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Sequential recommendation aims to accurately predict the users’ next preferences, where user interest 
is influenced by their intent. Utilizing intent contrastive learning, the sequential recommendation has 
achieved advanced performance. However, most contrastive learning models address the critical issue 
of data sparsity using data augmentation, which amplifies the noise present in the original sequences, 
resulting in learning biased user intent distribution functions, and deteriorating the modeling 
effectiveness of true intent. To address this issue, we propose a model named Explicit Intent Enhanced 
Contrastive Learning with Denoising Networks for Sequential Recommendation (EICD-Rec). In EICD-
Rec, we design a contrastive learning recommender naturally sensitive to users’ true intents. The 
recommender can adaptively filter noise at different frequency scales in sequences in the frequency 
domain, thus obtaining purer representations of user intents. Moreover, to further enhance the 
accurate representation of users’ true intents, we model explicit intent. Integrating this explicit intent 
with implicit intent to construct high-quality self-supervision signals and maximize the joint probability 
distribution between items and explicit intent, thereby enhancing the accuracy of representing users’ 
true intent. Extensive experimental evaluations on three widely used real-world datasets demonstrate 
the effectiveness and generality of our proposed EICD-Rec model.
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Recommender systems are unique data filtering system that utilizes techniques such as data mining and 
deep learning to extract features from various aspects of user information, including historical behaviors 
and preferences, and leverage these features to predict users’ levels of preference for items1. Nowadays, 
recommender systems have been widely applied in various domains, including social recommendations, product 
recommendations, music recommendations, and movie recommendations.

Sequential Recommendation (SR)2–5 considers the item dependency relationships within a user’s 
historical behavior sequence, leveraging the correlations between data to model users’ dynamic preferences. 
SR not only takes into account the user’s current interests, but also considers the impact of their long-term 
historical interactions on their current interests, to accurately predict items that the user may be interested in 
at the next moment. Therefore, SR has found widespread applications in domains such as e-commerce. With 
the advancement of deep learning, SR models based on Convolutional Neural Networks6,7, Recurrent neural 
networks8–10, deep reinforcement learning11, attention mechanisms12–14, and graph neural networks15 have 
emerged. These Neural Network(NN)-based SR models adopt deep neural networks or their variants to model 
user behavior sequences, enabling the models to learn more complex and higher-level vector representations 
of users and items, while automatically learning users’ interest patterns and sequential dependencies from the 
sequences, thus helping the models make more accurate predictions.

Typically, NN-based SR models assume that a user’s current interests depend on their historical interactions, 
which are often driven by the user’s intents and usually contain noisy information. As shown in the motivating 
example of the user’s original sequence in Fig. 1, the user engages in interaction with a shopping platform 
during a certain period, intending to engage in the activity of running, and ultimately purchases running shoes 
(including noisy interaction due to user misoperation). A model that doesn’t learn about the user’s intentions is 
more likely to recommend treadmills, socks, or sports kettles. If the model can infer the user’s intent to engage 
in running activities from historical behaviors, it can recommend items related to running to the user, such as 
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his shopping goal: running shoes. However, existing research works16–18 mostly model user intents through 
auxiliary information, which has limitations as it solely relies on item category information and fails to capture 
users’ true intentions fully19. Recently, methods that use Contrastive Learning (CL)19,20 for sequence modeling 
have gradually become popular because they can effectively overcome data sparsity issues. Among them, some 
advanced works extract users’ latent intents from user behavior sequences and integrate them with SR models 
through contrastive learning, constructing a joint loss function for the SR task and the contrastive learning 
task to further learn user preferences precisely. ICL19 discovers users’ implicit intent representations through 
unsupervised methods and incorporates them into the contrastive learning loss function. IOCRec20 obtains two 
augmented sequences for each user using two random augmentation operators and constructs a positive pair for 
each intent in each sequence, building a contrastive learning loss function.

On the other hand, it is typical for user behavior sequences to be contaminated with noise. For example, 
users may click on items that are different from their intent due to accidental clicks, item category labels 
may contain erroneous information, and models typically overfit to sequences containing noise, resulting 
in biased embedding representations of sequences, which can greatly impact the accuracy of SR models21,22. 
In addition, the aforementioned CL-based models mainly address the critical issue of data sparsity through 
data augmentation, which amplifies any potential noise present in the original sequences, leading to biased 
user intent representations being learned. This constrains the performance of CL and consequently degrades 
recommendation performance.

