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This paper studies the set stabilization of delayed Boolean control networks (DBCNs) with state 
inequality constraints via time-variant nonuniform sampled-data control. State inequality constraints 
are introduced into DBCNs. Firstly, the equivalent algebraic forms of DBCNs and the solution set of 
state inequality constraints are constructed via the algebraic state space representation approach, 
based on which an inequality constrained controllability matrix is constructed. Then, by the inequality 
constrained controllability matrix, new criteria are proposed for the nonuniform sampled-data 
inequality constrained reachability of DBCNs. Finally, a time-variant nonuniform sampled-data 
stabilizers are designed for DBCNs by utilizing the nonuniform sampled-data inequality constrained 
reachability. The effectiveness of the obtained results is verified through the cell apoptosis network.
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Boolean networks (BNs) are a special kind of nonlinear systems with logical operations1,2. The model of BNs was 
established by Kauffman to study gene regulatory networks (GRNs)3. Furthermore, BNs with inputs are referred 
to Boolean control networks (BCNs), which is a correct method to describe the dynamics of GRNs4. For some 
basic theory and applications of BNs, please refer to5,6. However, due to the lack of mathematical methods for 
handling logical processes, it becomes very inconvenient to study the control issues of BNs7.

Recently, a new matrix product, called semi-tensor product of matrices, has provided great convenience for 
the study of BNs8. Based on the characteristics of matrix product, an algebraic state space representation (ASSR) 
framework has been constructed for the research of BNs. Therefore, researchers can use the ASSR to investigate 
BNs through the traditional control theory9. In the past twenty years, many excellent results have been achieved 
for BNs via the ASSR framework10,11. Observability and controllability for BNs were investigated in12,13. Stability 
and stabilization of BCNs were investigated in14–16.

Control design is always a core issue in control theory17,18. Recently, many control design methods have 
been introduced to address the control problems of BCNs through the ASSR19. Furthermore, how to design 
appropriate control techniques to reduce control costs is an important topic in modern control theory. As we 
all know, sampled-data control (SDC) is an effective technique, which reduces the update frequency of the 
controller and significantly reduces the computational burden20,21. In22, a self-triggered implementation of 
the proposed event-triggered sampling scheme was presented. Based on the ASSR framework, SDC method is 
introduced into the control of BCNs19,23, and some basic results are proposed for the sampled-data stabilization 
and controllability of BCNs24. There are two types of SDC: uniform SDC and nonuniform SDC (NSDC). Since 
the sampling length of NSDC is time-varying, it can more effectively utilize information resources than uniform 
SDC25, which also makes the controller design more challenging.

In GRNs, time delay is generally used to represent slow biochemical reactions26. In addition, external 
environmental factors, such as nutrient concentration and temperature may also lead to time delays in GRNs. 
For example, the coupled oscillatory biochemical network in cell cycle is simplified as the delayed BN27:

	

{
C1(t + 1) = ¬

(
C1(t − 2) ∧ C2(t − 1)

)
,

C2(t + 1) = ¬
(
C1(t − 1) ∧ C2(t − 2)

)
,

� (1)

where C1(t) and C2(t) represent the state of two cells at time t, and time delays are caused by the delayed 
translocation between cells. In the past ten or more years, delayed BNs have attracted the research interest 
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of many scholars. Delayed BNs were firstly investigated through the ASSR in8. Subsequently, delayed BCNs 
(DBCNs) were also well investigated in some works12,28. In29, fault detectability of asynchronous DBCNs with 
sampled-data control was investigated.

As is well known, constraints play a very important role in nonlinear systems30. In GRNs, it is necessary 
to impose constraints on certain gene states that may lead to diseases and treatment options that may lead to 
serious complications31. For example, in WNT5A gene networks, states of the WNT5A=1 are undesirable as 
they accelerate the opportunity for transfer32. State inequality constraints, as an important form of constraints, 
often appear in the control logic design of dynamic systems33. They are usually physical constraints of the system 
and have wide practical applications34. For example, in a semi-batch reactor, due to the volume constraint of 
the reactor, only a limited amount of substrate can be fed. Similarly, for safety reasons, one may not want the 
reactor to operate above a certain maximum temperature. In a feed batch bioreactor, there may be constraints on 
cell mass concentration (beyond which oxygen transfer is restricted) or substrate concentration (beyond which 
unexpected side reactions may occur). However, there are no relevant results on the investigation of DBCNs 
with state inequality constraints via NSDC.

In this paper, based on the ASSR framework, we analyze the inequality constrained set reachability and 
inequality constrained set stabilization of DBCNs with state inequality constraints via NSDC. The main 
contributions can be summarized in two aspects: (i) State inequality constraints are introduced into DBCNs, 
and an inequality constrained controllability matrix is constructed for studying the inequality constrained set 
stabilization of DBCNs. (ii) NSDC provides us with more control schemes to achieve control objectives and 
reduce control costs. The traditional control and uniform SDC can be considered as a special case of NSDC.

