Table 2 Detailed design of CWT-DSCNN-CBAM.
Detailed design | Layer Type | Filter/Neuron count | Kernel size/Stride | Activation function | Output shape |
---|---|---|---|---|---|
1DCNN | Input layer | (L, 2) | |||
Convolutional layer 1 | 64 | 3/1 | ReLU | (L-2, 64) | |
Pooling layer 1 | 2/2 | (L/2 -1, 64) | |||
Convolutional layer 2 | 128 | 3/1 | ReLU | (L/2 -4, 128) | |
Pooling layer 2 | 2/2 | (L/4 -3, 128) | |||
2DCNN | Input layer | (224,224,3) | |||
Convolutional layer 1 | 64 | 3 × 3/1 | ReLU | (224,224,64) | |
Pooling layer 1 | 2 × 2/2 | (112,112,64) | |||
Convolutional layer 2 | 128 | 3 × 3/1 | ReLU | (112,112,128) | |
Pooling layer 2 | 4 × 4/4 | (28,28,128) | |||
Flatten layer | (784,128) | ||||
Dual-stream fusion | Fusion layer | (L/4 + 781, 128) | |||
Flatten layer | ((L/4 + 781) × 128,) | ||||
Fully connected layer 1 | 120 | (120,) | |||
Fully connected layer 2 | 84 | (84,) | |||
Output layer | N | Softmax | (N,) |