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The movement and infiltration of groundwater play a crucial role in environmental engineering and 
water resource management. The Richards equation, a fundamental model describing water flow 
in unsaturated soils, encounters significant challenges in traditional numerical solutions due to its 
strong nonlinearity, complex boundary conditions, and computational inefficiency. To address these 
issues, this study proposes an improved physics-informed neural network (PINN) method based on 
data fusion. This approach is designed to handle the intricate boundary conditions and nonlinear 
water diffusion characteristics in groundwater seepage by integrating data with physical constraints, 
thereby forming a dual-driven solution framework that leverages both data and physics. The proposed 
improved algorithm integrates Hydrus data, leveraging a small portion of data to reduce the model’s 
dependence on parameter initialization. Simultaneously, it enables the model to automatically adjust 
to variations in physical processes under different data conditions, thereby enhancing the accuracy 
and stability of the solution. Comparaison with experimental results demonstrates the strong 
generalization ability of this method, particularly in data-scarce regions, where physical constraints 
ensure the reliability of the model’s solutions.
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In science and engineering, solving partial differential equations (PDEs) is a critical yet challenging task. Among 
them, The Richards equation, which governs flow in saturated–unsaturated porous media1, is strongly nonlinear 
and prone to numerical instability under heterogeneous boundary conditions. Traditional methods such as 
finite element method often suffer from slow convergence or high computational cost, limiting their efficiency 
in complex, multi-scale hydrological settings2. In recent years, machine learning techniques, particularly 
deep learning, have achieved groundbreaking advancements across various fields3. However, traditional 
machine learning algorithms primarily rely on feeding large amounts of data into models for self-learning and 
automation, with limited incorporation of prior knowledge. This deficiency results in reduced interpretability, 
limited generalization capability, and constrained extrapolation performance to some extent4. This limitation 
is particularly pronounced in data-scarce and complex domains, such as groundwater seepage and runoff 
simulation, where hydrological models require long-term monitoring data. In remote areas or developing 
countries, historical hydrological data are often scarce, making it challenging for data-driven approaches to 
effectively predict water resource variations5,6. Therefore, there is an urgent need for a more efficient and flexible 
solution that reduces dependence on extensive data while enhancing the model’s generalization ability and 
interpretability under heterogeneous infiltration conditions. Such an approach should achieve the synergistic 
optimization of physical laws and data-driven features.

Raisi et al.7 proposed the physics-informed neural network (PINN) algorithm, which innovatively integrates 
the advantages of data-driven machine learning and physics-based modeling. PINNs leverage the powerful 
representation capability of neural networks along with the physical knowledge of PDEs, approximating PDE 
solutions through neural networks while effectively circumventing the computational complexity associated with 
mesh generation and discretization in traditional numerical methods. This approach provides a new paradigm 
for efficiently solving PDEs and has demonstrated remarkable applicability in various domains, including fluid 
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mechanics8, solid mechanics9, and heat conduction10. However, existing studies indicate that PINNs still face two 
major challenges: limitations in generalization performance and numerical stability issues11,12, particularly when 
solving problems with strong nonlinearity and complex boundary conditions. Therefore, further optimizing 
PINNs to address these challenges is crucial for expanding their application to a broader range of complex 
problems.

