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The present study deals with the development of a new separator for the separation of iron ore and 
coal of a size fraction of -4 + 0 mm individually. Particles of iron ore with size fraction − 2 + 0 mm and 
finer coal were separated separately using screen mesh with an aperture size of 2 mm. The operating 
characteristics of the screen’s upward slope and the screen’s vibration frequency of the new separation 
equipment can be easily modified. In this study, moist iron ore and coal segregation have been carried 
out for various separation angles and frequencies, and test results of moist iron ore and coal were 
compared based on their moisture content and density. Also, for the prediction of results, artificial 
neural network (ANN) modeling and regression analysis were implemented. The R-square value for 
regression analysis of experimental results was found higher than 85.60% and 88.50% for coal and 
iron ore respectively. The R-square value for the ANN mathematical model of experimental results 
was found higher than 99.10% and 98.24% for coal and iron ore respectively. The comparison of 
the regression model, the ANN model’s mathematical modeling results, and the test results for the 
separation of moist iron ore and coal hold a strong correlation. For validation, residual analysis was 
also performed on the separation of moist iron ore and coal regression and ANN models. Including 
improved accuracy, reduced computational time, and enhanced predictive capabilities. The residual 
probability plot’s results for homoscedasticity, low standard deviation, normality, and independence 
demonstrate that, under all experimental settings for iron ore and coal, the developed artificial neural 
network (ANN) model outperforms the regression model in terms of prediction accuracy.

Keywords  Separator equipment, Iron ore, Coal, Regression, Artificial neural network, Prediction, Residual 
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Indian iron ore and coal must go through a number of beneficiation processes in order to be cleaned up and 
ready for use. Large amounts of water are used in wet processing, and the tailings must be processed in a plant 
wastewater treatment circuit. Water shortage made it difficult to process materials in various parts of India. 
Therefore, it makes sense to create a very effective dry-processing technology. Although wet beneficiation has 
been used, it has a number of drawbacks, including the need for a large amount of separation liquid for the 
process, and issues with tailings treatment. When comparing dry beneficiation to wet beneficiation, there are 
many advantages. Reducing water use, getting rid of garbage, and treating tailing water are a few of the major 
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benefits. There aren’t many dry processing methods available for iron ore and fine coal. In 2020, India utilized 
a total of 946.42 million tonnes of coal. Coal is a major energy source used worldwide to generate electricity. 
High energy-efficient clean coal is created when the amount of ash is reduced. Similar to this, gangue material 
decreases and high-grade material is created by processing iron ore with a size of less than 2 mm. Wet treatment 
was first used to separate the material. The growing need for clean iron ore and coal has led to a rising need for 
efficient separator equipment. Therefore, the best way to separate materials will be through the development of 
appropriate dry technology for processing.

Numerous efforts were undertaken to examine the dry separation capabilities of the current linear separator 
equipment for screening. The angular location, frequency, and screen mesh size of conventional linear separator 
equipment are all set once and are maintained for years until they break down. The main issues with the linear 
separator equipment are decreased performance and clogging. The material’s moisture content and the presence 
of near-size particles cause screen blockage. When a screen becomes clogged, particles flow through it inefficiently 
and small particles become misplaced with coarse particles that are released from the screen deck. The work of 
Dong et al.1 demonstrates the necessity of using the screen’s circular motion. The job involves creating a DEM 
model for the several screening vibrating modes, including circular and linear screen vibration. It was discovered 
that when there was a linear motion on the screen, the particle’s travel rate was greater, and when there was 
a circular vibration, it was lower. It is evident from the many studies carried out by different researchers like 
reference1 that screen clogging can be prevented by employing circular vibration in the separator equipment. 
The main issues with the current linear separator equipment are low residence duration, high velocity, clogged 
screens that impair efficiency, and rigidity when adjusting the screen’s frequency and angular position. The work 
of Akbari et al.2 demonstrates the experimental analysis of dry screening using a flip-flop screener. The work 
clearly shows the methodology of grouping the sample size for dry screening. Production must be halted in 
order to use a wire brush to remove any material that has become lodged in the screen mesh because of issues 
with the current linear separator equipment, Bardhan et al.3. However, when the feed material’s moisture content 
rises, the machine experiences more stoppage, which lowers efficiency, raises production costs, and uses fewer 
high-grade materials in smaller size fractions.

