patient status: Diet Fish 16.049 0.004

Patient status: Occupation 3.888 0.248

Patient status: Demographic Region 2.710 0.231

Patient status: Blood group 10.323 0.701

Patient status: Disease Hypertension 0.320 1

Patient status: Disease Diabetes 1.171 0.522

Patient status: Gestation 0.695 0.850

Patient status: Blood transfusion before delivery 61.478 0.000

Patient status: Gender of baby 0.0367 0.984

Table 1.  χ2 test of independence between patient status and other categorical covariates considered in this 
study. The significant relationships are further explored in Fig. 1.
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statuses ( χ 2 = 8.02; p < 0.05). Similarly, fish consumption was associated with normal health status, in contrast 
to non-consumers who tended to be moderately anemic ( χ 2 = 26.49; p < 0.05). Red meat consumption also 
demonstrated a positive association with normal health status, compared to those who do not consume red meat 
and so tended to have moderate and severe anemia ( χ 2 = 26.49; p < 0.05) (Supplementary Figure S1).

Patient’s status and blood transfusion before delivery
Contingency analysis showed a strong association between anemia and blood transfusion. Individuals who 
received blood transfusions before delivery were severely anemic whereas the control individuals were devoid 
of it ( χ 2 = 61.48; p < 0.05). Consumption of red meat ( χ 2 = 4.06; p < 0.05) and fruits ( χ 2 = 10.11; p < 0.05) 
showed a negative association with blood transfusion. Individuals who do not consume red meat and fruits are 
more likely to have blood transfusions before their delivery and are anemic. Concerning demographic region, 
the analysis showed pregnant women living in a rural life setting frequently underwent blood transfusions ( χ 2 
= 6.78; p < 0.05) (Supplementary Figure S2).

Key risk factors associated with anemia
Log-binomial regression analysis was used to calculate prevalence ratios (risk factors) of moderate and severe 
anemia with different clinical parameters (Supplementary Table S1). Participants who were highly educated, 
within the Pakistani context, like holding a bachelor’s (undergraduate) degree, are at lower risk of having 
severe anemia. Individuals belonging to the upper and middle socioeconomic class are at lower risk of anemia 
as compared to the lower class plausibly due to better dietary intake. Consumption of red meat significantly 
reduced the risk (65%) of moderate anemia. Participants who received blood transfusion were at 137 times 
higher risk of anemia as compared to individuals who had not underwentne it. Fish consumption reduced the 
risk of severe anemia by 8%. Participants, whose blood group was AB- had 3 times higher risk of severe anemia. 
In contrast, participants with blood group A- are at a lower risk of severe anemia (Supplementary Table S1).

3) key clinical parameters that segregate between cohorts (Control, Anemia)
Random forest (RF) classifier using R’s random Forest package27was fitted on clinical parameters that include 
Marriage duration, Gravida, Miscarriage, APGAR (Appearance, Pulse, Grimace, Activity and Respiration) 
score 1, APGAR score 2, HCT (hematocrit-percentage of RBCs), MCV(mean corpuscular volume), MCH 
(mean corpuscular hemoglobin), PLT(platelet count) and MPV(mean platelet volume), with iron deficiency 
anemia patients. Out of all these parameters, hematological parameters including HCT, MCV, and MCH showed 
significant change in all the three groups. Among these parameters, HCT levels showed a strong decline in severe 
anemic, followed by moderate anemic patients as compared to control. MCH and MCV levels were low in the 
case of moderate and severe anemic individuals as compared to normal (Supplementary Figure S2A). HCT 
showed the highest mean decrease accuracy with a value above 75. The mean decrease Gini was high for HCT 
(< 30) (Supplementary Figure S2B) A confusion matrix was drawn to evaluate the correctness of the model. The 
confusion matrix showed that 86.36% accuracy has been achieved (Supplementary Figure S2C). This confusion 
matrix of our RF classifier showed that these hematological parameters can distinguish between anemic and 
normal individuals. These results showed that HCT is the most influential parameter to predict anemia. Our 
results are in line with the previous findings28 using hematological parameters to predict anemia apart from 
hemoglobin level.

Major dietary habits patterns
UpSet plot shows co-occurrence patterns of different dietary parameters with anemia status. Individuals having 
moderate anemia consumed chicken, vegetables, and fruits. Individuals who consumed chicken and vegetables 
only in their diet suffered from severe anemia. Although anemic individuals also consume milk and fruits in 
suboptimal quantity. Normal healthy controls were consuming a balanced diet comprising chicken, vegetables, 
fruits, milk, red meat, and fish (Supplementary Figure S3).

Microbial diversity in meconium samples
Redundancy analysis was carried out to identify the key factors that can lead to variability in the microbial 
community. Different variables like Status (Control; Anemic), Mother’s HB, Miscarriage, Socioeconomic 
status (Lower Middle Class; Middle Class; Upper Class), Weight, Diet, Demographic region (Rural; Urban) 
were analyzed. Miscarriages turned out to be the predominant variable that can alter microbial community by 
Bray Curtis, Weighted Uni-Frac, and Hierarchical meta-storms analysis (Table 2). Unweighted uni-frac analysis 
showed demographic region as another variable that can contribute towards microbial diversity (Table 2).

To evaluate the effect of anemia on the meconium microbial alpha diversity (within sample diversity), the 
number of microbial species observed in each meconium sample (richness) and the Shannon index (diversity 
index determining both the richness and evenness) at the species level were computed. The anemic and control 
samples were classified based on their socio-demographical parameters into urban and rural. Microbiota Chao-
1 richness was significantly different between control urban and rural groups. The Shannon index did not exhibit 
significant change among the four groups (Fig. 1A). Functional diversity was analyzed using KEGG orthologs 
and MetaCyc pathway abundances showed also no significant difference in the case of richness and Shannon 
entropy (Fig. 1B&C). This observed low bacterial diversity can be attributed to the nature of the samples i.e. 
meconium as reported previously29. Sample dissimilarity was determined using different beta-diversity 
measures like Bray-Curtis distance for compositional changes (Fig. 1D), phylogenetic changes whilst taking into 
account the abundances of ASVs were estimated via Weighted Unifrac distance (Fig. 1E), metabolic changes 
were calculated through Hierarchical Meta-Storms (Fig. 1F). Permutational multivariate analysis of variance 
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(PERMANOVA) revealed no significant difference between the anemic and control groups in composition and 
metabolic function (Fig.  1D&F). PERMANOVA analyses showed 14% variability in the phylogeny between 
the control urban and rural samples. Figure 1G showed the 10 most abundant genera. A significant increase 
in Pseudomonas abundance was observed in rural control samples as compared to rural anemic samples. 
Enterococcus was found predominantly in control urban populations as compared to anemic urban settings. The 
low abundance of Enterococcus in anemic samples may make them susceptible to pathogenic microbes as they 
have an impact on the human immune system30.