The remainder of this paper is organized as follows: Section “Problem formulation” presents the equivalent 
system of DBCNs with state inequality constraints through the ASSR framework. The inequality constrained 
controllability matrix and nonuniform sampled-data inequality constrained reachability are considered in 
section “Inequality constrained set reachability”. The time-variant state feedback inequality constrained set 
stabilization of DBCNs is studied in section “Inequality constrained set stabilization”. Section “Illustrative 
example” and section “Conclusions” provide an illustrative example and a brief summary, respectively.

Notations: R, Z, N and Z+ represent the set of real numbers, integers, nonnegative integers and positive 

integers, respectively. 0s := (0, · · · , 0︸ ︷︷ ︸
s

)⊤. 1s := (1, · · · , 1︸ ︷︷ ︸
s

)⊤. Is denotes the s-order identity matrix. (A)s,m 

denotes the (s,  m)-th element of matrix A. Coli(A) denotes the i-th column of matrix A. D := {0, 1}, 
Dm := D × · · · × D︸ ︷︷ ︸

m

. ∆s := {δi
s : i = 1, · · · , s}, where δi

s = Coli(Is). As×m is called a (s, m) logical matrix, 

if Coli(As×m) ∈ ∆s, i = 1, · · · , m. Ls×m denotes the set of s × m logical matrices. W[s,m] and Mr,n are 
swap matrix and power-reducing matrix, respectively8. [a, b)|Z = {a, · · · , b − 1} ⊆ Z, a, b ∈ Z, a < b. ⌊c⌋ 
represents the maximum integer not greater than c. Denote a1

∧̃
a2 = min{a1, a2}. In this paper, the default 

matrix product is semi-tensor product (⋉)8.

Problem formulation
Consider the following DBCN:

	




x1(t + 1) = κ1(X(t − ς + 1), · · · , X(t), U(t)),
...

xn(t + 1) = κn(X(t − ς + 1), · · · , X(t), U(t)),
� (2)

where ς ∈ Z+ is the time delay, X(i) := (x1(i), · · · , xn(i)) ∈ Dn, i = −ς + 1, · · · , 0, 1, · · ·  denote the state, 
here U(t) := (v1(t), · · · , vm(t)) ∈ Dm denotes the control input, and κi : Dnς+m → D , i = 1, · · · , n are 
Boolean functions. Assume that Y0 := (X(−ς + 1), · · · , X(0)) ∈ Dnς  denotes the initial state trajectory.

Furthermore, consider state inequality constraints for binary variables xj(i) ∈ D , j = 1, · · · , n:

	 a ≤ f(x1(i), · · · , xn(i)) ≤ b,� (3)

where f : Dn → R is the inequality constrained function, and a, b ∈ R are inequality constrained boundaries.
For DBCN (2), we assume that f(x1(i), · · · , xn(i)) satisfies the following linear form:

	 f(x1(i), · · · , xn(i)) = (20, 21, · · · , 2n−1)(x1(i), · · · , xn(i))⊤.� (4)

It is worth pointing out that all possible states in Dn correspond one-to-one to indicator set [0, 2n)|Z, and some 
other types of inequalities (nonlinear) can be transformed into linear constraint forms of (4) through column 
expansion35.

Example 1  Consider the cell apoptosis network36

	

{
IAP (t + 1) = ¬C3a(t) ∧ T NF (t),
C3a(t + 1) = ¬IAP (t) ∧ C8a(t),
C8a(t + 1) = C3a(t) ∨ T NF (t),

� (5)
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where IAP, C3a, and C8a represent concentration levels (low or high) of apoptosis inhibitor protein, active 
cystatin 3, and active cystatin8, respectively; the concentration level of tumor necrosis factor (TNF) is considered 
as a control input. The network graph of (5) is shown in Fig.  1.
Set x1(t) = IAP (t), x2(t) = C3a(t), x3(t) = C8a(t), v(t) = T NF (t), and

	 f(X(t)) = (20, 21, 22)(X(t))⊤ = 20x1(t) + 21x2(t) + 22x3(t).

From D3 = {(0, 0, 0), (1, 0, 0), (0, 1, 0),( 1,  1,  0),  (0,  0,  1),   (1,  0,  1),   (0,  1,  1),   
(1, 1, 1)}, the corresponding indicator can be obtained as f(0, 0, 0) = 0, f(1, 0, 0) = 1, 
f(0, 1, 0) = 2, f(1, 1, 0) = 3, f(0, 0, 1) = 4, f(1, 0, 1) = 5, f(0, 1, 1) = 6, f(1, 1, 1) = 7.

In practice, the concentration ratio of IAP, C3a, and C8a can only be effective within an indicator range, so only 
the data within the range needs to be considered. For example, the indicator range requires 2 ≤ f(X(t)) ≤ 5, 
then the corresponding solution set is Cx = {(0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1)}, that is, the states of system 
(5) are constrained to Cx.

Firstly, we give the definitions of NSDC and nonuniform sampled-data inequality constrained set 
stabilization5.