It has also been observed that near-size fine particles were present in linear separator equipment from the 
input end to the output end. The screen blinding from the input end to the output end of the screen caused by 
near-size particles from the input end will lower the screening efficiency. By accumulating near-sized small 
particles solely at the screen’s discharge end, the circular separator equipment lowers screen blindness and boosts 
screening effectiveness. According to Feller et al.4, combining the two forces—vertical and horizontal—will lessen 
screen blindness and improve screening effectiveness. The suggested separator equipment will consider both 
vertical and horizontal forces. A few additional significant disadvantages of the conventional linear separator 
equipment include their increased number of parts, which increases friction and vibration.

One of the most important steps in dividing iron ore and coal into various size fractions is a prominent 
process for beneficiation5. The most challenging separation technique, which calls for extensive development, is 
dry separation. New dry-separating technologies have been developed as a result of the need to reduce excessive 
water usage through dry separation. Clean iron ore and coal may be produced using effective dry separation 
equipment, which can save production costs and boost profits. It is challenging to separate moist iron ore and 
coal for size fractions less than 6 mm. However, less work was carried out on experimental analysis of screening. 
The work of Akbari et al.2 demonstrates the experimental analysis of dry screening using a flip-flop screener. 
The work clearly shows the methodology of grouping the sample size for dry screening. The work of Dong et 
al.1 and Akbari et al.2 was the basis for attempting the present work with the proposed methodology. Therefore, 
a new separation equipment was created to separate the moist iron ore and coal of − 4 + 0 mm, which is difficult 
to separate. This separation equipment also provides flexibility to modify the operating parameters such as 
vibration frequency and inclination angle of the screen that can be sloped in an upward direction. The separation 
efficiency of the new separator for dry separation and the challenges of separating moist iron ore and coal are 
presented in this paper. This paper examines the performance of separation of newly developed equipment for 
the dry iron ore and coal with a size fraction of -4 + 0 mm. The comparative analysis of the impact of operating 
parameters such as vibration frequency and inclination was determined using separation equipment.

In the existing literature, it was identified that a limited amount of experimental results are available for 
physical equipment, which makes it challenging to compare and evaluate the actual real-world operational 
challenges of screen clogging and particle mobility under varying conditions. The present work addresses this 
gap by conducting a comprehensive experimental study using a physical screen machine to assess its performance 
in separating iron ore and coal under different operating moisture conditions. By directly testing the equipment, 
this work provides practical insights into the impact of moisture content, and efficiency, offering a more realistic 
assessment of screen performance. Additionally, the integration of experimental data with ANN-based predictive 
modeling further strengthens the reliability of the findings, bridging the gap between theoretical predictions and 
real-world applications.

Experimental details
Material used
JSW Steels Ltd., Ballari, India, owned iron ore and coal were used in this investigation. Prior to separation, the 
raw iron ore and coal were crushed using a jaw crusher. Two manual size fractions of − 2 + 0 mm and − 4 + 2 mm 
were obtained from iron ore and coal. Following the filtering of the mixture, a 30% −2 + 0 mm and 70% −4 + 2 mm 
mixture was created. To get the required variation in moisture, − 4 + 0 mm of iron ore and coal was mixed with 
water. The Moisture Analyser - MX 50 was used to measure the moisture content. Three distinct iron ore and 
coal feeds, each with a different moisture percentage of 4%, 6%, and 8%, were made separately.
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Machine used
Low separation performance is typically the outcome of separation equipment with rigid operating conditions. 
A small number of works on separation equipment with adjustable operating parameters were discovered 
through a review of the literature. Thus, the authors designed a separation equipment for separating moist iron 
ore and coal that has a circular vibration mode and operational flexibility. Figure 1 displays a schematic of the 
new separation equipment.