To address the aforementioned issues, we investigated how to effectively mitigate the negative impact of noise 
on the contrastive learning task, thereby obtaining more accurate recommendations. Consequently, we propose 
a recommendation algorithm called Explicit Intent Enhanced Contrastive Learning with Denoising Networks 
for Sequential Recommendation (EICD-Rec). We designed a sequence encoder in EICD-Rec to more accurately 
represent users’ true intentions and address the potential issue of severe sparsity caused by item transitions 
within sequences. By combining Fourier transformation, we adaptively filter noise from the sequence at dual 
scales, and input the denoised representation into the encoder. Simultaneously, the encoder models categorical 
features to capture explicit intents. By incorporating explicit intents into the sequence representation and 
leveraging contrastive learning tasks, we enhance and construct high-quality latent intention self-supervised 
signals, reducing the noise’s impact on the intent contrastive learning. The main contributions of this paper are 
as follows: 

	1.	 To accurately extract users’ true intents from noisy sequences, we design a sequence encoder that can adap-
tively filter out noise at dual scales and apply it to the SR task in combination with intent contrastive learning.

	2.	 We model the item category features to obtain the representation of the user’s explicit intent and incorporate 
it into the intent contrastive learning module to acquire more accurate representations of the true intents. 
Meanwhile, we enhance the model by maximizing the joint probability distribution between items and ex-
plicit intents.

	3.	 We conduct extensive experiments on three widely used real-world datasets, and the experimental results 
demonstrate that the EICD-Rec model achieves advanced performance on the SR task, outperforming sev-
eral state-of-the-art baseline models.

Related work
Shallow model for sequential recommendation
SR learns user interest changes based on their historical behavior sequences to predict their interactions 
with items in the next time step. Early SR algorithms often relied on matrix factorization23–25. Singular value 
decomposition26,27, widely used in recommendation algorithms due to its applicability to any matrix, unlike 
eigendecomposition which is limited to square matrices, was preferred. However, such shallow models struggled 
to handle complex user behaviors or data inputs, particularly in scenarios with sparse data.

Some other early SR models were based on Markov chains. The fundamental idea was to analyze the user’s 
historical behavior sequence, count the frequency of each item appearing in the sequence, construct a transition 

Fig. 1.  An example illustrating the necessity of denoising original sequences containing user intent.

 

Scientific Reports |        (2025) 15:18824 2| https://doi.org/10.1038/s41598-025-03047-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


matrix, and establish the corresponding Markov chain model. Then, based on this model, predict the next item 
or action that might occur and recommend it to the user. Shani et al. proposed a Markov Decision Processes 
(MDPs) model28 for recommender systems, viewing the recommendation prediction problem as a continuous 
optimization problem, but they did not fully utilize contextual information. Such shallow models based on 
Markov chains have advantages like simplicity and ease of implementation. However, they are sensitive to factors 
like sequence length.

Deep model for sequential recommendation
With the remarkable success of neural network in fields like computer vision29 and natural language processing30, 
introducing NN-based recommendation models into personalized recommendation problems has become the 
mainstream paradigm. Compared to shallow models, deep neural network models can learn more complex and 
higher-level latent factors and features of users and items. Currently, in NN-based SR models, models based 
on Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Multilayer Perceptro (MLP) 
architecture, and attention mechanisms dominate.

CNN-based SR models6,7 use convolutional and pooling layers to extract and combine features, yielding 
satisfactory results, but they may not capture the correlations between sequences effectively. RNN-based SR 
models8–10, on the other hand, can effectively utilize historical interaction item sequences to model long-term 
sequential dependencies, but they are greatly restricted when dealing with sparse sequences. He et al.31 proposed 
the Neural Collaborative Filtering model, which employs MLP to capture complex nonlinear relationships 
between users and items. Zhou et al.32 introduced a deep model with an all-MLP architecture to encode user 
historical sequences and accomplish recommendation tasks. Additionally, with the outstanding achievements of 
the Transformer in various fields, its powerful sequence modeling capability has been introduced into sequential 
recommendation systems. As a pioneering work, SASRec12 first utilizes multi-head self-attention structure to 
model user sequences and achieves advanced performance. BERT4Rec13 adopts deep bidirectional self-attention 
to model user behavior sequences. MAN14 extracts global and local information through a hybrid attention 
network to infer user interests. While attention mechanism-based sequential models have shown advanced 
performance, they suffer from issues like susceptibility to noise and high computational complexity.