In recent years, to enhance the modeling accuracy of PINNs, research has focused on several key areas, 
including the development of more suitable activation functions13,14, novel parameter optimization techniques1516, 
improved neural network architectures17–20, and refined loss function structures21. These methods have achieved 
varying degrees of success in specific applications. Additionally, ensemble approaches have demonstrated 
unique advantages in solving PDEs. For instance, Tartakovsky et al.22 proposed a physics-informed deep neural 
network (DNN) approach to estimate hydraulic conductivity in both saturated and unsaturated flows governed 
by Darcy’s law. Experimental results demonstrated that this method can accurately capture the pressure–
conductivity relationship in homogeneous porous media, even in the presence of measurement noise. Depina 
et al.23 investigated the application of physics-informed neural network to inverse problems in unsaturated 
groundwater flow. The results indicated that the model is capable of effectively producing reasonably accurate 
approximations of the model parameters. Haruzi et al.24 employed non-invasive geoelectrical tools to train a 
PINN for simulating two-dimensional water flow and solute transport during infiltration and redistribution 
processes under unknown initial conditions. The results showed that the trained PINN system was able to 
accurately reproduce the spatiotemporal distribution of water content and pore water salinity in both processes. 
Alhubail et al.25 proposed a method that decouples the mass conservation equation and Darcy’s law, and 
trains the PINN using the residuals of these decoupled equations instead of relying on the residual of a single 
combined equation. This approach not only preserves the inherent discontinuities of petrophysical properties 
but also leverages the advantages of differential formulations, enabling realistic reservoir simulations to capture 
subsurface complexities. LIN et al.26 incorporated diffusion term regularization into the equation and included 
reference solutions in the loss function as training coefficients, demonstrating that the new algorithm better 
handles discontinuities without introducing parasitic oscillations. Yan et al.27 proposed MultiInNet PINNs, which 
utilize a multi-input residual network combined with a multi-step training paradigm to enhance the stability of 
PINN training and achieve faster convergence. Inspired by the mixed-form governing equations, Lehmann et 
al.28 applied the mass conservation equation and Darcy’s law separately within the PINN framework. Numerical 
experiments demonstrated that each component field with different structural configurations achieved the highest 
accuracy within an equivalent simulation time, regardless of the type, level, or distribution of heterogeneity. Li et 
al.29 integrated the LSTM framework into the solution of PDEs, achieving higher reliability and accuracy while 
effectively mitigating some of the limitations associated with traditional PINN methods. However, relatively few 
studies have incorporated flow field measurement data into the PINN training process. Maziar30 and Yang et 
al.20 introduced flow field measurements to solve both forward and inverse flow problems. Additionally, Maryam 
et al.31 applied transfer learning by using low-fidelity computational fluid dynamics (CFD) data to initialize 
PINNs, significantly improving their modeling accuracy. Liu Xia et al.32 integrated PINNs with computational 
fluid dynamics (CFD) simulation results of flow fields, enhancing the modeling accuracy of neural networks. 
Most PDEs solved using the PINN algorithm in previous studies involve relatively simple nonlinear coefficients. 
However, the Richards equation presents a significant challenge due to the highly nonlinear relationship between 
its first- and second-order coefficients and the water content33, making it considerably more difficult to solve. 
Huo Haifeng et al.34 were the first to apply the PINN algorithm to solve the Richards equation. Hydrus is a 
finite element model designed for simulating one-dimensional movement of water, heat, and multiple solutes in 
variably saturated media. It incorporates mass conservation equations, momentum conservation equations, and 
mass transport processes, offering unique advantages in modeling unsaturated soil hydraulics35–37. However, 
its reliance on fixed spatial and temporal discretization grids makes it less adaptable to local feature variations, 
thereby limiting its applicability in high-resolution simulations.

To overcome the limitations of deep learning methods in handling boundary conditions and data scarcity, 
as well as the high computational cost and accuracy limitations of traditional finite element (mesh) methods in 
complex nonlinear problems, this paper proposes a data fusion-based improved PINN algorithm. The proposed 
method addresses the challenges faced by traditional methods and the classic PINN algorithm in solving the 
Richards equation, such as high mesh complexity and limited accuracy. By integrating PINN with Hydrus data, 
the algorithm leverages the strengths of both approaches, resulting in a model that demonstrates higher accuracy 
and robustness when dealing with complex unsaturated soil infiltration problems. This data fusion approach 
enables a seamless combination of physical knowledge and data-driven techniques, significantly improving 
the overall accuracy of infiltration simulations and providing a more efficient and robust solution strategy for 
unsaturated soil infiltration problems.

Richards equation
The Richards equation is a nonlinear partial differential equation that describes water movement in unsaturated 
soils. Its core lies in integrating water dynamics with soil physical properties, making it widely applicable in 
agriculture, environmental engineering, and water resource management. Solving the Richards equation 
facilitates the optimization of irrigation strategies, assessment of pollutant transport, and prediction of 
groundwater fluctuations, providing crucial theoretical support and practical guidance for these fields. It enables 
scientists and engineers to make more informed decisions. The general form of the Richards Equation38,39 is:

	
∂ θ (h)

∂ t
= ∇ · [K( h)∇ (h + z )]� (1)
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In this study, a one-dimensional vertical water infiltration model is developed for solving the Richards equation. 
The soil water retention curve is characterized using the Mualem-Van Genuchten (VG) model40, which 
describes the relationship between hydraulic conductivity and soil matric potential. Furthermore, the model is 
applied to solve the highly nonlinear coefficient equations. The governing equation for one-dimensional vertical 
infiltration is given as follows:

	
∂ θ

∂ t
= ∂

∂ z
(D( θ

)
∂ θ

∂ z

)
+ ∂ K (θ )

∂ z
� (2)

According to the VG model, the equations for calculating K (θ ) and D (θ ) are as follows:

	
K (θ ) = KsΘ ι

[
1 − (1 − Θ

1
m )

m
]2

� (3)

	
D (θ ) = K (θ ) ∂ ϕ

∂ θ
� (4)

Θ  represents the volumetric water content, which is given by

	
Θ = θ − θ r

θ s − θ r
� (5)

	
θ = θ r + θ s − θ r

[1 + (α ϕ )n]m � (6)

Among them, θ (h) represents the volumetric water content, which is typically a function of the matric suction 
head h; z denotes the height in the direction of gravity; and ∇  is the gradient operator. ∇ = ( ∂

∂ x
, ∂

∂ y
, ∂

∂ z
); ∇ ·  

represents the divergence operator; ∇ · F = ∂ Fx
∂ x

+ ∂ Fy

∂ y
+ ∂ Fz

∂ z ; t represents time; K (θ ) is the unsaturated 
hydraulic conductivity ( m/s); and D (θ ) is the unsaturated diffusivity ( m2/s). Ks represents the saturated 
hydraulic conductivity; ι  is the fitting parameter, set to 0.5; m is an empirical parameter; θ s denotes the 
saturated water content; θ r  represents the residual water content; and α 、 n is an empirical parameter in the 
VG model.

Algorithm
This section first introduces the classical PINN algorithm and then presents the improved algorithm proposed 
in this study for solving the Richards equation. The proposed algorithm integrates both data-driven and physics-
driven mechanisms, enhancing the model’s accuracy and convergence when addressing highly nonlinear 
problems. The superiority of the improved algorithm over the classical PINN in solving the Richards equation 
is demonstrated, particularly in handling complex boundary conditions, providing a more efficient and robust 
approach for unsaturated soil seepage simulation. Additionally, the finite difference method is employed to 
verify the accuracy of the numerical solutions obtained by PINN.

Classical PINN algorithm
Physics-Informed Neural Network (PINN) integrate neural networks with the physical knowledge of partial 
differential equations (PDEs) by incorporating the governing equations as constraints within the neural network. 
This approach enables the model to approximate the solution of PDEs while inherently satisfying physical laws. 
Typically, a PINN consists of a fully connected neural network with multiple hidden layers and nonlinear 
activation functions. It establishes a functional relationship between the input (z, t)( where z and t represent 
temporal and spatial coordinates, respectively) and the output θ . The automatic differentiation technique is 
then employed to compute the partial derivatives of the network output with respect to the input variables, 
yielding the residual term F (z, t) of the governing equation. Finally, the residual is used to formulate the loss 
function, guiding the training process. In the one-dimensional case, the structure of the PINN is illustrated in 
Fig. 1, and the residual of the equation is defined as follows:

	
F (z, t) = ∂ θ

∂ t
− D (θ ) ∂ 2θ

∂ z2 − ∂ D (θ )
∂ z

∂ θ

∂ z
− ∂ K (θ )

∂ z
� (7)

The loss function of the PINN is composed of three components: the equation residual, the initial residual, and 
the boundary residual. The formulation is given as follows:

	 Loss = wf Lossf + wILossI + wBuLossBu + wBdLossBd� (8)

The weights corresponding to the loss functions for the governing equation, initial condition, upper boundary 
condition, and lower boundary condition are denoted as wf , wI , wBu, and wBd, respectively. The selection 
of weights is primarily based on prior experience and experimental tuning. By observing the numerical 
variations of the loss terms during the early stages of training, the issue of one term dominating the training 
process is avoided. In this case, since the magnitudes of the loss values from different components do not differ 
significantly, all weight values are set to 1. Similarly, the loss functions associated with the governing equation, 
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initial condition, upper boundary condition, and lower boundary condition are represented by Lossf , LossI , 
LossBu, and LossBd, respectively. In this study, Lossf , LossI , LossBu, and LossBd are defined based on 
the mean squared error (MSE).

	
Lossf = 1

N

∑
N
n=1 ∥f(Zn, tn)∥2� (9)

	
LossI = 1

N

∑
N
n=1[θ ( Zn, 0) − θ i]2� (10)

	
LossBu = 1

N

∑
N
n=1[θ ( 0, tn) − θ i]2� (11)

	
LossBd = 1

N

∑
N
n=1[θ ( Zn

0 , tn) − θ i]2� (12)