Separation equipment tests
The present work has considered a new methodology for testing the separation performance of the separation 
equipment. The methodology for testing the separation performance is given in flow sheets, as shown in Fig. 2. 
Figure 2 shows that in the present study, the Coal and iron ore samples were collected from JSW Steels, Ballari. 
The materials were initially crushed and sieved to obtain a -4 mm + 0 mm size fraction. Further manual sieving 
was conducted to separate the samples into − 4 mm + 2 mm and − 2 mm + 0 mm fractions. Feed samples were 
then prepared by mixing 70% oversized particles (-4 mm + 2 mm) and 30% undersized particles (-2 mm + 0 mm). 
The moisture content of the samples was varied at three levels: 4%, 6%, and 8%. The prepared feed samples 
were individually screened using a screener machine to assess screening performance. Screen efficiency was 
determined for each screening condition, followed by a comparative analysis of the screening performance of 
coal and iron ore. To enhance predictive accuracy, regression and artificial neural network (ANN) techniques 
were employed to estimate screen efficiency. Finally, the prediction performances of regression and ANN models 
were compared to evaluate their effectiveness in predicting screening outcomes.

This paper describes the laboratory scale trial of the separation equipment to individually separate iron ore 
and coal material of size fraction − 4 mm + 0 mm. The screen deck used in the equipment was 600 mm long 
and 300 mm wide. The bed depth was maintained as 20 mm, i.e., five times the size of the oversized material6. 
The screen mesh with an aperture size of 2 mm is fixed to the separating equipment. The screen hole opening 
area maintained in the separating equipment was 60%, and the shape of the particles used was irregular. The 
amplitude maintained in the present study was 2 mm. After preparing the samples, the feed material is poured 
through the hopper of the vibrating feeder. The material was fed at a rate of 500 kg per hour. With the angle bolts 
on the separation equipment, the angular position can be adjusted to 1, 3, and 5 degrees on an upward slope. The 
separation equipment is connected to the frequency drive, which can change the frequency from 4 Hz to 12 Hz 
with an interval of 0.25 Hz, leading to 33 experimental trials for each angular and moisture condition.

During testing, the angular position of the machine was set by rotating the angle bolts. Then, the separation 
equipment was started, and a variable frequency drive set the frequency. Once the separation equipment was 
started, it was set to run for 2 min to reach the steady-state condition. However the steady-state maintained 
used was 20 s in some literature, such as the reflux classifier7. The precision of the experiment was obtained by 
maintaining the steady-state time for each trial as 2 min. The motor can achieve a consistent rotating force on 
the screen at both the inlet and outlet zones during the steady-state time. The vibratory feeder is used to pour 
the material through. As the material comes into contact with the screen mesh, the rotational force of the screen 
transfers to it, pushing it in the direction of the outlet zone. During this rotational motion, the feed material 
is vibrated on the screen deck. The vibration allows the undersized material to separate from the oversized 
material by passing through the screen mesh. The duration of the particle movement on the screen is known as 
the residence time of the material. A portion of the smaller particles will go through the screen mesh during this 
movement, and the remaining smaller particles will be misdirected with the larger particles through the output 
zone. As the amount of undersized particle misplacement is increased, the separating equipment’s efficiency 
will be minimized. After separation, the undersized material is collected from the collector box, which is placed 
below the screen mesh, and the oversized material is collected from the outlet zone of the screen deck.

Fig. 1.  Separation equipment.
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Data processing and analysis
From the literature, it was evident that very limited work was carried out by researchers such as Grozubinsky et 
al.,8 on the estimation of efficiency of the separating equipment. Moreover, studying separation performance and 
addressing associated issues are hard efforts; thus, it is essential to employ numerical and analytical methods9. 
Consequently, the efficiency prediction was conducted utilizing numerical methods, including regression 
analysis and ANN models.

Based on the consistent success rate and potential, the utilization of regression and ANN analysis for 
predictions is growing. The literature indicates that limited research has been conducted on the development of 
regression and ANN models concerning separation performance; for instance, Guerreiro et al.10 and Barbosa et 
al.11 have employed regression analysis in this context. Yadav et al.12 created an artificial neural network model 
to assess the efficacy of coal agglomeration. Lawal et al.13, Onifade et al.14, and Lawal et al.15 created an artificial 
neural network model for the study of coal combustion.

The utilization of regression and artificial neural network prediction models has been progressively rising 
for addressing intricate issues and establishing a mathematical correlation between input and output data. This 
project aims to construct a regression and artificial neural network prediction model to forecast the performance 
of separation equipment for iron ore and coal separation. This study provides a comprehensive discussion on the 
creation of the prediction model. This study will facilitate the creation of an effective system for predicting the 
performance of separation equipment.