Key genera associated with sources of variability
The ASVs were then collated at the genus level and used in the Generalized Linear Latent Variable (GLLVM) 
to regress their abundances against the observed sources of variability. The returned β −coefficients whether 
positive or negative were then used to assess the associations. The covariates considered in GLLVM include 
APGAR [Appearance, Pulse, Grimace (reflex irritability), Activity (muscle tone), Respiration] score, baby 
weight, age of the mother, weight of the mother, hemoglobin level of the mother, blood transfusion, anemic 
status (normal, anemic), gestation period, gravida, number of children, number of miscarriages, socioeconomic 
status of the mother (middle and upper middle class), dietary parameters (consumption of chicken, dairy 
products, fish, snacks, vegetables, whole grain carbs), demographic region (urban, rural), educational status 
(primary, middle, matric, intermediate, graduate) (Figs. 2, 3 and 4).

Our results indicated that dietary consumption modulates microbial abundance and impacts iron homeostasis. 
Consumption of a balanced diet comprising of red meat, fish, and dairy- enriched facultative anaerobic bacteria 
like Staphylococcus and Enterococccus, a diet devoid of fish consumption and strong association with dairy 
consumption increased the abundance of anaerobic bacterial genera such as Coprococcus, Subdoligranulum, 
Nocardioides, Anaerovoracaceae, Exiguobacterium, and Eubacterium that are positively associated with anemia, 
Exclusive red meat consumption enriched the fermenter bacteria like Halomonas and Anaerostipes exhibiting 
positive correlation with the baby weight, blood transfusion, and maternal weight respectively. Whole grain 
carbs consumption increased the abundance of commensal bacteria like Lactobacillus, displaying a negative 
association with maternal hemoglobin levels whereas Bacteroides, Faecalibacterium, Incertae-Sedis exhibited 
a positive association with the number of children, miscarriages maternal weight, and mother hemoglobin 
level. Chicken and vegetable consumption increased the abundance of pathogenic Acinetobacter that correlated 
positively with miscarriages and maternal weight.

Covariates df SS R2 F P

Bray-Curtis Distance

Miscarriage 1 0.8378 0.0972 2.6917 0.015 *

Residual 25 7.7813 0.9028

Total 26 8.6191 1

Unweighted Uni-Frac

Demographic_region 1 0.4808 0.06365 1.6995 0.02 *

Residual 25 7.0721 0.93635

Total 26 7.5529 1

Weighted Uni-Frac

Miscarriage 1 0.49826 0.15895 5.4185 0.011 *

Socio_economic_status 2 0.41234 0.13154 2.2421 0.064.

Fish 1 0.04918 0.01569 0.5348 0.609

Baby_weight 1 0.24382 0.07778 2.6516 0.084.

Residual 21 1.93105 0.61603

Total 26 3.13465 1

Hierarchical Meta-Storms

Miscarriage 1 0.07190 0.11536 3.4033 0.027 *

Weight 1 0.04430 0.07108 2.0970 0.099.

Residual 24 0.50703 0.81355

Total 26 0.62323 1

Table 2.  Redundancy analysis with both forward and reverse selection was performed to select the most 
important parameters that explain variation in the community matrices. The initial set of variables considered 
are as follows (with those selected in the final PERMANOVA models in bold case): status (Control; Anaemic), 
Mother’s HB, Miscarriage, Socio-economic status (Lower Middle Class; Middle Class; Upper Class), Weight, 
Diet, Demographic region (Rural; Urban). Here df, SS, and F are Degree of Freedom, Sum of Squared Errors, 
and F Statistic, respectively. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1
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Fig. 1.  Alpha diversity (Chao 1 Richness and Shannon entropy) comparison of (A) bacterial ASVs, as well 
as (B) KEGG KOs, and (C) MetaCyc pathways predicted from the PICRUSt2 software. Beta diversity (D-F) 
represented by principal coordinate analysis (PCoA) plots with each axis showing the percentage variability 
explained by that axis, and where ellipses represent 95% confidence interval of the standard error for a given 
group. We have used three different distance measures: (D) Bray-Curtis distance to show differences in 
composition, (E) Unweighted UniFrac distance to show differences in phylogeny, and (F) Hierarchical Meta-
storms to show differences in metabolic function. PERMANOVA statistics utilising these distance measures 
are shown underneath the PCoA plots to suggest if there are significant differences between the groups with 
R2 value showing percentage variability explained. (G) shows the TSS + CLR normalized expressions of top 
10 most abundant genera observed in this dataset. The solid lines in panels with boxplots connect groups if 
ANOVA is significant with significance values as: * p < 0.05, ** p < 0.01, or *** p < 0.001.
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Association of microbial diversity with SCFA
GLLVM was applied the second time to identify the association of microbial abundances with different short-
chain fatty acids. Redundancy analysis using PERMANOVA showed significant changes in acetate (C2) SCFA 
estimated by Bray-Curtis, Weighted Uni-Frac, and Hierarchial Meta-Storms whereas octanoic acid (C8) differed 
significantly between the control and anemic groups based on Unweighted Uni-Frac (Table 2). GLLVM analysis 

Fig. 3.  Continuation of results for β −coefficients for various covariates returned from the GLLVM procedure 
for model 1 for metadata, and for the remaining genera not shown in Figs. 2 and 4. Taxa for which no 
taxonomic information was available at genus level were clumped together as Unknowns.