Definition 1  Given a set of sampling points {th : h ∈ N} with t0 = 0. {U(t) : t ∈ N} ⊆ Dm is said to be an 
NSDC, if

	 U(t) = U(th), t ∈ [th, th+1)|Z, th+1 − th = τh,� (6)

where the interval length τh ∈ Z+ between sampling points are time-variant.
Especially, when τh = τ  holds for any h ∈ N, the definition of uniform SDC can be given, where τ ∈ Z+ is 

called the sampling period37.

Definition 2  Let a state inequality constraint (3) and a nonempty state set Ee that satisfies (3) be given. DBCN 
(2) is said to be nonuniform sampled-data inequality constrained set stabilizable to Ee, if for any Y0 that satisfies 
(3), there exist a time-variant state feedback NSDC

	 vi(t) = gi(th, X(th − ς + 1), · · · , X(th)), t ∈ [th, th+1)|Z� (7)

with gi : {th : h ∈ N} × Dnς → D , i = 1, · · · , m being time-variant logical functions, and a positive integer 
T such that X(t) ∈ Ee, ∀ t ≥ T , and a ≤ f(X(t)) ≤ b, ∀ t ≥ 1.
Secondly, based on the ASSR8, we provide the equivalent algebraic form of DBCN (2).

Identifying 1 ∼ δ1
2 , 0 ∼ δ2

2 . Setting x(t) = ⋉n
i=1xi(t) ∈ ∆2n , v(t) = ⋉m

i=1vi(t) ∈ ∆2m , 
y(t) = ⋉t

i=t−ς+1x(i) ∈ ∆2nς , we can convert DBCN (2) into the algebraic form

	




x1(t + 1) = K1v(t)y(t),
...

xn(t + 1) = Knv(t)y(t),
� (8)

where Ki ∈ L2×2nς+m  is the structural matrix of κi, i = 1, · · · , n. Multiplying the n equations in (8), we can 
obtain the following form of (8):

	 x(t + 1) = Kv(t)y(t),� (9)

where K ∈ L2n×2nς+m  satisfies Colj(K) = ⋉n
i=1Colj(Ki), j = 1, · · · , 2nς+m. For detailed instructions on 

how to use the ASSR to represent logical functions, please refer to8.
In addition, from (4) and the construction of x(t) = ⋉n

i=1xi(t) ∈ ∆2n , we can easily obtain the following 
result.

Proposition 1  If f(p1, · · · , pn) = p, (p1, · · · , pn) ∈ Dn, then δp+1
2n = δpn+1

2 ⋉ · · · ⋉ δp1+1
2 ∈ ∆2n  holds.

Fig. 1.  Network of the cell apoptosis network (5).
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Based on Proposition 1, we present the following algorithm to determine the solution set for the state inequality 
constraint (3).

Algorithm 1.  Construction of the solution set for the state inequality constraint (3).

Similar to DBCN (2), we can convert the NSDC (7) into the algebraic form:

	 v(t) = G(th)y(th), t ∈ [th, th+1)|Z,� (10)

where G(th) ∈ L2m×2nς  is referred to as the time-variant state feedback sampled-data gain matrix.
In order to unify the dimensions of states in system (9), we convert system (9) into the augmented form

	

y(t + 1) = ⋉t+1
i=t−ς+2 x(i)

=(1⊤
2n ⊗ I2n )y(t)x(t + 1)

=(1⊤
2n ⊗ I2n )y(t)Kv(t)y(t)

=(1⊤
2n ⊗ I2n )(I2nς ⊗ K)W[2m,2nς ]v(t)y2(t)

=(1⊤
2n ⊗ I2n )(I2nς ⊗ K)W[2m,2nς ](I2m ⊗ Mr,2nς )v(t)y(t)

:=Kv(t)y(t),

� (11)

where K = (1⊤
2n ⊗ I2n )(I2nς ⊗ K)W[2m,2nς ](I2m ⊗ Mr,2nς ) ∈ L2nς ×2nς+m .

Assume Cx = {δψ1
2n , · · · , δ

ψβ

2n } ⊆ ∆2n , where ψ1 < · · · < ψβ . Correspondingly, the states of (11) are 
constrained to

	 Cy = {y = ⋉ς
i=1xi : xi ∈ Cx} := {δµ1

2nς , · · · , δ
µβς

2nς },� (12)

where µ1 < · · · < µβς . For the nonempty set Ee ⊆ Cx in Definition 2, we denote

	 Êe = {y = ⋉ς
i=1xi : xi ∈ Ee} ⊆ Cy.� (13)

Finally, we study the relation between nonuniform sampled-data inequality constrained set stabilizable to Ee of 
DBCN (2) and nonuniform sampled-data inequality constrained set stabilizable to Êe of system (11). Before this, 
we first provide the definition of nonuniform sampled-data inequality constrained set stabilizable to Êe for (11).