Here, {Zn, tn}N
n=1 represents the training data, which consists of collocation points randomly selected within 

the computational domain. The loss function is continuously optimized using either Adam or L-BFGS, allowing 
the network parameters to be updated iteratively. When the loss function reaches its minimum, the neural 
network can accurately predict the solution to the equation. Thus, solving the equation is transformed into 
an optimization problem, where the loss function is minimized through the backpropagation mechanism and 
optimization algorithms of the neural network. At the beginning of training, if the initial values of different 
loss functions vary significantly, the weights need to be adjusted to ensure that the magnitudes of all loss terms 
are comparable; otherwise, the computational efficiency of the network may be reduced. Adam is an adaptive 
gradient descent method that combines momentum and RMSProp techniques, enabling fast convergence in 
non-convex problems41. It is commonly used for initial training to quickly reach an effective parameter region, 
significantly improving the convergence speed and stability of neural networks in complex nonlinear problems. 
Compared to traditional gradient descent methods, Adam performs better when dealing with sparse gradients 
or non-stationary objective functions, which is why it was selected as the primary optimization strategy in this 
study.

 Hybrid PINN
Through simulation tests, it has been observed that when PINN is solely applied to modeling physical processes 
described by differential equations, it can result in significant errors, which may accumulate over time. 
Incorporating computed flow field values or real data can enhance the modeling accuracy of PINN. Therefore, 
in this study, we propose a data fusion method based on PINN by integrating it with Hydrus simulation results 
for flow field analysis. Under this fusion framework, the flow field simulation data provided by Hydrus42 serves 
as additional supervisory information, which, together with the physical residuals of PINN, constitutes the loss 
function. This approach effectively reduces the discrepancy between model predictions and the actual physical 

Fig. 1.  Diagrammatic sketch of PINN.
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process. By leveraging the high-accuracy computational results of Hydrus to guide PINN training, the model 
achieves improved precision and stability in flow field analysis, offering a novel solution for studying complex 
nonlinear seepage problems. It is important to note that the simulation data from Hydrus-1D were used to 
generate synthetic data for training the PINN, and were not integrated into a real-time coupled simulation 
framework with the PINN model. A schematic diagram of the fusion method is shown in Fig. 2.

At this point, the total loss function of the neural network is given by:

	 Loss = wf Lossf + wILossI + wBuLossBu + wBdLossBd + wDLossD � (13)

Where:

	
Lossf = 1

N

∑
N
n=1 ∥f(Zn, tn)∥2� (14)

	
LossI = 1

N

∑
N
n=1[θ ( Zn, 0) − θ i]2� (15)

	
LossBu = 1

N

∑
N
n=1[θ ( 0, tn) − θ i]2� (16)

	
LossBd = 1

N

∑
N
n=1[θ ( Zn

0 , tn) − θ i]2� (17)

	
LossD = 1

ND

∑
ND
n=1[θ Hydrus( Zn, tn − θ i )]2� (18)

Where wf , wI , wBu, wBd, and wD  are the weights corresponding to the loss functions of the governing 
equation, initial condition, upper boundary condition, lower boundary condition, and the Hydrus-1D 
data component, respectively. Similarly, Lossf , LossI , LossBu, LossBd, and LossD  represent the loss 
functions associated with the governing equation, initial condition, upper boundary condition, lower boundary 
condition, and the Hydrus-1D data component, respectively. The variable θ Hydrus(Z, t) denotes the flow field 
data exported from Hydrus-1D. ND  represents the total dataset collected from Hydrus-1D. Table 1 provides 

Fig. 2.  Hybrid PINN.
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a systematic summary of the proposed PINN model, including its inputs, outputs (state variables), involved 
physical parameters, and calibration methods, aiming to offer a clearer understanding of the model construction 
and solution process.

(2) Improved PINN: Also referred to as Hybrid PINN, this approach integrates a small portion of measurement 
data or flow field data (e.g., Hydrus-1D) into the loss function to enhance the model’s generalization capability 
and avoid data waste in practical applications.

The Hybrid PINN in this paper refers to the data fusion PINN model, defined by the modified loss function 
in Eq. (18). This study focuses on several limitations of the classic PINN in groundwater infiltration processes, 
such as low accuracy and unstable training. To address these issues, we propose an improved PINN model that 
incorporates a small amount of data generated by Hydrus-1D (referred to as Hybrid PINN). By introducing a 
data-driven term, the model’s solvability and stability are improved, resulting in more generalized predictions 
under real-world conditions. From this point onward, we will primarily use the term Hybrid PINN.