 

Fig. 2.  β −coefficients returned from GLLVM procedure for model 1 with metadata covariates. Those 
coefficients which are positively associated with the microbial abundance of a particular species are represented 
in red color whilst those that are negatively associated are represented with blue color, respectively. Where the 
coefficients are non-significant, i.e., the 95% confidence interval crosses the 0 boundary, they are greyed out. 
Since the collation of ASVs was performed at Genus level, all those ASVs that cannot be categorized based on 
taxonomy are collated under “Unknown” category. For categorical variables, one level acts as a reference and 
is represented by REF. Taxa for which no taxonomic information was available at genus level were clumped 
together as Unknowns Note that the results are split across three figures with the remaining genera shown in 
Figs. 3 and 4, respectively.
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revealed enrichment of branched short-chain fatty acids (BSCFA) in the anemic meconium samples. The majority 
of the bacterial genera such as Coprococcus, Anaerovoracaceae, and Exiguobacterium associated with anemia, 
are positively associated with isopropyl-hexanoate (IC6) whereas Eubacterium halii group associated with iso-
valerate (IC5). Bacterial genera such as Subdoligranulum and Nocardioides, associated with anemia displayed 
negative correlation with acetate (C2) production. Moreover, the microbial genera including Acinetobacter, 
Bacteroides, Prevotella and Faecalibacterium associated with miscarriages were also branched short-chain fatty 
acid (BSCFA) producers e.g. iso-valerate (IC5) and iso-caproic (IC6). These genera were enriched in samples 
where the mothers were consuming mainly whole grain carbs and snacks respectively and displayed a negative 
association with acetate (C2). The acetate (C2) and butyrate (C4) producing Lactococcus (dairy consumption) was 
positively associated with maternal hemoglobin level whereas octanoate-producing Lactobacillus (whole-grain 
carbs consumption) negatively correlated with the maternal hemoglobin level. Microbial genera that positively 
associated with gravida such as Staphylococcus, Enterococcus (red meat, fish, and dairy) and Thermomicrobiale 
were mainly propionate (C3) and iso-valerate (IC5) producers and showed negative correlation with iso-caproic 
(IC6) and acetate (C2) levels. Exclusive red meat consumption leads to the enrichment of isopropyl-hexanoate 
(IC6) and hexanoate (C6) producing bacteria such as Halomonas and Anaerostipes. Microbial genera such as 
Bifidobacterium (chicken and vegetables consumption) and Streptococcus (dairy products consumption) are 
positively associated with the APGAR score. However, Bifidobacterium displayed a positive association with 
heptanoate (C7), octanoate (C8), iso-valerate (IC5), iso-caproate (IC6), and decreased production of acetate 
(C2). This data indicated that a balanced diet comprising red meat, fish, and dairy leads to the production of 
SCFAs such as acetate (C2) and propionate (C3) (Fig. 5).

Discussion
Although Iron is required in smaller amounts, it plays a critical role in diverse biological processes like oxygen 
transport, energy production, cell proliferation, and DNA synthesis31. Iron levels are maintained via a tight 
regulatory mechanism. Intestinal absorption is the key step in iron homeostasis32. Different mechanisms 
underlay the host-microbiome crosstalk, including changes in microbial diversity and the production of 
metabolites33. The present study aims to identify key clinical and sociodemographic parameters associated with 
anemia, based on a questionnaire survey. Our results demonstrated dynamic changes in the gut microbiome 
and SCFAs during IDA. These findings are mainly attributed to dietary factors. The lack of red meat and fish 
consumption showed a strong correlation with the incidence of anemia. Furthermore, high cow/buffalo milk 
consumption was also positively associated with IDA. Low red meat consumption has been previously associated 
with anemia in children34. Elderly males in the Japanese population with higher protein intake particularly fish 
had lower anemia prevalence35. Milk consumption paused a 1.6 times higher risk of moderate anemia probably 
due to the dilutive effect of milk on dietary iron or its interference with iron absorption. Previous studies have 
highlighted iron malabsorption due to cow milk consumption36,37. Upset plot has demonstrated that dietary 
pattern significantly affect the haemoglobin levels. Individuals on balanced diet had normal Hb levels whereas 
the individuals solely on chicken and vegetables consumption tend to be anemic. These findings are in line 
with other studies demonstrating the impact of diet on iron absorption and haemoglobin levels38,39. The 
previous report in India demonstrated that the B-blood group is anemia prone and the O blood group is anemia 
resistant40. In our study AB- blood group individuals had a relatively high risk of anemia as compared to other 
blood groups. This signifies that ethnic diversity can change the propensity of blood groups towards anemia 
susceptibility. This finding is in line with a previous study demonstrating that the high calcium, casein content, 

Fig. 4.  Continuation of results for β −coefficients for various covariates returned from the GLLVM procedure 
for model 1 for metadata, and for the remaining genera not shown in Figs. 2 and 3. Taxa for which no 
taxonomic information was available at genus level were clumped together as Unknowns.
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and low levels of vitamin C in cow milk can reduce iron intestinal absorption41. Previous studies have also 
documented that diet may influence gut microbiome functioning42. The sociodemographic factors also played 
a pivotal role in microbial abundance primarily due to dietary habits and environmental factors. Among the 
clinical parameters, hematological parameters HCT, MCV, and MCH appeared to predict anemia. HCT was the 
most promising predictor of anemia in the Pakistani population. Different studies have highlighted low MCV 
levels in anemic individuals12,43. Lack of balanced diet consumption led to the incidence of moderate and severe 
anemia. Our results also showed iron deficient diet or malabsorption of iron resulting in a paradigm shift in the 
gut microbial diversity which may lead to the host susceptibility towards pathogenic bacteria and a decrease in the 
abundance of beneficial bacteria like Enterococcus. Moreover, microbiome and SCFAs analysis also revealed the 
enrichment of branched SCFAs (BSCFAs) producing anaerobic bacteria such as Coprococcus, Anaerovoracaceae, 
and Exiguobacterium in IDA patients, along with the decreased presence of acetate and propionate. Coprococcus, 
Anaerovoracaceae, and Exiguobacterium are negatively associated with fish consumption. BSCFAs (isovalerate, 
iso-butyrate, and 2-methyl butyrate) are produced due to the fermentation of undigested proteins comprising 
leucine, isoleucine, and valine-like amino acids reaching colon. Previous study has reported that intestinal 
dysbiosis due to iron deficiency anemia leads to increased butyrate (C4) level16. The generation of BSCFA is 
mainly due to the fermentation of undigested protein in the colon44.To our knowledge, this is the first study that 
revealed BSCFA’s association with anemia. The production of BSCFA is attributed mainly to protein fermentation 
and decreased availability of fermentable carbohydrates44. A recent study has also documented that during IDA 
the carbohydrate metabolism shifts towards monosaccharides processing through amino sugar and nucleotide 
pathway. These BSCFAs have a profound impact on lipid and glucose metabolism44 and their elevated levels may 
damage colon epithelium45. Fecal-omic data from preterm severe anemic infants showed its association with 
pro-inflammatory gut harboured with bacteria of increased virulence potential and decreased metabolic activity 
of commensal lactic acid producing bacteria46.