The data for the regression and ANN prediction model development was acquired through a series of tests 
including iron ore and coal in the separation apparatus. The frequency was altered during experiments, and the 
efficiency was measured. Thirty-three distinct trials were conducted for each angle and moisture condition in the 
separation of iron ore and coal. The prediction model was developed with frequency as an input parameter and 

Fig. 2.  Methodology for testing flow sheets.
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efficiency as the output parameter. So, the present study provides the regression and ANN prediction model in 
terms of frequency for all the angular and moisture conditions of separating iron ore and coal in the developed 
separation equipment.

Regression model
For analyzing and predicting outcomes, the regression model is frequently utilized. Regression modeling 
develops a mathematical equation for the indirect estimation of output data. The developed mathematical 
equation simplifies the complexity of the problem. The primary purpose of regression modeling is to develop 
a relationship between the input data and the output data. In the present study, the mathematical modeling of 
efficiency for separating iron ore and coal for all the inclination and moisture conditions was developed. In 
industries, the separating equipment will be provided with the variation in only frequency. So, the mathematical 
model was developed for frequency as the input data and efficiency as the output data.

Artificial neural network model

Artificial neural network modeling provides the prediction of the output data using a nonlinear 
mathematical equation. The Regression and ANN modeling was carried out using Minitab V1716 and 
Matlab 2024b17, respectively. The artificial neural network model consists of interconnected nodes 
called neurons. The neurons receive the input data, perform a nonlinear operation, and provide 
prediction results. The artificial neural network (ANN) model consists of three layers, i.e., input layer, 
hidden layer, and output layer, as shown in Fig.  3. Similar to regression modeling, the mathematical 
model was developed for frequency as the input data and efficiency as the output data. A feedforward 
backpropagation technique was used for ANN modeling. This technique allows the model to adjust the 
weights, such as error decreases with iteration. Out of 33 experimental results, For evaluating the ANN 
model, the splitting of the sample data into training, testing, and validation was carried out in 70%, 15%, 
and 15%, respectively18. The correlations between input and output parameters were analyzed using 
residual analysis. The performance validation of the ANN model is not required as the model provides 
both validation and prediction results. The input and output parameters considered in the present work 
to build the model were frequency and screening efficiency. The predictive model using frequency was 
developed for different angles and moisture content. The practicability and efficiency of the developed 
model show the Interpretability of the input and output parameters. After the regression model and ANN 
model’s prediction results are obtained, a comparative study using the residual analysis will be carried out 
to evaluate the most efficient modeling technique for predicting the separation performance of iron ore 
and coal in the separation equipment. The residual analysis of the developed model verifies the robustness 
of the regression and ANN models which also shows the noisy data.

Results and discussion
Influence of separating iron ore and coal at 4% moisture for different inclinations and 
frequency
The efficiency variation for the separation of 4% moisture iron ore and coal at different frequencies is illustrated 
in Fig. 4a and b, respectively. The deck’s angle on an ascending slope was modified to various degrees, specifically 
(1, 3, and 5). Particles exhibited effective circular motion with a 1-degree spacing, leading to enhanced fine coal 
infiltration into the mesh aperture. The separation occurred on an incline, allowing the particles additional time 
to traverse the aperture, resulting in an extended duration of coal particles on the deck1. Extended separation 
periods and circular particle motion have yielded efficiency rates of 87.45% for iron ore and 85.96% for coal 
separation. The separation efficiency for coal decreased to 71.63% and 78.71%, respectively, when the deck tilt 
was modified to 3 and 5 degrees. This occurred by the upward separation, which makes the coal particles travel 
against gravity. It was discovered that when the angle was changed from 1 to 5 degrees, the efficiency dropped 
from 85.96 to 71.63%. This happened as a result of some coal particles on the deck rolling back, reducing the 
possibility that fine coal would pass through the mesh aperture. To separate iron ore, The separation efficiency 
rose to 90.13% and 94.56%, respectively, when the deck’s tilt was changed to 3 degrees and 5 degrees. It was found 
that the efficiency rose from 87.45 to 94.56% when the angle was adjusted from 1 to 5 degrees. Based on the 
results of both material separations, iron ore has the highest efficiency. For the iron ore particles on the screen, 

Fig. 3.  Artificial neural network model.
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good rotating motion, mixing, loosening, and stratification were observed19. Therefore, iron ore had a better 
separation efficiency than coal.