Definition 3  For the nonempty set Êe ⊆ Cy , system (11) is said to be nonuniform sampled-data inequali-
ty constrained set stabilizable to Êe, if ∀ y0 ∈ Cy , there exist an NSDC (10) and an integer T̂ > 0 such that 
y(t) ∈ Êe, ∀ t ≥ T̂ , and y(t) ∈ Cy, ∀ t ≥ 0.

Then, we have the following result.

Proposition 2  DBCN (2) is nonuniform sampled-data inequality constrained set stabilizable to Ee, if and only if 
system (11) is nonuniform sampled-data inequality constrained set stabilizable to Êe.

Proof  (Necessity) From Definition 2, for any y0 = ⋉0
i=−ς+1x(i) ∈ Cy , there exist a time-variant state feedback 

NSDC sequence and a positive integer T such that x(t) ∈ Ee, ∀ t ≥ T , and x(t) ∈ Cx, ∀ t ≥ 1, which implies 
y(t) = ⋉t

i=t−ς+1x(i) ∈ Êe, ∀ t ≥ T + ς − 1, and y(t) = ⋉t
i=t−ς+1x(i) ∈ Cy, ∀ t ≥ 1. From Definition 3, 

system (11) is nonuniform sampled-data inequality constrained set stabilizable to Êe.

(Sufficiency) From Definition 3, for any y0 ∈ Cy , there exist a time-variant state feedback NSDC sequence 
and a positive integer T̂  such that y(t) ∈ Êe, ∀ t ≥ T̂ , and y(t) ∈ Cy , ∀ t ≥ 1. From the construction of Êe 
and the unique factorization of y(t) = ⋉t

i=t−ς+1x(i), we have x(t) ∈ Ee, ∀ t ≥ T̂ , and x(t) ∈ Cx, ∀ t ≥ 1. 
From Definition 2, DBCN (2) is nonuniform sampled-data inequality constrained set stabilizable to Ee.�  □
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Inequality constrained set reachability
In this section, by constructing an inequality constrained controllability matrix, we investigate the nonuniform 
sampled-data inequality constrained set reachability of the augmented system (11).

Firstly, we give the concept of nonuniform sampled-data inequality constrained set reachability of system 
(11).

Definition 4  Given a nonempty set Êd ⊆ Cy  and an initial state y0 ∈ Cy . Êd is called nonuniform sampled-da-
ta inequality constrained set reachable from y0 at sampling point th under NSDC, if one can find an NSDC 
sequence 

{
v(0), v(1), · · ·  , v(th − 1)

}
⊆ ∆2m  such that y(th) ∈ Êd and y(t) ∈ Cy , ∀ 1 ≤ t ≤ th.

Secondly, we construct the inequality constrained controllability matrix.
For system (11), split K  into 2m equal blocks as

	 K = [Blk1(K) · · · Blk2m (K)].� (14)

Then, Blki(K) corresponds to the control δi
2m , i = 1, · · · , 2m. In order to reduce the computational complexity 

caused by state inequality constraints, define E ∈ R2nς ×2nς

 with

	
Rowi(E) =

{
(δi

2nς )⊤, i ∈ {µ1, · · · , µβς },
0⊤

2nς , otherwise.
� (15)

Let

	 Blki(K̂) = E
(
Blki(K)

)
E⊤, i = 1, · · · , 2m.� (16)

Intuitively, Blki(K̂) is obtained from Blki(K) by substituting zeros in the corresponding rows and columns 
with indices {1, · · · , 2nς} \ {µ1, · · · , µβς }. Then, the inequality constrained controllability matrix is 
constructed as follows:

	
Qτh =

2m∑
i=1

(
Blki(K̂)

)τh

,� (17)

where τh = th+1 − th, h ∈ N.
Finally, we present a criterion for the nonuniform sampled-data inequality constrained set reachability by 

(17).

Theorem 1  Given a nonempty set Êd ⊆ Cy  and an initial state y(0) = δ
µθ
2nς ∈ Cy . Êd is nonuniform sampled-da-

ta inequality constrained set reachable from y(0) at sampling point th under NSDC, if and only if

	

∑

δ
µhi
2nς ∈Êd

(Qτh−1 · · · Qτ0 )µhi
,µθ ≥ 1.

� (18)

Proof  (Necessity) Assuming that Êd is inequality constrained set reachable from y(0) = δ
µθ
2nς  at th under 

NSDC, we prove (18) by induction.

For h = 1, from Definition 4, there exist v(0) = δξ0
2m , · · · , v(t1 − 1) = δξ0

2m  and y(t1) = δ
µ1̃i
2nς ∈ Êd such 

that δ
µ1̃i
2nς =

(
Blkξ0 (K̂)

)τ0
 δµθ

2nς  and y(t) ∈ Cy , ∀ 1 ≤ t ≤ t1. Thus, 
((

Blkξ0 (K̂)
)τ0

)
µ1̃i

,µθ

= 1, which 

shows that

	

∑

δ
µ1i
2nς ∈Êd

(Qτ0 )µ1i
,µθ ≥

( 2m∑
j=1

(
Blkj(K̂)

)τ0
)

µ1̃i
,µθ

≥
((

Blkξ0 (K̂)
)τ0

)
µ1̃i

,µθ

= 1,� (19)

that is, (18) holds for h = 1.
Assume that (18) holds for some h = λ > 1, that is

	

∑

δ
µλi
2nς ∈Êd

(Qτλ−1 · · · Qτ0 )µλi
,µθ ≥ 1.