These findings highlight how dietary factors can shape the gut microbial diversity along with its impact on 
different metabolic disorders. In order to combat the impact of microbial dysbiosisin the gut different dietary 

Fig. 5.  β −coefficients returned from GLLVM procedure for model 2 with SCFA covariates. Those 
coefficients which are positively associated with the microbial abundance of a particular species are represented 
in red color whilst those that are negatively associated are represented with blue color, respectively. Where the 
coefficients are non-significant, i.e., the 95% confidence interval crosses the 0 boundary, they are greyed out. 
Since the collation of ASVs was performed at Genus level, all those ASVs that cannot be categorized based on 
taxonomy are collated under “Unknown” category. The results are split across three panels. .
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modification like fibre intake, drugs like statins or probiotic like Lactobacillus reuteri supplementation has been 
documented recently47,48. However, future studies are required to determine the impact of different probiotics 
on the gut dysbiosis implicated in the case of anemia. Further studies are required to elucidate the relationship 
between BSCFA and anemia. Moreover, it will be interesting to see how these BSCFA-producing bacteria during 
IDA can be used to tackle local and systemic disease-derived alterations leading to improvements in disease 
management.

Methods
Ethics statement
This study was approved by the Ethics Review Board (ERB) at COMSATS University Islamabad (CUI/Bio/
ERB/2021/60). All participants provided written informed consent to participate in the study, and to use the 
data in research publication. The research involving human participants was performed in accordance with the 
Declaration of Helsinki.

All experiments were performed in accordance with relevant guidelines and regulations approved by the 
COMSATS Ethics review board.

Study area and participants selection
A research project was carried out in Rawalpindi, Pakistan, involving a group of 425 pregnant women who 
received care at the District Headquarter Hospital (DHQ). Information was gathered from the perinatal 
database, which records data systematically based on set guidelines immediately following childbirth. This 
process involved coding, which was conducted after reviewing medical records of prenatal care and standard 
hospital documentation.

All pregnant females were pre-screened and recruited through a questionnaire, based on inclusion/exclusion 
criteria as follows. Only those pregnant females were recruited who underwent caesarean section. Pregnant 
females taking antibiotics within the last three months, who have chronic infections or Hepatitis, were excluded 
from the study.

Questionnaire design and data collection
Based on expert consultation and literature survey, a broad-range questionnaire was drafted consisting of 
~ 30 questions (Supplementary Material 1). The meconium samples were taken from new-borns delivered via 
caesarean section. The new-borns delivered through vaginal birth were excluded based on the microbiome 
differences previously reported due to mode of delivery49. For each participant, information was collected on 
various demographic aspects such as ethnicity, level of education, their place of residence (urban or rural) and 
dietary habits. We have recorded maternal age, the number of pregnancies (gravidity), number of births (parity), 
instances of abortion, occurrences of twin pregnancies, medical history including conditions like diabetes 
mellitus and hypertension, if any blood transfusions received before delivery, and iron supplementation. 
Moreover, maternal and perinatal outcomes, such as early labour (identified as childbirth occurring before 37 
full weeks of pregnancy), bleeding after childbirth, death of the mother, Apgar scores (a quick test to evaluate the 
health of the new-born at 1 and 5 min after birth), the new-borns’ weight, whether the new-born was admitted 
to the neonatal intensive care unit (NICU), and perinatal death, have also been recorded.

Sample collection for faecal microbiome analysis
42 new-born babies born through caesarean section including 31 Iron deficiency anemia (IDA) patients and 
11 healthy subjects, were recruited. The IDA patients were diagnosed according to World Health Organization 
(WHO) diagnostic criteria. Informed consent was obtained from the parents of all individual participants. 
A detailed questionnaire (previously described) has been filled out for each participant, separately. Fresh 
meconium samples were collected from diapers and immediately frozen at −20oC. Samples were delivered to 
Microbiology and Public Health Laboratory, COMSATS University Islamabad, where they were stored at −80oC 
until processing.

DNA extraction, total microbial load and sequencing
Total bacterial load (log10 number of 16 S rRNA gene copies per gram of faeces) was assessed via quantitative 
PCR carried out on a 7500 Real-Time PCR system (Applied Biosystems, Carlsbad, CA) and performed using 
TaqMan chemistry (Fisher Scientific), bovine serum albumin (20 mg/mL), 2.5 µM Taqman probe (FAM reporter, 
BHQ-1 Quencher, CTT GTA CAC ACC GCC CGT C), DNA template diluted 1:100, and the universal reverse 
(TAC GGC TAC CTT GTT ACG ACT T) and forward (CGG TGA ATA CGT TCC CGG) 9 µM primers. Five 
serial dilutions of Bacteroides vulgatus genomic DNA obtained from a pure culture were used as standards.

For DNA extraction, DNeasy PowerSoil Pro Kits were used according to manufacturer’s specifications. 
DNeasy PowerSoil Pro kit was used as it is documented in different studies to yield good quality and high DNA 
yield50–52. 16 S rRNA sequencing of the V4 region was performed on an Illumina MiSeq platform (Illumina, UK) 
using the Schloss 250 bp paired end method and utilising the primers given in53.

Quantification of SCFAs with gas chromatography
Faecal SCFAs were measured using gas chromatography-flame ionisation detector (GC-FID) (Agilent 7890 A 
GC, Agilent Technologies, USA). Faecal slurries (1:1 w/v) of 1 g of faecal material and 1 ml of NaOH were 
prepared at the day of initial stool sample processing and were stored at −20oC after vigorous vortexing in the 
presence of glass beads. Faecal slurries were lyophilised for 36 h in an Edwards Micro Modulyo freeze dryer and 
the lyophilised samples were then homogenised. 100 mg of lyophilised faecal material was accurately weighed 
and mixed with 300µL of water in 15 mL tubes. 100µL of an in-house prepared internal standard solution 
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(2-ethylbutyric acid, 73.6 mM) was added to the sample, immediately followed by 100µL of concentrated 
orthophosphoric acid to lower the dissociation constant and release the acids into the ether phase. The mixture 
was thoroughly extracted 3 times using 1.5 mL of diethyl ether on an orbital shaker for 1 min each time. The 
supernatant (ether phase) was recovered and pooled. 1µL of the pooled extract was injected splitless to an 
Agilent 7890 A GC. Nitrogen was used as the carrier gas. An external standard mixture of SCFAs of known 
concentrations was used for the calibration curves. This standard consisted of acetate (172.9 µM), propionate 
(133.7 µΜ), isobutyrate (104.5 µΜ), butyrate (110.2 µΜ), isovalerate (87.5 µΜ), valerate (90.6 µΜ), isocaproic 
acid (53.3 µΜ), caproic acid (80.2 µΜ). The chromatograph and peak integrals were analysed using the Agilent 
G2070BA GC ChemStation software (Agilent Analytics, USA). Samples were extracted and analysed in duplicate 
and in reverse order to correct for any potential time effect during extraction. Results were averaged and repeated 
if coefficient of variation > 10%.