Influence of separating iron ore and coal at 6% moisture for different inclinations and 
frequency
The efficiency variation for separating 6% moist iron ore and coal at various frequencies is depicted in Fig. 5a, b, 
respectively. The highest separation efficiencies of coal were 75.64%, 70.24%, and 65.23% at 1, 3, and 5 degrees, 
respectively. The highest iron ore separation efficiencies at 1, 3, and 5 degrees were 82.35%, 86.43%, and 90.45%, 
respectively. From the data, it was evident that when the angular position was raised from 1 to 5 degrees, iron 
ore’s efficiency peaked. However, when the inclination rose, coal’s efficiency decreased. It was demonstrated that 
the main cause of the variations in separation behavior between iron ore and coal was the material’s density 
differential. When iron ore was separated instead of coal, it was found that the particles moved from the intake 
zone to the outflow zone more quickly and at a lower frequency. Particle mobility in iron ore has led to more 
chances for the particles to pass through the opening of the screen20. The coal’s mobility was reduced when the 
inclination was raised to 5 degrees, which led to an increase in the accumulation of coal particles in the inlet 
zone. Additionally, it stopped some of the coal particles that were too small from getting through the screen 
openings.

Influence of separating iron ore and coal at 8% moisture for different inclinations and 
frequency
The efficiency variation for separating 8% moist iron ore and coal at various frequencies is depicted in Fig. 6a 
and b, respectively. The highest separation efficiencies of coal were 63.46%, 59.74%, and 56.97% at 1, 3, and 5 
degrees, respectively. The highest separation efficiencies of iron ore were 78.64%, 83.91%, and 80.39% at 1, 3, 
and 5 degrees, respectively. The results demonstrated that a higher fall in coal performance at 5 degrees was 
brought on by screen blockage and a high buildup of coal particles next to the intake zone, as shown in Fig. 7. 

Fig. 5.  (a) Separation results of 6% moist coal. (b) Separation results of 6% moist iron ore.

 

Fig. 4.  (a) Separation results of 4% moist coal. (b) Separation results of 4% moist iron ore.
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With an increase in coal moisture content, it was discovered that efficiency, particle transit into the screen hole, 
and particle stratified all declined.

Table 1 shows the angle and optimized frequency for the highest screening efficiency of iron ore and coal. 
From Table 1, It was clear that the highest separator efficiency obtained for coal was 85.96% at 4% Moisture and 
10 Hz frequency. From Table 1, It was clear that the highest separator efficiency obtained for iron ore was 94.56% 
at 4% Moisture and 9 Hz frequency.

The results of the separator efficiency of coal correlated well with the results of Akbari et al., 2017, which 
had a separator efficiency of 85.1% for separating coal in flip flop screener. From the work of Dong et al.1, the 
simulation results show that the separator efficiency of the circular motion screener has yielded up to 78%. In 
comparison with the previous literature results, it was clear that the developed separator equipment is highly 
efficient for separating coal and iron ore.

From Table 1, it was clear that Iron ore separated at 5 degrees was also discovered to be less efficient than iron 
ore separated at 3 degrees. The main causes of this were the decreased buildup of iron ore particles on the screen 
deck as well as the decreasing mobility. Additionally, it was found that separating iron ore resulted in decreased 
screen clogging, as seen in Fig. 8. Therefore, iron ore was more efficient than coal.

The high density of iron ore also contributed to its increased efficiency. It was discovered that, in comparison 
to low-density coal, the increased density of iron ore also corresponds to the handling of a small amount of 
material. There were fewer near-sized, fine, and coarse particles in iron ore because there was less material 

Fig. 7.  Clogging of coal.

 

Fig. 6.  (a) Separation results of 8% moist coal. (b) Separation results of 8% moist iron ore.
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handling. Thus, the stratification of iron ore particles occurred faster than with coal. Additionally, it was noted 
that the iron ore particles moved well during separation at a higher inclination on an upward slope. All of the 
iron ore particles had more possibilities to pass through the screen holes as a result of this particle mobility than 
coal.

For all moisture circumstances, separating coal at higher inclination decreased in efficiency; however, 
separation of coal at a 1-degree increased efficiency. The optimal bed depth has made optimum particle 
segregation and particle mobility on the screen deck possible21.