� (20)

Then, there exist v(t)|t1−1
t=t0 = δξ0

2m , · · · , v(t)|tλ−1
t=tλ−1

= δ
ξλ−1
2m  and y(tλ) = δ

µλ̃i
2nς ∈ Êd such that
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((
Blkξλ−1 (K̂)

)τλ−1 · · ·
(
Blkξ0 (K̂)

)τ0
)

µλ̃i
,µθ

= 1,� (21)

where v(t)|th+1−1
t=th

= δ
ξh
2m  denotes an NSDC sequence {v(th) = δ

ξh
2m , · · · , v(th+1 − 1) = δ

ξh
2m } ⊆ ∆2m , 

h ∈ N.
We prove that (18) holds for h = λ + 1. By (21) and Definition 4, there exist 

v(t)|t1−1
t=t0 = δξ0

2m , · · · , v(t)|tλ−1
t=tλ−1

= δ
ξλ−1
2m , v(t)|tλ+1−1

t=tλ
 = δ

ξλ
2m  and y(tλ+1) = δ

µ
(̃λ+1)i

2nς ∈ Êd such that 

the trajectory from δµθ
2nς  to δ

µ
(̃λ+1)i

2nς  can be decomposed to the trajectory from δµθ
2nς  to

	
y(tλ) =

((
Blkξλ−1 (K̂)

)τλ−1 · · ·
(
Blkξ0 (K̂)

)τ0
)

δ
µθ
2nς = δ

µλ̃i
2nς ∈ Cy � (22)

at sampling point tλ and the trajectory from δ
µλ̃i
2nς  to δ

µ
(̃λ+1)i

2nς  in τλ steps. Then, from (19) and (22), we have

	

((
Blkξλ (K̂)

)τλ

)
µ

(̃λ+1)i
,µλ̃i

= 1 and
((

Blkξλ−1 (K̂)
)τλ−1 · · ·

(
Blkξ0 (K̂)

)τ0
)

µλ̃i
,µθ

= 1,

which show that

	

∑

δ
µ(λ+1)i
2nς ∈Êd

(Qτλ Qτλ−1 · · · Qτ0 )µ(λ+1)i
,µθ ≥

2nς∑
j=1

(Qτλ )µ
(̃λ+1)i

,j(Qτλ−1 · · · Qτ0 )j,µθ

≥
((

Blkξλ (K̂)
)τλ

)
µ

(̃λ+1)i
,µλ̃i

((
Blkξλ−1 (K̂)

)τλ−1 · · ·
(
Blkξ0 (K̂)

)τ0
)

µλ̃i
,µθ

= 1.

Thus, (18) holds for h = λ + 1. By induction, the necessity is proved.
(Sufficiency) Assume that (18) holds, that is,

	

∑

δ
µhi
2nς ∈Êd

(Qτh−1 · · · Qτ0 )µhi
,µθ =

∑

δ
µhi
2nς ∈Êd

( 2m∑
j=1

(
Blkj(K̂)

)τh−1 · · ·
2m∑
j=1

(
Blkj(K̂)

)τ0
)

µhi
,µθ

≥ 1.

Then, there exist v(t)|t1−1
t=t0 = δξ0

2m , · · · , v(t)|th−1
t=th−1

= δ
ξh−1
2m  and y(th) = δ

µ
h̃i

2nς ∈ Êd such that

	

((
Blkξh−1 (K̂)

)τh−1 · · ·
(
Blkξ0 (K̂)

)τ0
)

µ
h̃i

,µθ

= 1.

Thus, y(th) = δ
µ

h̃i
2nς =

((
Blkξh−1 (K̂)

)τh−1 · · ·
(
Blkξ0 (K̂)

)τ0
)

δ
µθ
2nς ∈ Êd.

Finally, we prove y(t) ∈ Cy, ∀ 1 ≤ t ≤ th by reduction to absurdity. In fact, if there exists 1 ≤ t′ < th 
satisfying y(t′) /∈ Cy , then by (16), y(t) = 02nς  for any t′ < t ≤ th, which is a contradiction to y(th) ∈ Êd.

Thus, from Definition 4, Êd is inequality constrained set reachable from y(0) at th under NSDC. � □

Example 2  Consider DBCN (2) with equivalent algebraic form (11), where ς = 1, Cx = ∆23 , and 
K = δ8[1 7 8 3 4 5 7 6 3 6 3 2 4 6 7 8]. Assume Êd = {δ7

8}, y(0) = δ1
8 .