Bioinformatics
We have obtained 2,922,419 paired-end reads from 68 samples. On these, we recovered Amplicon Sequencing 
Variants (ASVs). Briefly, the Dada2 algorithm54 within the QIIME255 platform (version 2019.7.0) was used 
with the parameters --p-trim-left-f 0 --p-trim-left-r 0 --p-trunc-len-f 225 --p-trunc-len-r 215 in qiime dada2 
denoise-paired plugin. This yielded a n = 68 (samples) X 1,723 (ASVs) abundance table with summary statistics 
of sample-wise reads matching to ASVs as follows: [Min:149; 1 st Quartile:14,353; Median:37,957; Mean:35,513; 
3rd Quartile: 54,116; Max:82,227]. Additionally within QIIME2 platform: (a) the rooted phylogenetic tree for the 
ASVs was obtained using the Qiime phylogeny align-to-tree-mafft-fastree plugin; (b) the taxonomic information 
was obtained for the recent SILVA SSU Ref NR database release v.13856 using the qiime feature-classifier classify-
sklearn plugin; and (c) the metabolic profiles were obtained using qiime picrust2 full-pipeline (​h​t​t​p​s​:​​/​/​g​i​t​h​​u​
b​.​c​o​m​​/​p​i​c​r​u​​s​t​/​p​i​​c​r​u​s​t​2​​/​w​i​k​i​/​​q​2​-​p​i​c​​r​u​s​t​2​-​T​u​t​o​r​i​a​l​/​)​w​i​th the parameters --p-hsp-method pic --p-max-nsti 2.Of 
1,723 ASVs, 24 ASVs were excluded as they poorly aligned to the reference genomes, and further 13 ASVs were 
excluded as they were above the maximum NSTI cut-off of 2.0, thus with 1,686/1,723 (97.9%) ASVs matching to 
the reference database in PICRUSt2 software57 increases our confidence in the returned metabolic predictions. 
Through PICRUSt2, we have obtained 10,543 KEGG Orthologs (KOs) and 489 MetaCyc pathways for 68 samples.

Statistics
For the categorical data, to see if any two covariates have a relationship, we constructed a contingency table and 
used χ 2 test of independence using chisq.test() function in R. Based on ​h​t​t​p​:​/​​/​w​w​w​.​s​​t​h​d​a​.​c​​o​m​/​e​n​g​​l​i​s​h​/​​w​i​k​i​/​
c​​h​i​-​s​q​u​​a​r​e​-​t​e​​s​t​-​o​f​-​i​n​d​e​p​e​n​d​e​n​c​e​-​i​n​-​r, and where the relationship existed, we then calculated χ 2 residuals for 
individual rows and columns of the contingency table. These were drawn using R’s corrplot58 package where 
positive values in cells specify an attraction (positive association; blue) between the corresponding row and 
column variables whilst negative values implies a repulsion (negative association; red) between the corresponding 
row and column variables. To get the relative risks for disease outbreak, we have used generalized linear models 
(GLMs) with log link functions to binomial data using R’s logbin package59. To generate the regression tables, we 
have used tab_model() function from R’s sjPlot package60 which also facilitated confidence interval display. In 
some cases, where we had more than two categories in the outcome variable, we have used multinomial logistic 
regression using multinom() R’s nnet package61 with recommendations given in ​h​t​t​p​s​:​​/​/​s​t​a​t​​s​.​o​a​r​c​​.​u​c​l​a​.​​e​d​u​/​r​​/​d​a​
e​/​m​​u​l​t​i​n​o​​m​i​a​l​-​l​​o​g​i​s​t​i​c​-​r​e​g​r​e​s​s​i​o​n​/.

Following the recommendations given at ​h​t​t​p​s​:​/​/​d​o​c​s​.​q​i​i​m​e​2​.​o​r​g​/​​2​​0​2​2​​.​8​​/​t​u​t​o​r​i​a​l​​s​/​f​i​l​t​e​r​i​n​g​/, as a ​p​r​e​-​p​r​o​c​e​s​s​
i​n​g step, we have removed typical contaminants such as Mitochondria and Chloroplasts, as well as any ASVs that 
were unassigned at all levels. Low read samples (< 5000 reads) were filtered out, as well as any samples not part 
of this study. This gave us a final abundance table of n = 28 x P = 443 ASVs with the summary statistics of reads 
mapping to these ASVs for samples as follows: [Min:8,777; 1 st Quartile:24,073; Median:31,363; Mean:31,691; 
3rd Quartile:38,442; Max:54,178].

The R’s vegan package62 was used for alpha and beta diversity analyses. For alpha diversity measures we have 
used (after rarefying to minimum library size Shannon entropy (a commonly used index to measure balance 
within a community) and Chao1 richness (estimated number of species/features in an abundance table). We have 
used R’s aov() function to calculate the pair-wise analysis of variance (ANOVA) p-values which were then drawn 
on top of alpha diversity figures. To visualise the beta diversities, we have used Principal Coordinate Analysis 
(PCoA) (using cmdscale() function from R’s Vegan package) with different distance measures. Specifically, we 
have used three different measures in PCoA: (i) Bray-Curtis distance on the ASV abundance table to visualise 
the compositional changes; (ii) Unweighted/Weighted UniFrac distance estimated using R’s Phyloseq package63 
on the rooted phylogenetic tree of the ASVs along with the ASV abundance table to see changes between samples 
in terms of phylogeny; and (iii) Hierarchical Meta-Storms (HMS)64 on the KOs abundance table. HMS calculates 
the functional beta diversity distance in a hierarchical fashion utilising the multi-level KEGG BRITE hierarchy 
to give a weighted dissimilarity measure. In PCoA plots, ellipses of 95% confidence interval of standard error of 
groups were plotted using ordiellipse() function from R’s Vegan package.