The material moved from the screen deck’s inlet to outflow zones due to the rotational force’s horizontal 
motion4. Additionally, the bigger particles are moved horizontally, making it easier for the smaller particles to 
fit through screen holes. The rotational force’s vertical motion stirred the particles, mixed them, and cleared 
the screen holes, which prevented clogging4. The separating equipment will have a high residence time of the 
material on the screen due to the intermediate horizontal and vertical motion of the rotational force, which 
results in a high transit of particles through the screen4. The results indicated that iron ore may be screened 
more efficiently than coal regarding screen clogging. This suggests that the high-density material demonstrated 
superior separation performance for the separation apparatus. Furthermore, it was determined that iron ore 

Fig. 8.  Clogging of iron ore.

 

Material Moisture content (%) Angle (degree) Optimal frequency (Hz) Highest separator efficiency (%)

Coal

4 5 11.25 71.63

4 3 10.75 78.71

4 1 10 85.96

6 5 11 65.23

6 3 11 70.24

6 1 9.75 75.64

8 5 11.25 56.97

8 3 10.25 59.74

8 1 9.25 63.46

Iron ore

4 5 9 94.56

4 3 8.25 90.13

4 1 7.75 86.51

6 5 8.5 90.45

6 3 8 86.43

6 1 7.25 82.35

8 5 8 80.39

8 3 7.5 83.91

8 1 6.75 78.64

Table 1.  Angle and optimized frequency for the highest screening efficiency of iron ore and coal.
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separated at 5 degrees exhibited lower efficiency compared to iron ore screened at 3 degrees. The primary 
factors contributing to this were the reduced accumulation of particles on the screen and diminished mobility. 
Additionally, it was discovered that separating iron ore resulted in decreased screen clogging. Therefore, iron ore 
was more efficient than coal.

The high density of iron ore also contributed to its increased efficiency. It was discovered that, in comparison 
to low-density coal, the increased density of iron ore also corresponds to the handling of a small amount of 
material. There were fewer near-sized, fine, and coarse particles in iron ore because there was less material 
handling. In comparison to iron ore, more water was used during sample preparation to alter the moisture 
content of coal. This was brought about by the low density of coal, which causes a significant amount of material 
to absorb moisture content due to its increased surface area. As a result, a large volume of water is needed to 
increase the moisture content of coal. Therefore, compared to coal, the stratification of iron ore particles happened 
more quickly. All of the iron ore particles on the screen had more possibilities to pass through the screen holes 
as a result of this particle mobility than coal. Separating coal at 3 and 5 degrees showed a decrease in efficiency 
for all moisture conditions; however, separating coal at a lower inclination in an upward slope produced higher 
efficiency. It was noted that the screen’s rotational motion and ideal bed depth produced excellent efficiency22. 
The material moved from the screen deck’s inlet to outflow zones due to the rotational force’s horizontal motion. 
Additionally, the bigger particles are moved horizontally, making it easier for the smaller particles to fit through 
screen holes. The rotational force’s vertical motion stirred the particles, mixed them, and cleared the screen 
holes, which prevented clogging. The separating equipment will have a high duration for material residence 
on the screen deck due to the intermediate horizontal and vertical motion of the rotational force, which results 
in a high transit of particles through the screen hole. The findings demonstrated that iron ore material may be 
separated more easily than coal in terms of screen clogging. This indicates that high-density materials, such as 
iron ore, exhibited better anti-logging behavior for the designed separation equipment.

Prediction of efficiency using the regression model
After the experimentation, the predictive regression model was developed for efficiency with respect to the 
frequency variation for each moisture and angular condition. For each predictive model, P-value and R-squared 
values were obtained. P-value is a significant value that has to be less than 0.005. The P-value was 0.00 for all iron 
ore and coal settings. This indicates that the model was of high quality. The R-squared value shows the closeness 
in the correlation of the experiment results and prediction results in percentage.