Numerical example
In this study, the neural network framework is implemented using Python. When solving the Richards equation, 
the temporal and spatial domains of the target model are first defined. The governing equation is embedded 
into the neural network through automatic differentiation, and the input and output variables are specified 
accordingly. Boundary residual points are selected and assigned values, ensuring that all well-posed conditions 
are incorporated into the neural network. A feedforward neural network (FNN) was constructed with an input 
layer comprising two neurons, corresponding to the two independent variables in the equation: depth and 
time. The output layer consists of a single neuron. The hyperbolic tangent (Tanh) function, which is infinitely 
differentiable, was selected as the activation function. Based on extensive experimentation and prior studies, 
this work found that configuring the network with six hidden layers, each containing 32 neurons, achieves 
a favorable balance among training stability, fitting accuracy, and computational efficiency34. To enhance the 
generalization performance of the model, simulations are conducted using three different media: unsaturated 
soft clay (S1), sandy loam unsaturated silt (S2), and unsaturated silt (S3). The model is applied to simulate one-
dimensional infiltration in unsaturated soil under surface ponding conditions, with parameters consistent with 
those of the respective media. The total height of the soil model is 1 m, with an initial moisture content of 0.1. 
The upper surface of the soil is continuously supplied with water, maintaining a constant moisture content that 
is close to saturation, while the lower boundary is set as a free drainage condition. The corresponding initial 
conditions for the equation are as follows:

	 θ (z, 0) = 0.10� (19)

The boundary conditions for S1 and S3 are θ (0, t) = 0.45, while the boundary condition for S2 is (0, t) = 0.40.
By initializing the residual points, the training and testing datasets are selected as input variables for the 

network within the computational domain. The number of residual points in the computational domain for 
the training set is initialized to 10,201, with 101 residual points initialized on the spatial boundaries and 101 
residual points initialized on the time boundaries. The training points are uniformly selected. During the 
training process, the Adam gradient descent algorithm is used to update the network parameters. After several 
adjustments to the computational step size, it was found that setting the step size to 10,000 steps allowed both 
the training and testing errors of the neural network to decrease to a stable value, and the final error met the 
required specifications.

The relevant physical parameters of the soil types are shown in Table 2.
Taking unsaturated soft clay (S1) as an example, after 10,000 iterations, the 3D and 2D plots of the classical 

PINN numerical solution for the constant coefficient one-dimensional infiltration equation are shown in Fig. 3. 
The 3D and 2D plots of the PINN numerical solution are shown in Fig. 4.

Category Symbol Meaning Type Classical PINN Hybrid PINN

State Variable θ (z, t) Water Content Model output Objective Function of the 
Network Prediction

Input Variable

z/t Depth/Time

Model Input

Range [0, Z]/Range [0, t]

θ (z, 0) Initial Water Content
Residual of Initial Conditions 
Incorporated into the Loss 
Function

θ (0, t)
θ (z0, t) Upper and Lower Boundary Conditions

Residual of Boundary Conditions 
Incorporated into the Loss 
Function

Hydrus-1D Data θ data(z, t) Water Content Field Data-Driven Input Not Incorporated Incorporation

Soil Parameters

θ s ,/ θ r Saturated/Residual Water Content

Calibrated Parameters See Table 2Ks Saturated Hydraulic Conductivity

α /m/n VG Model Parameters

Table 1.  Comparison of variables and parameters between the two PINN models. In this study, two PINN 
frameworks are considered:. (1) Classic PINN: This framework fully relies on physical equations without any 
measurement data;.
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From Figs. 3 and 4, it can be observed that both the classical PINN and the Hybrid PINN exhibit overall 
trends in moisture content variation with depth and time that align with the basic physical characteristics of 
the Richards equation, indicating that they can be used for modeling unsaturated soil infiltration processes. 
However, in the 3D surface plot of Fig. 3, significant oscillations are present, particularly in areas close to the 
boundary (near depth 0), where the surface displays noticeable sawtooth-like fluctuations. In contrast, the 3D 
plot in Fig. 4 shows a much smoother transition near the boundary, without abrupt changes or unreasonable 
fluctuations. This suggests that the classical PINN may exhibit instability and accuracy degradation in scenarios 
with scarce data or complex boundary conditions. The Hybrid PINN demonstrates more stable and accurate 
performance in modeling unsaturated soil infiltration problems and better adheres to physical laws.

To visually highlight the performance differences between the classical PINN and the Hybrid PINN 
algorithms, moisture content distribution curves at different depths at the same time and at the same depth over 
different times are selected for the soils under scenarios S1, S2, and S3. In the S1 and S2 scenarios, due to the 
relatively fast water movement in the soil and the practical application needs (such as agricultural irrigation and 
urban drainage design), which typically focus on moisture changes over a short period of time, 5 h is chosen. 
However, in the S3 scenario, the high clay content, low permeability, and complex pore structure of the silt soil 
cause slower moisture movement and less pronounced changes in the soil. Therefore, to observe significant 
effects in the simulation of moisture content change in silt soil, a longer duration (such as 192 h) is required. 
Since the depth range from 0.1 to 0.3 m corresponds to the topsoil, which is sensitive to environmental and 
plant root activities, it satisfies the practical needs of agricultural irrigation and ecological environment studies. 
Therefore, in all three scenarios, the depth is chosen to range from 0.1 to 0.3 m.