	 (i)	 Suppose τh = 1, ∀ h ∈ N. According to Theorem 1, Êd is inequality constrained set 
reachable from δ1

8  at time t = 7 under the traditional state feedback control sequence 
{v(0) = δ2

2 , v(1) = δ1
2 , v(2) = δ1

2 , v(3) = δ1
2 , v(4) = δ2

2 , v(5) = δ2
2 , v(6) = δ1

2};
	(ii)	 Suppose τh = τ = 2, ∀ h ∈ N, where τ = 2 is the sampling period. According to Theorem 1, Êd is un-

reachable from δ1
8  under any state feedback uniform SDC sequence;

	(iii)	 Suppose τ0 = 2, τ1 = 4, τ2 = 1, τ3 = 2, · · · . According to Theorem 1, Êd is inequality con-
strained set reachable from δ1

8  at sampling point t4 under the state feedback NSDC sequence 
{v(t)|t1−1

t=t0 = δ2
2 , v(t)|t2−1

t=t1 = δ1
2 , v(t)|t3−1

t=t2 = δ2
2 , v(t)|t4−1

t=t3 = δ1
2}.

Remark 1  Traditional state feedback control15 and state feedback uniform SDC37 can be viewed as a special case 
of NSDC. NSDC can provide us with more control schemes to achieve control objectives and reduce control 
costs (see Fig.  2).

Inequality constrained set stabilization
Based on the inequality constrained set reachability, we investigate the nonuniform sampled-data inequality 
constrained set stabilization.
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Firstly, we introduce the concept of the largest nonuniform sampled-data inequality constrained invariant 
subset.

Definition 5  A nonempty subset E ′ ⊆ Cy  is referred to as a nonuniform sampled-data inequality constrained 
invariant subset, if for any y(0) ∈ E ′, one can find a state feedback NSDC v(t0) ∈ ∆2m  such that y(t) ∈ E ′ 
holds for any t ≤ τ , τ = max{τh, h ∈ N}.

From Definition 5, the union of inequality constrained invariant subsets is still an inequality constrained 
invariant subset.

Definition 6  Given a nonempty set E ⊆ Cy , I(E ) is said to be the largest nonuniform sampled-data inequality 
constrained invariant subset of E , if I(E ) is the union of all nonuniform sampled-data inequality constrained 
invariant subsets contained in E .

From Definition 6, the construction method of the largest nonuniform sampled-data inequality constrained 
invariant subset I(E ) is given as fellow:

	 (i)	 Set Γ0 := {µ : δµ
2nς ∈ E };

	(ii)	 Set Γj :=
{

µ ∈ Γj−1 : there exists an integer  

0 < ξµ ≤ 2m, such that
∧̃τ

l=1

( ∑
i∈Γj−1

((
Blkξµ (K̂)

)l)
i,µ

)
= 1

}
, j ∈ Z+;

	(iii)	 Find the smallest positive integer q ≤ |E | such that Γq = Γq+1;
	(iv)	 I(E ) = {δµ

2nς : µ ∈ Γq}.

Secondly, given χ ∈ Z+, we define the nonuniform sampled-data inequality constrained reachable sets as

	

Eτχ−1 (I(Êe)) =
{

δα
2nς ∈ Cy : there exists an integer 1 ≤ ξα

≤ 2m, such that
∑

δ
µχi
2nς ∈I(Êe)

((
Blkξα (K̂)

)τχ−1)
µχi

,α
= 1

}
,

and

	

Eτχ−2+τχ−1 (I(Êe))

=
{

δα
2nς ∈ Cy : there exists an integer1 ≤ ξα

≤ 2m, such that
∑

δ
µ(χ−1)i
2nς ∈Eτχ−1 (I(Êe))

((
Blkξα (K̂)

)τχ−2)
µ(χ−1)i

,α
= 1

}
.

Keeping this procedure going, we define

Fig. 2.  State trajectories in (i) and (iii).
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EΣχ−1
i=0 τi

(I(Êe)) =
{

δα
2nς ∈ Cy : there exists an integer1 ≤ ξα

≤ 2m, such that
∑

δ
µ1i
2nς ∈E

Σχ−1
i=1 τi

(I(Êe))

((
Blkξα (K̂)

)τ0)
µ1i

,α
= 1

}
.

Thus, by the construction process of the largest nonuniform sampled-data inequality constrained invariant 
subset, if I(Êe) ̸= ∅, δα

2nς ∈ EΣχ−1
i=0 τi

(I(Êe)), then δα
2nς ∈ EΣq

i=0τi
(I(Êe)), ∀ q ≥ χ − 1. Hence, we have the 

following result on the inequality constrained reachable sets.

Proposition 3  If I(Êe) ̸= ∅, then EΣχ−1
i=0 τi

(I(Êe)) ⊆ EΣχ
i=0τi

(I(Êe)) holds for any χ ∈ Z+.

Finally, based on the inequality constrained reachable sets, we provide the result on the inequality constrained 
set stabilization.