Figure 9 a-i shows the regression data fitting results of efficiency for all experimental conditions of separating 
coal. For 4% moisture content, the R-squared value for 1 degree, 3 degrees, and 5 degrees was 78.7%, 96.5%, and 
97.3%, respectively. The R-squared value of 3 degrees and 5 degrees was found to be more accurate compared 
to 1 degree. 78.7% R-squared value for predicting separation results at 1 degree was in an acceptable range. For 
6% moisture content, the R-squared value for 1 degree, 3 degrees, and 5 degrees was 91.7%, 97.9%, and 97.1%, 
respectively. For 8% moisture content, the R-squared value for 1 degree, 3 degrees, and 5 degrees was 87.3%, 
85.6%, and 95.3%, respectively. All the predictive values of separating coal with 6% and 8% moisture, the R 
squared value, were found to be highly accurate for the developed regression model.

Figure 10 a-i shows the regression data fitting results of efficiency for all experimental conditions of separating 
iron ore. For 4% moisture content, the R-squared value for 1 degree, 3 degrees, and 5 degrees was 93.4%, 89.8%, 
and 88.5%, respectively. For 6% moisture content, the R-squared value for 1 degree, 3 degrees, and 5 degrees was 
89.8%, 94.2%, and 93.3%, respectively. For 8% moisture content, the R-squared value for 1 degree, 3 degrees, and 
5 degrees was 92.5%, 92.4%, and 94.9%, respectively. Figure 9 a-i and Fig. 10 a-i observed that the regression 
prediction results of iron ore had provided more accurate results than the prediction results of coal.

Prediction of efficiency using the artificial neural network model
Figure 11 a-i and 12 a-i show the artificial neural network data fitting results for all the conditions of separating 
iron ore and coal, respectively. The predictive model was developed using an artificial neural network for 
efficiency with respect to the frequency variation for each moisture and angular condition. For each predictive 
model, R-value validation, R-value overall, and R-squared value were obtained. R-value overall shows the 
closeness in the correlation between the experimental results and prediction results. From Fig. 11 a-i and 12 a-i, 
it was clear that the prediction data fit well with experimental data.

Table  2a, b show ANN prediction results of efficiency for all experimental conditions of separating iron 
ore and coal, respectively. Table 2a, b showed that the R squared value obtained was more than 98% for all the 
separation conditions. This shows that the modeling with an artificial neural network results in developing a 
highly accurate model for separating iron ore and coal. The closeness in R-value validation with the R-value 
overall provides the validation of the predictive model. Table 2a, b, it was clear that the developed model was 
valid and accurate.

Validation of regression and ANN model using probability plot of residuals
Figure  13a, b show the probability plot of residual of regression models for all the experimental conditions 
of iron ore and coal. From Fig. 13a, b, it was clear that the residuals are within the normal line and also are 
independent of one another. Figure  13a, b also show that the standard deviation value indicates the overall 
spread of errors ranging from 0.4 to 1.3. The standard deviation value was low but in the acceptable range. 
The normality, independent, and standard deviation results of the probability plot show that the developed 
regression model for all the experimental conditions of iron ore and coal fits well with the data.

Figure 14a, b show the probability plot of residual of ANN models for all the experimental conditions of iron 
ore and coal, respectively. From Fig. 14a, b, it was clear that the residuals are within the normal line and also are 
independent of one another. Additionally, Figs. 14a, b demonstrate that the ANN model’s standard deviation 
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value was substantially lower than the regression model, with a range of 0.1. The criteria of homoscedasticity 
are satisfied by Fig. 14a, b illustrate that the vertical dispersion of the data around the normal line appears to 
remain rather constant as the X-axis varies23. The probability plot results for homoscedasticity, low standard 
deviation, normality, and independence indicate that, across all experimental conditions for iron ore and coal, 
the developed artificial neural network (ANN) model outperforms the regression model in predictive accuracy. 
Overfitting generally results in elevated variance and significant dispersion in prediction errors. The probability 
plot of residuals in this investigation exhibited less data scatter, signifying alignment between expected and 
actual values. This verifies that the constructed model is optimal and unaffected by overfitting14,24,25.

The regression and artificial neural network prediction results clearly indicated that the R-squared value of 
the artificial neural network model outperformed that of the regression model. The findings of the regression 
and artificial neural network residual analysis clearly indicated that the data fitting performance of the artificial 
neural network model was better than that of the regression model. This signifies that the artificial neural 
network-based prediction model has performed better than the predictive regression model. The intricate 
challenge of segregating iron ore from coal is more effectively addressed by the prediction model of artificial 
neural networks.