By comparing the prediction results from the finite difference method, which serves as the reference solution, 
with the results from the PINN simulation, the accuracy and trend differences at various time points are analyzed 

Fig. 3.  Classic PINN Prediction Diagram.

 

Soil types Soft clay(s1) Sandy loam(s2) Silty soil(s3)

Physical parameters Numerical value Numerical value Numerical value

θ s 0.46 0.41 0.46

θ r 0.02 0.065 0.34

Ks/(m · h−1) 0.036 0.044 0.0025

α 0.29 7.5 1.6

n 1.33 1.89 1.37

m 0.248 0.47 0.27

Table 2.  Physical parameters of soil types. Ks( unit: m/h) represents the ability of water to flow through 
saturated soil. α  is a fitting parameter ( 1/m) that controls the steepness of the soil water retention curve. 
n and m are empirical parameters in the VG model that describe the pore size distribution. θ r  and θ s are 
dimensionless, with values ranging from 0 to 1.
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to further validate the superiority of the Hybrid PINN algorithm in simulating the moisture variation process 
in unsaturated soils. It is important to note that although the finite difference simulation and the PINN model 
employ the same soil physical parameters (e.g., θ r; θ s; m; n; α ), the simulation results were not involved in 
the training process of the PINN, nor were any observational data or boundary conditions shared between them. 
Therefore, the validation remains relatively independent and can effectively reflect the generalization capability 
of the model. The comparison plots for the s1 s1 s1 scenario are shown in Figs. 5 and 6.

From Fig. 5, it can be observed that the PINN predictions align with the reference numerical solution, and 
the predicted moisture content at different depths closely matches the reference values. However, in the classical 
PINN numerical solution, small errors appear in the unsaturated zone (moisture content between 0.1 and 0.2), 
and in the transition zone (moisture content between 0.2 and 0.4), the curve deviates significantly from the 
reference curve, showing considerable fluctuations. In the saturated zone (moisture content between 0.4 and 
0.5), larger errors are observed in some localized areas. In contrast, the Hybrid PINN demonstrates higher 
accuracy and stability across different moisture ranges, enhancing the reliability of the numerical solution and 
making the simulation results better reflect the actual physical process. Therefore, it can be concluded that the 
Hybrid PINN provides a certain level of accuracy in predicting the moisture distribution at different times 
during the surface water infiltration process. Next, the moisture content variation with time at depths of 0.2 m 
and 0.3 m is further extracted, as shown in Fig. 6.

Fig. 5.  Moisture content variation with depth in soft clay.

 

Fig. 4.  Hybrid PINN Prediction Diagram.
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From Fig. 6, it can be observed that the moisture content at depths of 0.2 m and 0.3 m gradually approaches 
the surface moisture content over time, with the final stable value being less than 0.45. However, at depths of 0.2 
m and 0.3 m, the classic PINN prediction curves exhibit a lag, failing to capture the precise dynamics of moisture 
change. In contrast, the Hybrid PINN prediction curves are clearly closer to the reference solution, indicating 
that as the simulation time increases, the Hybrid PINN model provides higher accuracy than the classical PINN 
model, offering more precise and faster predictions of moisture content.

The comparison results in the s2 scenario are shown in Figs. 7 and 8.
From Fig. 7, it can be observed that in sandy loam, the classic PINN exhibits significant oscillations at a 

moisture content of 0.1, with fewer errors in the saturated zone, while the Hybrid PINN is closer to the reference 
solution. From Fig. 8, it can be seen that the classic PINN shows errors at the corners of the unsaturated zone and 
exhibits some deviation from the reference solution in the transition zone, whereas the Hybrid PINN is overall 
closer to the reference solution and is smoother at the corners of the unsaturated zone.

The comparison results in the s3 scenario are shown in Figs. 9 and 10.
Overall, the Hybrid PINN demonstrates superior simulation performance over the classic PINN across 

multiple time points and depth conditions, especially excelling in long-term moisture distribution prediction. In 
practical engineering, by simply obtaining parameters such as the saturated moisture content, residual moisture 
content, and saturated permeability coefficient, the corresponding unsaturated soil infiltration model can be 
trained using the PINN algorithm to predict the moisture content of the soil at different times and locations 
during the infiltration process.