To select the parameters most strongly associated with the variance of the observed communities, we have 
also applied redundancy analysis (RDA) on different beta diversity distances using Vegan’s capscale() and 
ordistep() functions in the following set of commands: cap.env = capscale(abund_table.dist~., meta_table); 
mod0.env = capscale(abund_table.dist ~ 1, meta_table); step.env = ordistep(mod0.env, scope = formula(cap.
env), direction=”both”, Pin = 0.1, perm.max = 9999, R2 scope = TRUE). step.env$anova with p < 0.05 was then 
able to identify the subset of parameter which were later used in the PERMANOVA analysis using adonis2() 
function from R’s Vegan package. This approach has previously been used in65 as a variable selection approach 
before applying PERMANOVA analysis. For abund_table.dist, we have used different beta diversity distances 
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including Bray-Curtis, Unweighted/Weighted UniFrac, and Hierarchical Meta-Storms. We have used the model 
twice, once for SCFA analysis, and once for the metadata analysis.

To find the relationship between individual microbial genera (ASVs collated at genus level using SILVA 
taxonomy), and select metadata variables (particularly those concerned with demographics, and relate to 
antibiotic usage, knowledge, and consumption, Generalised Linear Latent Variable Model (GLLVM)66 was used. 
GLVMM extends the basic generalized linear model that regresses the mean abundances µ ij( for i-th sample 
and j-th microbe) of individual microbes against the covariates xi by incorporating latent variables ui as 
g

(
µ ij

)
= η ij = α i + β 0j + xT

i β j + uT
i θ j , where β j  are the microbe specific coefficients associated 

with individual covariate (a 95% confidence interval of these whether positive or negative, and not crossing 0 
boundary gives directionality with the interpretation that an increase or decrease in that particular covariate 
causes an increase or decrease in the abundance of the microbe), and θ j  are the corresponding coefficients 
associated with latent variable. β 0j  are microbe-specific intercepts, whilst α i are optional sample effects which 
can either be chosen as fixed effects or random effects. We have run the algorithm twice, once for metadata and 
once for SCFAs.

For metadata, we have used the following covariates in the procedure (type and values they take are written 
right next):

•	 Status (Categorical: Anaemic; Control [REF])
•	 Mothers’ HB (Continuous).
•	 Blood transfusion (Categorical: Yes; No [REF])
•	 Age (Continuous).
•	 Education (Categorical: Primary; Middle; Matric; Intermediate; Graduate; Uneducated [REF])
•	 No. of Children (Continuous).
•	 Demographic region (Categorical: Urban; Rural [REF])
•	 Weight (Continuous).
•	 No. of Miscarriages (Continuous).
•	 Gravida (Continuous).
•	 Gestation period (Continuous).
•	 Baby Weight (Continuous).
•	 APGAR SCORE 1 (Continuous).
•	 Socioeconomic status (Categorical: Upper middle class; Middle class; Lower middle class [REF])
•	 Diet chicken (Categorical: Yes; No [REF])
•	 Vegetables (Categorical: Yes; No [REF])
•	 Diet fish (Categorical: Yes; No [REF])
•	 Diet whole grain carbs (Categorical: Yes; No [REF])
•	 Diet Snacks (Categorical; Yes; No [REF])
•	 Dairy products (Categorical; Yes; No [REF])

For SCFAs have used the following covariates in the procedure (type and values they take are written right next):

•	 C2 (Acetic acid).
•	 C3 (Propionic acid).
•	 C4 (Butyric acid).
•	 C5 (Valeric acid).
•	 C6 (Caproic acid).
•	 C7 (Heptanoic acid).
•	 C8 (Octanoic acid).
•	 IC4 (Isobutyrate).
•	 IC5 (Isovalerate).
•	 IC6 (Continuous).

REF refers to a reference that gets dropped in the regression model when coding for categorical parameters. 
To model the distribution of individual microbes, we have used Negative Binomial distribution. Additionally, 
the approximation to the log-likelihood is done through Variational Approximation (VA) with final sets of 
parameters in glvmm() function being family = ‘negative.binomial’, method="VA”, and control.start = list (n.init 
= 7, jitter.var = 0.1) which converged for both models.

Data availability
The raw sequence files supporting the results of this article are available in the European Nucleotide Archive 
under the project accession number PRJEB77861 available at ​h​t​t​​​​p​​s​:​​/​/​​w​​w​w​​.​n​c​b​i​​​.​n​​l​​m​.​n​i​h​.​g​o​v​/​b​i​o​p​r​o​j​e​c​t​/​?​t​e​r​m​=​
P​R​J​E​B​7​7​8​6​1 with details given in Supplementary Material 2. Additional annotation for the samples is provided 
through a survey with the questionnaire used as Supplementary Material 1.

Received: 6 October 2024; Accepted: 14 May 2025

References
	 1.	 Clark, S. F. Iron deficiency anemia. Nutr. Clin. Pract. 23 (2), 128–141 (2008).

Scientific Reports |        (2025) 15:17532 11| https://doi.org/10.1038/s41598-025-02556-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 2.	 Balarajan, Y. et al. Anaemia in low-income and middle-income countries. Lancet 378 (9809), 2123–2135 (2011).
	 3.	 Kassebaum, N. J. et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood J. Am. Soc. Hematol. 123 (5), 

615–624 (2014).
	 4.	 Camaschella, C. Iron-deficiency anemia. N. Engl. J. Med. 372 (19), 1832–1843 (2015).
	 5.	 DeLoughery, T. G. Iron deficiency anemia. Med. Clin. 101 (2), 319–332 (2017).
	 6.	 Chen, H. et al. Altered fecal microbial and metabolic profile reveals potential mechanisms underlying iron deficiency anemia in 

pregnant women in China. Bosnian J. Basic. Med. Sci. 22 (6), 923 (2022).
	 7.	 Habib, A. et al. Prevalence and risk factors for Iron deficiency Anemia among children under five and women of reproductive age 

in Pakistan: findings from the National nutrition survey 2018. Nutrients 15 (15), 3361 (2023).
	 8.	 Nisar, Y. B. & Dibley, M. J. Determinants of neonatal mortality in Pakistan: secondary analysis of Pakistan demographic and health 

survey 2006–07. BMC Public. Health. 14, 1–12 (2014).
	 9.	 Figueiredo, A. C. et al. Maternal anemia and low birth weight: a systematic review and meta-analysis. Nutrients 10 (5), 601 (2018).
	10.	 Guignard, J. et al. Gestational anaemia and severe acute maternal morbidity: a population-based study. Anaesthesia 76 (1), 61–71 

(2021).
	11.	 Yoon, H. Y. et al. Association between neutrophil-to-lymphocyte ratio and gut microbiota in a large population: a retrospective 

cross-sectional study. Sci. Rep. 8 (1), 16031 (2018).
	12.	 Venugopal, G. et al. Predictive association of gut Microbiome and NLR in anemic low middle-income population of Odisha-a 

cross-sectional study. Front. Nutr. 10, 1200688 (2023).
	13.	 Andrews, N. C. Iron metabolism: iron deficiency and iron overload. Annu. Rev. Genom. Hum. Genet. 1 (1), 75–98 (2000).
	14.	 Balamurugan, R. et al. Low levels of faecal lactobacilli in women with iron-deficiency anaemia in South India. Br. J. Nutr. 104 (7), 

931–934 (2010).
	15.	 Khosravi, A. et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell. Host Microbe. 15 (3), 374–381 (2014).
	16.	 Soriano-Lerma, A. et al. Gut microbiome–short-chain fatty acids interplay in the context of iron deficiency anaemia. Eur. J. Nutr. 