Theorem 2  System (11) is nonuniform sampled-data inequality constrained set stabilizable to Êe under a time-var-
iant state feedback NSDC (10), if and only if

	(i)	 I(Êe) ̸= ∅;
	(ii)	 there exists an integer 1 ≤ χ ≤ βς  such that EΣχ−1

i=0 τi
(I(Êe)) = Cy .

Proof  (Necessity) Obviously, from Definition 3, (i) holds. Now, we prove (ii).

From Definition 3, there exist an integer T > 0 and a time-variant state feedback NSDC such that

	 y(t) ∈ I(Êe), ∀ t ≥ T, ∀ y(0) ∈ Cy.� (23)

Take T̂  to represent the smallest integer T > 0 that satisfies (23). By reduction to absurdity, we prove T̂ < βςτ . If 
T̂ ≥ βςτ , we have y(th) /∈ I(Êe), h = 0, · · · , βς . However, since system (11) with the state inequality constraint 
has at most βς  different states, there exist different h1, h2 ∈ {0, 1, · · · , βς} such that y(th1 ) = y(th2 ). Hence, 
under the NSDC, starting from y′(0) = y(th1 ), the state trajectory forms a cycle, which contradicts the fact that 
system (11) is inequality constrained set stabilizable to Êe under the NSDC.

Setting χ = ⌊T̂ /τ⌋ + 1 ≤ βς , we have E∑χ−1
i=0

τi
(I(Êe)) = Cy . Thus, (ii) holds.

(Sufficiency) Assume that (i) and (ii) hold. For each y(0) = δα
2nς ∈ EΣχ−1

i=0 τi
(I  (Êe)) = Cy , there exists an 

integer 0 < ξα ≤ 2m such that EΣχ−1
i=1 τi

(I(Êe)) is inequality constrained set reachable from δα
2nς  in τ0 steps 

under the NSDC v(t0) = δξα
2m . Set G(t0) = δ2m [ηt0

1 · · · ηt0
2nς ], where

	
ηt0

i ∈
{ {ξα}, if i = α, α = µ1, · · · , µβς ,

{1, · · · , 2m}, otherwise. � (24)

Under the NSDC v(t0) = G(t0)y(0), let

	

Υτ0 (y(0)) =
{

y(t1)
∣∣y(t1) = (Kv(t0))τ0 y(0) ∈ Cy, y(0) ∈ E∑χ−1

i=0
τi

(Êe)
}

:=
{

δ
α1

1
2nς , · · · , δ

α1
ϱ1

2nς

}
⊆ EΣχ−1

i=1 τi
(I(Êe)).

For each δ
α1

j

2nς ∈ Υτ0 (y(0)), j = 1, · · · , ϱ1, there exists an integer 1 ≤ ξα1
j

≤ 2m such that EΣχ−1
i=2 τi

(I(Êe)) 

is inequality constrained set reachable from y(t1) = δ
α1

j

2nς  in τ1 steps under the NSDC v(t1) = δ
ξ

α1
j

2m . Set 

G(t1) = δ2m [ηt1
1 · · · ηt1

2nς ], where

	
ηt1

i ∈
{

{ξα1
j
}, if i = α1

j , j = 1, · · · , ϱ1,

{1, · · · , 2m}, otherwise.
� (25)

Under the NSDC v(t1) = G(t1)y(t1), let

	

Υτ1+τ0 (y(0)) =
{

y(t2)
∣∣y(t2) = (Kv(t1))τ1 y(t1) ∈ Cy, y(t1) ∈ Υτ0 (y(0))

}

:=
{

δ
α2

1
2nς , · · · , δ

α2
ϱ2

2nς

}
⊆ EΣχ−1

i=2 τi
(I(Êe)).
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Keeping this procedure going, we have G(ti) = δ2m [ηti
1 · · · ηti

2nς ], i = 0, · · · , χ − 1. Under the NSDC

	 v(tχ−1) = G(tχ−1)y(tχ−1),

let

	
ΥΣχ−1

i=0 τi
(y(0)) =

{
y(tχ)

∣∣y(tχ) = (Kv(tχ−1))τχ−1 y(tχ−1) ∈ Cy, y(tχ−1) ∈ ΥΣχ−2
i=0 τi

(y(0))
}

⊆ I(Êe).

From (i) and the largest nonuniform sampled-data inequality constrained invariant subset, for each δα
2nς ∈ I(Êe), 

there exists an integer 0 < ξα ≤ 2m such that y(t) = (Kδξα
2m )t−th δα

2nς ∈ I(Êe), ∀ th ≤ t ≤ th+1, ∀ h ≥ χ. 
Set G(th) = δ2m [ηtχ

1 · · · η
tχ

2nς ], where

	
η

tχ

i ∈
{ {ξα}, if i = α,

{1, · · · , 2m}, otherwise. � (26)

For each y(th) ∈ I(Êe), under the NSDC v(th) = δ2m [ηtχ

1 · · · η
tχ

2nς ]y(th), we have 
y(t) ∈ I(Êe), ∀ th ≤ t ≤ th+1, h ≥ χ.