In the three different media, the Hybrid PINN shows that the moisture content curves are much closer to 
the reference solution. By quantifying the overall error with the Root Mean Square Error (RMSE), it becomes 
evident that smaller RMSE values indicate better numerical simulation performance. The RMSE values, shown 
in Table 3, clearly demonstrate that the data fusion-based PINN algorithm has smaller overall errors compared 
to the classic PINN. Moreover, from the comparison plots, it is observable that the Hybrid PINN is more closely 

Fig. 7.  Moisture content variation with depth in sandy loam.

 

Fig. 6.  Moisture content variation with time in soft clay.
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Fig. 10.  Moisture content variation with time in silty soil.

 

Fig. 9.  Moisture content variation with depth in silty soil.

 

Fig. 8.  Moisture content variation with time in sandy loam.
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aligned with the reference solution. Therefore, the Hybrid PINN provides more stable numerical solutions and 
higher accuracy in describing the system’s true dynamic behavior.

As can be seen from Fig.  11 the RMSE values of the Hybrid PINN method are significantly lower than 
those of the original method. Particularly over longer time periods, the RMSE of the improved method remains 
within a lower range, indicating that the Hybrid PINN method provides more accurate predictions for the 
model. Additionally, it can be observed that over time, the Hybrid PINN method exhibits better steady-state 
performance, with the RMSE gradually stabilizing and remaining at a low level. This demonstrates the stability 
and accuracy of the improved method in long-term predictions.

Figure 12 below shows a comparison of the loss function convergence during the training process between 
PINN and the Hybrid PINN. By comparing the trend of the loss function over training epochs, we can intuitively 
observe that during the first few hundred iterations, the loss value decreases rapidly, indicating that the model 
starts to learn quickly. Moreover, the loss value of the fusion PINN algorithm remains relatively low and fluctuates 
within a small range. The results show that although the improved algorithm also experiences some fluctuations 
in the loss value, the overall amplitude of these fluctuations is smaller, indicating that the improved algorithm 
exhibits better stability during training. Additionally, the PINN method outperforms the classical method in 
both the convergence speed and the final value of the loss function. The results of the PINN algorithm integrated 
with Hydrus-1D data align more closely with the actual observations.

Discuss
In this study, we innovatively propose a data-fusion approach based on Physics-Informed Neural Networks 
(PINN) to capture the dynamic moisture variations in unsaturated soil infiltration processes. As a cutting-
edge technique for data processing and modeling, PINN exhibits unique advantages in handling data related 
to complex physical processes. By integrating PINN with Hydrus data, we leverage the strengths of both 
methodologies. Although both approaches are derived from the Richards equation, they adopt fundamentally 
different solution strategies. Essentially, PINN is a deep neural network architecture that inherently incorporates 
the trend information of differential equations when processing data. In contrast, Hydrus-1D simulations rely 
on domain experts who embed substantial professional knowledge and experience during mesh generation. 

Fig. 12.  Comparison of Loss Functions.

 

Fig. 11.  RMSE Variation Curve with Time.

 

Soil type S1 S2 S3

Classical PINN 0.023 0.026 0.024

Hybrid PINN 0.016 0.017 0.015

Table 3.  RMSE values for three soil types.
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This process captures detailed flow field information, such as localized moisture variations under different soil 
textures and pore structures. The study employs both the classical PINN and the Hybrid PINN algorithms for 
simulation and comparison. Experimental results across multiple scenarios (S1, S2, S3) demonstrate that the 
Hybrid PINN exhibits higher accuracy and stability compared to the classical PINN. It more effectively captures 
moisture dynamics while mitigating oscillations and instabilities caused by data scarcity or complex boundary 
conditions. Furthermore, RMSE comparisons provide additional evidence that the improved algorithm 
significantly enhances prediction accuracy and reliability, particularly for long-term simulations. In terms of 
computational efficiency, the proposed hybrid PINN model adopts the same network architecture as the classical 
PINN model. Therefore, under identical hardware conditions, their runtimes are comparable. On an NVIDIA 
GeForce RTX 4060 GPU, the classical PINN model required 162.3 s to complete 10,000 iterations, while the 
hybrid PINN model took 166.4 s. These results indicate that although data-driven components were introduced, 
the additional computational cost was negligible. The model maintains high accuracy and stability while still 
offering good computational efficiency and scalability.