Conclusions
This study thoroughly investigated the separation efficacy of iron ore and coal under different moisture 
circumstances utilizing a separation apparatus. The findings indicated that a reduced moisture content of 4% 
resulted in optimal separation efficiency. Both coal (85.96%) and iron ore (94.56%) exhibited reduced efficiency 
due to increasing moisture content, which caused screen clogging and diminished particle mobility, especially in 
coal.Moreover, iron ore demonstrated enhanced mobility at elevated angular locations and increased separation 
efficiency relative to coal, owing to the screen deck’s rotational force.

The research further validated that the anti-clogging efficacy of the separation apparatus was more 
pronounced for high-density iron ore compared to low-density coal, enhancing the performance of iron ore 

Fig. 9.  Fitting results for regression data for all coal separation conditions.
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separation. To improve predictive accuracy, regression and artificial neural network (ANN) models were 
employed, with the ANN model exhibiting superior prediction accuracy, attaining R² values of 99.10% for 
coal and 98.24% for iron ore. The ANN model outperformed the regression analysis in forecasting separation 
efficiency, as confirmed by residual probability plot analysis. These findings underscore the capability of machine 
learning models in enhancing separation procedures. The research findings showed the significance of diverse 
iron ore and coal characteristics in predicting the efficacy of separator equipment utilized for their separation. 
The study, grounded in experimental analysis and ANN-based predictions, found moisture content and the 
density differential between coal and iron ore as critical determinants of separation efficiency. These qualities 
substantially influence the behavior of materials throughout the separation process. The findings from this 
investigation endorse the refined selection and functioning of separator equipment, enhancing total separation 
efficiency. The residual probability plot indicates that the developed artificial neural network (ANN) model 
outperforms the regression model in prediction accuracy across all experimental conditions for iron ore and 
coal, demonstrating homoscedasticity, low standard deviation, normality, and independence. The authors will 
investigate various predictive modeling techniques for the separation studies of coal and iron ore, and they 
also intend to examine the separation studies of different materials using the developed separator equipment 
as potential future research directions in the field. Future study may concentrate on optimizing separation 

Fig. 10.  Fitting results for regression data for all iron ore separation conditions.
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equipment design to reduce coal clogging problems and using real-time AI-driven monitoring systems to 
improve operational efficiency.

Fig. 11.  Fitting results for ANN data for all coal separation conditions.
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Fig. 12.  Fitting results for ANN data for all iron ore separation conditions.
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Moisture content Screen angular position (0) Training R Test R Validation R All R
Regression coefficient
R-squared

(a) Coal

4%

1 0.9977 0.9979 0.9982 0.9977 99.55%

3 0.9997 0.9998 0.9994 0.9996 99.93%

5 0.9948 0.9961 0.9994 0.9955 99.10%

6%

1 0.9991 0.9999 0.9997 0.9994 99.88%

3 0.9995 0.9999 0.9997 0.9996 99.93%

5 0.9990 1 0.9996 0.9992 99.85%

8%

1 0.9993 0.9979 0.9999 0.9993 99.87%

3 0.9969 0.9999 0.9999 0.9977 99.55%

5 0.9991 0.9973 0.9996 0.9990 99.81%

(b) Iron ore

4%

1 0.9986 0.9999 0.9999 0.9991 99.82%

3 0.99489 0.9977 0.9973 0.9953 99.07%

5 0.9969 0.9954 0.9997 0.9963 99.26%

6%

1 0.9949 0.9917 0.9956 0.9911 98.24%

3 0.9894 0.9996 0.9975 0.9916 98.33%

5 0.9988 0.9999 0.9994 0.9991 99.82%

8%

1 0.9978 0.9996 0.9998 0.9984 99.69%

3 0.9992 0.9999 0.9996 0.9991 99.83%

5 0.9942 0.9919 0.9998 0.9943 98.87%

Table 2.  ANN prediction results of efficiency for all experimental conditions of separation (a) coal, (b) iron 
ore.
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Fig. 13.  (a) Probability plot of residual of regression models for all the experimental conditions of coal. (b) 
Probability plot of residual of regression models for all the experimental conditions of iron ore.
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Data availability
The necessary data used in the manuscript are already present in the manuscript.
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Fig. 14.  (a) Probability plot of residual of ANN models for all the experimental conditions of coal. (b) 
Probability plot of residual of ANN models for all the experimental conditions of iron ore.
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