The recent application of intent modeling methods in NN-based SR models has attracted widespread 
attention16–18. KA-MemNN16 directly constructs user intent representations through a neural network 
architecture with attention and aggregation functions. ASLI17 extracts user intents from the user’s multi-
type behavior history records, but the acquisition of multi-type behavior is difficult, limiting its applicability. 
CocoRec18 learns the transition relationships between categories, i.e., it utilizes the most recent behavior 
categories to predict and obtain the category representation of the user’s next behavior, which is used as the 
intent representation.

Self-supervised learning for sequential recommendation
In recent years, self-supervised learning (SSL) has attracted significant attention as a new learning paradigm, 
which generates supervised signals from a large amount of unlabeled data and has shown superior performance in 
various deep learning downstream tasks. The idea of applying SSL to SR problems is to maximize the consistency 
between specific auxiliary tasks while enhancing the discriminative ability between positive and negative pairs. 
S3-Rec33 proposed an SSL-based SR model based on the principle of maximizing mutual information, utilizing 
intrinsic data correlations to obtain self-supervision signals, and enhancing data representation through pre-
training methods. DSSRec34 introduced a training strategy based on latent self-supervision and decoupled 
training. ICLRec19 incorporated intent variables into SR models using contrastive learning. CL4SRec35 
introduced contrastive learning and constructed data-augmented sequences from different perspectives to learn 
the embeddings of user and item sequences. IOCRec20 proposed a framework that combines local and global 
intent to create high-quality intent signals by selecting the main intent of users. Although models based on 
contrastive learning SSL can alleviate data sparsity issues, they also amplify noise in the original data, leading to 
learning biased user intent and thereby reducing model performance.

Overall, existing research has not effectively addressed the issue of amplifying sequence noise through data 
augmentation. Additionally, prior studies only constructed implicit intent self-supervision signals from user-
item interaction sequences, without considering the explicit intent reflected by the item category transition 
patterns. In contrast, our proposed EICD-Rec can utilize the Fourier transform to denoise from different 
frequency scales, and integrate user’s explicit intent with implicit intent for contrastive learning. Therefore, our 
EICD-Rec not only reduces the impact of noise but also takes into account the user’s explicit intent information, 
aiding in understanding the user’s true intent.

Methods
Problem statement
This section elaborates on the proposed model named EICD-Rec, detailing its architecture, and mechanisms. 
Table 1. summarizes the key symbols and their respective descriptions.

Assuming the dataset comprises a large number of users, items, and categories, denoted respectively by U, 
I, and O, where the numbers of users, items, and categories are represented as |U|, |I|, and |O| (|O| ≪ |I|). For 
sequential recommendation involving user latent intent, each user u ∈ U  has a sequentially ordered interaction 
item sequence Su = [su

1 , su
2 , ..., su

t , ..., su
n],  where n is the length of the sequence, and su

t = (iu
t , ou

t ) represents 
the interaction information of user u at step t. For each item iu

t , there is a corresponding category representation 
ou

t .
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Based on the above notation, the task of SR can be defined as follows: for a given user u, based on their 
interaction item sequence Su, item set I, and category set O, predict the item that the user is most likely to 
interact with at the next time step, i.e., the (n+1)th step.

Model framework
The overall framework of the model we propose is illustrated in Fig. 2

First, we employ a dual-scale adaptive denoising mechanism to filter out noise signals from the sequence. The 
denoised sequence representations are then combined with the explicit intent representations learned from the 
item category sequences. Through the MLP of the sequence encoder, explicit intents are leveraged to enhance the 
model’s perception of the user’s true intents, resulting in a sequence representation that includes explicit intents.