When integrating PINN with Hydrus-1D data, the complementary strengths of both approaches enhance 
the accuracy of infiltration data fusion. Case studies involving three different soil types clearly demonstrate that 
incorporating Hydrus-1D data significantly improves the modeling accuracy of PINN.A noteworthy observation 
is that the magnitude of the loss function does not necessarily reflect the quality of PINN’s fitting performance. 
For instance, in scenario S3, the PINN loss function is larger than in S1 and S2, yet the overall relative error is 
smaller. This phenomenon highlights the limitation of relying solely on PINN or focusing exclusively on the 
fitting accuracy of partial differential equations. It further underscores the necessity of the proposed fusion 
method, which overcomes the constraints of a single approach by effectively extracting and utilizing valuable 
information from diverse data sources. Therefore, during practical training, convergence of the loss function 
should not be used as the sole criterion. It is advisable to incorporate validation error as a complementary metric 
for comprehensive evaluation. Furthermore, introducing periodic monitoring indicators based on physical 
consistency or predictive accuracy in the later stages of training can enhance model stability. This phenomenon 
also offers new insights into the development of adaptive sampling methods, loss reweighting strategies for 
handling strongly nonlinear boundary conditions, and dynamic training schemes.

In practical hydrological modeling and groundwater management, the data required for model training is 
not necessarily limited to numerical solutions generated by software such as Hydrus. It can also be flexibly 
integrated with field monitoring data, remote sensing data, or results from other simulations for training and 
validation. This flexibility enables the PINN model to retain practical value in scenarios where complete physical 
parameters are unavailable or complex solvers cannot be constructed. Moreover, the “train-then-predict” nature 
of PINNs supports online prediction applications. Once trained with existing data, the model can be used for 
real-time forecasting or for simulating hydrodynamic behavior under varying boundary conditions, making it 
particularly suitable for embedded systems or data-driven monitoring platforms. Although this approach may 
involve a high computational cost during the training phase, it offers significant advantages in the prediction 
phase, including high computational efficiency and fast response time. This provides a novel perspective for 
addressing real-world engineering problems such as groundwater management, irrigation scheduling, and 
risk assessment. Meanwhile, following the introduction of a data fusion strategy, our next research objective 
is to explore how to more effectively integrate data from diverse sources for real-time updates, and to further 
investigate the model’s predictive capability beyond the spatiotemporal range of the training domain.

The PINN method proposed in this study, which integrates physical knowledge and data fusion, demonstrates 
practical applicability. Compared with traditional numerical methods, this model offers several advantages: (1) 
when sufficient field observation data are available, data-driven mechanisms can enhance solution accuracy and 
model robustness; (2) it is applicable to complex scenarios where soil parameters or boundary conditions cannot 
be accurately obtained. However, certain challenges may arise during practical deployment, such as: (1) model 
parameters, including weight selection and neural network architecture, are relatively sensitive and require 
tuning according to specific scenarios; (2) under multidimensional complex terrains or strongly heterogeneous 
conditions, further exploration of network structure improvements is necessary to enhance generalization 
performance and mass conservation. Nevertheless, the findings of this study provide a theoretical foundation 
and technical support for subsequent applications in real-world unsaturated flow scenarios and demonstrate 
promising potential for broader adoption.

Conclusion
This study is the first to integrate Hydrus-1D software with the PINN algorithm for data fusion, solving the 
highly nonlinear Richards infiltration model and obtaining high-accuracy numerical solutions. This approach 
provides a novel solution framework for predicting soil moisture distribution under external water supply 
conditions. Compared to traditional neural networks, it significantly enhances the model’s solution accuracy. 
The data-fusion-based PINN algorithm offers the following advantages:

	(1)	 The Hybrid PINN constrains the numerical model using physical equations while integrating more accu-
rate data. Compared to the classical PINN, it significantly enhances the solution accuracy and maintains 
clear physical interpretability.

	(2)	 The Hybrid PINN can accurately solve partial differential equations under different boundary conditions, 
whereas the classical PINN exhibits poor generalization capability across problems with varying prescribed 
conditions. Although consistent initial conditions were used across all numerical experiments in this study, 
the proposed method itself possesses good generality and, in theory, can be applied to a wide range of initial 
and boundary condition combinations.
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	(3)	 Traditional neural networks heavily rely on large amounts of labeled data during training. In contrast, 
the data-fusion-based Hybrid PINN method proposed in this study combines physical knowledge with a 
small number of observational data, achieving high prediction accuracy even under data-scarce conditions. 
Compared with traditional neural network models, this method demonstrates stronger robustness and ad-
aptability in small-sample scenarios.
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