61 (1), 399–412 (2022).
	17.	 Kortman, G. A. et al. Iron availability increases the pathogenic potential of Salmonella typhimurium and other enteric pathogens 

at the intestinal epithelial interface. PloS One. 7 (1), e29968 (2012).
	18.	 Mevissen-Verhage, E. et al. Effect of iron on neonatal gut flora during the first three months of life. Eur. J. Clin. Microbiol. 4, 

273–278 (1985).
	19.	 Searle, L. J. et al. Variation in siderophore biosynthetic gene distribution and production across environmental and faecal 

populations of Escherichia coli. PloS One. 10 (3), e0117906 (2015).
	20.	 Vazquez-Gutierrez, P. et al. Bifidobacteria strains isolated from stools of iron deficient infants can efficiently sequester iron. BMC 

Microbiol. 15, 1–10 (2015).
	21.	 Lisiecki, P., Wysocki, P. & Mikucki, J. Occurrence of siderophores in enterococci. Zentralblatt Für Bakteriologie. 289 (8), 807–815 

(2000).
	22.	 Rocha, E. R. & Krykunivsky, A. S. Anaerobic utilization of Fe (III)-xenosiderophores among Bacteroides species and the distinct 

assimilation of Fe (III)‐ferrichrome by Bacteroides fragilis within the genus. Microbiologyopen 6 (4), e00479 (2017).
	23.	 Ho, T. T. et al. The development of intestinal dysbiosis in anemic preterm infants. J. Perinatol. 40 (7), 1066–1074 (2020).
	24.	 Muleviciene, A. et al. Iron deficiency anemia-related gut microbiota dysbiosis in infants and young children: A pilot study. Acta 

Microbiol. Immunol. Hung. 65 (4), 551–564 (2018).
	25.	 McClorry, S. et al. Anemia in infancy is associated with alterations in systemic metabolism and microbial structure and function 

in a sex-specific manner: an observational study. Am. J. Clin. Nutr. 108 (6), 1238–1248 (2018).
	26.	 Das, N. K. et al. Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metabol. 31 (1), 115–130 (2020). e6.
	27.	 Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2 (3): 18–22. (2002).
	28.	 Shah, A. R., Patel, N. D. & Shah, M. H. Hematological parameters in anaemic pregnant women attending the antenatal clinic of 

rural teaching hospital. Innovative J. Med. Health Sci. 2 (5), 70–73 (2012).
	29.	 Magne, F. et al. Low species diversity and high interindividual variability in faeces of preterm infants as revealed by sequences 

of 16S rRNA genes and PCR-temporal temperature gradient gel electrophoresis profiles. FEMS Microbiol. Ecol. 57 (1), 128–138 
(2006).

	30.	 Wan, L. et al. Modulation of intestinal epithelial defense responses by probiotic bacteria. Crit. Rev. Food Sci. Nutr. 56 (16), 2628–
2641 (2016).

	31.	 Percy, L., Mansour, D. & Fraser, I. Iron deficiency and iron deficiency anaemia in women. Best practice & research Clinical obstetrics 
& gynaecology, 2017. 40: pp. 55–67.

	32.	 Forrellat-Barrios, M., Fernández-Delgado, N. & Hernández-Ramírez, P. Regulación de la hepcidina y homeostasis del hierro: avances 
y perspectivas. Revista Cubana de Hematología, Inmunología Y Hemoterapia, 28(4): pp. 347–356. (2012).

	33.	 Blacher, E. et al. Microbiome-modulated metabolites at the interface of host immunity. J. Immunol. 198 (2), 572–580 (2017).
	34.	 Moshe, G. et al. Anemia and iron deficiency in children: association with red meat and poultry consumption. J. Pediatr. 

Gastroenterol. Nutr. 57 (6), 722–727 (2013).
	35.	 Imai, E. & Nakade, M. Fish and meat intakes and prevalence of anemia among the Japanese elderly. Asia Pac. J. Clin. Nutr. 28 (2), 

276–284 (2019).
	36.	 Levy-Costa, R. B. & Monteiro, C. A. Cow’s milk consumption and childhood anemia in the City of São Paulo, Southern Brazil. Rev. 

Saude Publica. 38, 797–803 (2004).
	37.	 Oliveira, M. A. & Osório, M. M. Cow’s milk consumption and iron deficiency anemia in children. Jornal De Pediatria. 81, 361–367 

(2005).
	38.	 Skolmowska, D. et al. Effectiveness of dietary interventions to treat iron-deficiency anemia in women: a systematic review of 

randomized controlled trials. Nutrients 14 (13), 2724 (2022).
	39.	 Bianchi, V. E. Role of nutrition on anemia in elderly. Clin. Nutr. ESPEN. 11, e1–e11 (2016).
	40.	 Reshmarani, S., Shilpa, N. & Chimkode, S. A study of correlation between blood groups and anemia in young adults. Int. J. Physiol. 

7 (4), 199–202 (2019).
	41.	 Graczykowska, K. et al. The consequence of excessive consumption of cow’s milk: Protein-losing enteropathy with Anasarca in the 

course of iron deficiency anemia—case reports and a literature review. Nutrients 13 (3), 828 (2021).
	42.	 Malinowska, A. M. et al. Human gut microbiota composition and its predicted functional properties in people with Western and 

healthy dietary patterns. Eur. J. Nutr. 61 (8), 3887–3903 (2022).
	43.	 Tong, T. Y. et al. Hematological parameters and prevalence of anemia in white and British Indian vegetarians and nonvegetarians 

in the UK biobank. Am. J. Clin. Nutr. 110 (2), 461–472 (2019).
	44.	 Heimann, E. et al. Branched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes. Adipocyte 5 (4), 

359–368 (2016).
	45.	 Rios-Covian, D. et al. An overview on fecal branched short-chain fatty acids along human life and as related with body mass index: 

associated dietary and anthropometric factors. Front. Microbiol. 11, 973 (2020).
	46.	 Gibbons, J. A. et al. Severe anemia in preterm infants associated with increased bacterial virulence potential and metabolic 

disequilibrium. Pediatr. Res. 1–8 (2024).
	47.	 Gottlieb, K. et al. Inhibition of Methanogenic archaea by Statins as a Targeted Management Strategy for Constipation and Related 

Disorders43p. 197–212 (Alimentary Pharmacology & Therapeutics, 2016). 2.