Thus, we obtain the time-variant state feedback NSDC as follows:

	
v(t) = G(th)y(th) =

{
δ2m [ηth

1 · · · η
th
2nς ]y(th), h = 0, · · · , χ − 1,

δ2m [ηtχ

1 · · · η
tχ

2nς ]y(th), h ≥ χ.
� (27)

t ∈ [th, th+1)|Z, under which system (11) is nonuniform sampled-data inequality constrained set stabilizable 
to Êe. □

Corollary 1  For Ee ⊆ Cx given in Definition 2, DBCN (2) is nonuniform sampled-data inequality constrained set 
stabilizable to Ee by a time-variant state feedback NSDC (7), if and only if (i) and (ii) of Theorem 2 hold.

Remark 2  The state constraints in BNs are generally directly given a state constraint set, while state inequality 
constraints require solving the state constraint set based on the constraints satisfied by the state. Meanwhile, this 
paper provides a method for determining the state constraint set based on the state inequality constraints. This 
provides technical support for studying the stabilization problem of BNs under different constraint conditions.

Illustrative example
Example 3  Consider the apoptosis network (5):

	

{
x1(t + 1) = ¬x2(t − 1) ∧ v(t),
x2(t + 1) = ¬x1(t − 1) ∧ x3(t − 1),
x3(t + 1) = x2(t − 1) ∨ v(t),

� (28)

with the state time delay ς = 2 and the state inequality constraint

	 2 ≤ 20x1(i) + 21x2(i) + 22x3(i) ≤ 4, i = −1, 0, 1, · · · .� (29)

Setting x(t) = ⋉3
i=1xi(t), y(t) = x(t − 1) ⋉ x(t), from system (11), we have

	 y(t + 1) = Kv(t)y(t),� (30)

where

	

K = δ64[7 15 23 31 39 47 55 63 7 15 23 31 39 47 55 63 3 11 19 27 35 43 51 59 3 11 19 27 35 43 51 59
5 13 21 29 37 45 53 61 7 15 23 31 39 47 55 63 1 9 17 25 33 41 49 57 3 11 19 27 35 43 51 59
7 15 23 31 39 47 55 63 7 15 23 31 39 47 55 63 8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64
5 13 21 29 37 45 53 61 7 15 23 31 39 47 55 63 6 14 22 30 38 46 54 62 8 16 24 32 40 48 56 64].

By Algorithm 1, we have Cx = {δ2
8 , δ6

8 , δ7
8}.

Next, we study the nonuniform sampled-data inequality constrained set stabilization of system (28) with 
Ee = {δ6

8 , δ7
8}

and

	
τh =

{ 2, h = 2i,
1, h = 2i + 1, i ∈ N.� (31)

From (12) and (13), we have Cy = {δ10
64 , δ14

64 , δ15
64 , δ42

64 , δ46
64 , δ47

64 , δ50
64 , δ54

64 , δ55
64} and Êe = {δ46

64 , δ47
64 , δ54

64 , δ55
64}.

By the proof process of Theorem 1, we have I(Êe) = Êe and Eτ0 (I(Êe)) = Cy . From Corollary 1, system 
(28) is inequality constrained set stabilizable to Ee. In addition, by Theorem 2, the time-variant state feedback 
sampled-data gain matrix is designed as
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	 G(t0) = δ2[ηt0
1 · · · ηt0

64], G(th) = δ2[ηth
1 · · · η

th
64 ],� (32)

where

	
ηt0

i ∈
{ {2}, i = 47, 50, 54, 55

{1, 2}, otherwise , η
th
i ∈

{ {2}, i = 47, 54, 55
{1, 2}, otherwise , h ≥ 1.

Remark 3  According to Example 3, the convergence speed of the proposed control algorithm can be controlled 
by (17). Using the traditional control15, it needs two state feedback controllers to make all states reach Ee. How-
ever, using the nonuniform sampled-data control, it only need one state feedback controller to make all states 
reach Ee. Therefore, it reduces the frequency of controller updates, and the amount of calculation will be reduced.

Conclusions
In this paper, we have analyzed the nonuniform sampled-data set stabilization of DBCNs with state inequality 
constraints via time-variant state feedback NSDC. We have presented an effective criterion for the nonuniform 
sampled-data inequality constrained set reachability of DBCNs under NSDC by constructing an inequality 
constrained controllability matrix. By virtue of the inequality constrained reachable set and the largest inequality 
constrained invariant subset, we have proposed a procedure to design time-variant state feedback nonuniform 
sampled-data stabilizers for DBCNs. In future works, we will further investigate the stabilization and 
synchronization of stochastic Boolean networks with state inequality constraints by establishing a new algebraic 
representation. It is worth pointing out that stochastic Boolean networks with state inequality constraints have 
more possibilities in the state transition process, which will bring greater challenges to research.

Data availability
Data is provided within the manuscript or supplementary information files.
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