Scientific Reports |        (2025) 15:17532 12| https://doi.org/10.1038/s41598-025-02556-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	48.	 Ojetti, V. et al. Effect of Lactobacillus reuteri (DSM 17938) on Methane Production in Patients Affected by Functional Constipation: a 
Retrospective Study21 (European Review for Medical & Pharmacological Sciences, 2017). 7.

	49.	 Mitchell, C. M. et al. Delivery mode affects stability of early infant gut microbiota. Cell. Rep. Med. 1(9), 100156 (2020).
	50.	 Lourenço, C. F. et al. Efficiency comparison of DNA extraction kits for analysing the cockle gut bacteriome. Heliyon 10(20), e38846 

(2024).
	51.	 Rintarhat, P. et al. Assessment of DNA extraction methods for human gut mycobiome analysis. Royal Soc. Open. Sci. 11 (1), 231129 

(2024).
	52.	 Sävilammi, T. et al. Gut microbiota profiling as a promising tool to detect equine inflammatory bowel disease (IBD). Animals 14 

(16), 2396 (2024).
	53.	 Kozich, J. J. et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on 

the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79 (17), 5112–5120 (2013).
	54.	 Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods. 13 (7), 581–583 (2016).
	55.	 Bolyen, E. et al. Reproducible, interactive, scalable and extensible Microbiome data science using QIIME 2. Nat. Biotechnol. 37 (8), 

852–857 (2019).
	56.	 Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 

41 (D1), D590–D596 (2012).
	57.	 Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38 (6), 685–688 (2020).
	58.	 Wei, T. & Simko, V. R package corrplot: Visualization of a Correlation Matrix (Version 0.84). Vienna. (2017).
	59.	 Donoghoe, M. W. & Marschner, I. C. Flexible regression models for rate differences, risk differences and relative risks. Int. J. 

Biostatistics. 11 (1), 91–108 (2015).
	60.	 Lüdecke, D. Ggeffects: tidy data frames of marginal effects from regression models. J. Open. Source Softw. 3 (26), 772 (2018).
	61.	 Kemp, R. G. et al. Innovation and Firm Performance (EIM Zoetermeer, 2003).
	62.	 Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14 (6), 927–930 (2003).
	63.	 McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of Microbiome census data. 

PloS One. 8 (4), e61217 (2013).
	64.	 Zhang, Y. et al. Hierarchical Meta-Storms enables comprehensive and rapid comparison of Microbiome functional profiles on a 

large scale using hierarchical dissimilarity metrics and parallel computing. Bioinf. Adv. 1 (1), vbab003 (2021).
	65.	 Vass, M. et al. Using null models to compare bacterial and microeukaryotic metacommunity assembly under shifting environmental 

conditions. Sci. Rep. 10 (1), 2455 (2020).
	66.	 Niku, J. et al. Gllvm: fast analysis of multivariate abundance data with generalized linear latent variable models in R. Methods Ecol. 

Evol. 10 (12), 2173–2182 (2019).

Acknowledgements
We would like to thank the staff particularly at District Headquarters Hospital Rawalpindi, Pakistan and Cos-
mesurge Rawalpindi, Pakistan hospital for helping with acquiring and handling the samples. We acknowledge 
all the participants of the study.

Author contributions
H.K.: Data Curation; Visualization; Methodology; Validation; Formal analysis; Investigation; and Writing - 
Original DraftM.B.J.: Data Curation; Methodology; Validation; Investigation; and Writing - Review & Edit-
ingZ.S.: Data Curation; Investigation; and Writing - Review & EditingK.S.: Data Curation; and Writing - Re-
view & EditingI.F.: Data Curation; and Writing - Review & EditingA.A.: Investigation; and Writing - Review 
& EditingC.K.: Writing - Review & EditingS.M.: Writing - Review & EditingS.N.M.: Investigation; and Writing 
- Review & EditingK.G.: Resources; and Writing - Review & EditingZ.N.: Resources; and Writing - Review & 
EditingS.J.: Writing - Review & Editing Aa.T.: Investigation; and Writing - Review & EditingU.Z.I.: Software; Re-
sources; Methodology; Visualization; Validation; Formal analysis; Funding acquisition; Supervision; and Writ-
ing - Original DraftA.T.: Conceptualization; Visualization; Supervision; Project administration; Resources; and 
Writing - Original Draft.

Funding
UZI is supported by EPSRC Grant EP/V030515/1 and MRC Grant MR/Z50628X/1.

Declarations

Competing interests
The authors declare no competing interests.

Conflict of interest
The authors declare that they have no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​0​2​5​5​6​-​0​​​​​.​​

Correspondence and requests for materials should be addressed to U.Z.I. or A.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |        (2025) 15:17532 13| https://doi.org/10.1038/s41598-025-02556-0

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-02556-0
https://doi.org/10.1038/s41598-025-02556-0
http://www.nature.com/scientificreports


Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |        (2025) 15:17532 14| https://doi.org/10.1038/s41598-025-02556-0

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Gut microbial ecology and function of a Pakistani cohort with Iron deficiency Anemia
	﻿Results
	﻿Association of anemia with anthropometric parameters

	﻿Dietary association with anemic status
	﻿Patient’s status and blood transfusion before delivery
	﻿Key risk factors associated with anemia
	﻿3) key clinical parameters that segregate between cohorts (Control, Anemia)
	﻿Major dietary habits patterns

	﻿Microbial diversity in meconium samples
	﻿Key genera associated with sources of variability
	﻿Association of microbial diversity with SCFA

	﻿Discussion
	﻿Methods
	﻿Ethics statement


	﻿Study area and participants selection
	﻿Questionnaire design and data collection
	﻿Sample collection for faecal microbiome analysis
	﻿DNA extraction, total microbial load and sequencing
	﻿Quantification of SCFAs with gas chromatography
	﻿Bioinformatics
	﻿Statistics
	﻿References