Then, we construct a pure user implicit intent supervision signal. By using clustering learning and the 
sequence representations with explicit intent output by the sequence encoder with a denoising network, we 
obtain the purer representation of the user’s implicit intent. Extracting this implicit information serves as 
auxiliary information for sequence modeling, and contrastive learning is utilized to maximize the consistency 
between the sequence representation and its corresponding implicit intent.

Finally, predictions are made based on the output of the sequence encoder and item embeddings. Training 
and optimization are performed through a multi-task joint loss function.
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Fig. 2.  Overview of the proposed EICD-Rec.

 

Notation Description

U, I, O, C Set of users, items, categories, implicit intents

Su User u’s interaction sequence

Si
u

User u’s item sequence

So
u User u’s item category sequence

t The time step in the sequence of user sequence

n The number of user interaction items

F q The time domain signal representation at the denoising network q-th layer

Xq The frequency domain signal representation at the denoising network q-th layer

Ri Representation of item sequences

Ro Representation of item category sequences

V Group of users with different intents from the specified user

Q(C) The implicit intent C distribution function

Table 1.  Key notations and descriptions.
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Explicit intent enhanced encoder with denoising networks
Embedding layer
We utilize a pre-trained embedding model36 to convert each historical interaction of a user into a vector 
representation. Specifically, given the interaction sequence Su for user u, which includes an item sequence 
Si

u = [iu
1 , iu

2 , ..., iu
t , ..., iu

n] and an item category sequence So
u = [ou

1 , ou
2 , ..., ou

t , ..., ou
n]. For item set I, an 

embedding table Ei ∈ R|I|×d is constructed from all items, where d is the dimension of the embedding vectors. 
Similarly, for the set of item categories, an embedding table Eo ∈ R|O|×d is constructed from all item categories.

Given the item sequence Si
u of length n and the item category sequence So

u for user u, we obtain their low-
dimensional vector representations M i and Mo, calculate them as follows:

	

M i = Embeddingi(Si
u) =




ei
1 + pi

1
ei

2 + pi
2

...
ei

n + pi
n


� (1)

and

	

Mo = Embeddingo(So
u) =




eo
1 + po

1
eo

2 + po
2

...
eo

n + po
n


� (2)

where ei
x ∈ Rd represents the embedding of item ix, eo

y ∈ Rd represents the embedding of item category oy , 
P i ∈ Rn×d and P o ∈ Rn×d are the position embedding matrices respectively.

Denoising networks module
The item embedding matrix may likely contain noise that could impact the performance of SR models. In our 
denoising networks, to better capture useful information in the sequences and obtain sequence representations 
that more accurately reflect user interests, we introduce a dual-scale adaptive denoising networks module.

The framework of the denoising networks module is shown in Fig. 3.
The Fast Fourier Transform (FFT) effectively extracts periodic features by transforming time-domain signals 

into the frequency domain, a property that facilitates its application in scenarios such as spectral analysis 
and noise filtering32. Its denoising principle relies on the energy distribution characteristics of signals in the 
frequency domain. According to signal processing theory, user behavior sequences can be regarded as discrete 
signals in the temporal dimension. Consequently, FFT can be employed to convert behavioral sequence signals 
from the time domain to the frequency domain for global spectral analysis, while decomposing the embedding 
vectors of user behavior sequences into linear combinations of different frequency components. Subsequently, 
in the frequency domain space, we leverage the distinction between low-frequency and high-frequency signals 
to design two learnable filters based on threshold mechanisms for signal processing. The filtered signals are then 
reconstructed into time-domain signals through inverse FFT. This process preserves the characteristic phase 
and amplitude representing stable behavioral patterns in user embeddings while eliminating noise disturbances. 
As illustrated in Fig. 1, the user behavior sequence includes: treadmill, athletic socks, accidental click on an 
electronic product, sports water bottle, and running shoes. Through Fourier Transform, the low-frequency 
components highlight the coherent purchasing patterns in the sequence, while the high-frequency components 
mark the anomalous click on the electronic product.

Given the item representation matrix or item category representation matrix F q ∈ Rn×d for the q-th layer 
(when q=0, we set F 0 = M i or F 0 = Mo), we first perform fast Fourier transform:

	 Xq = F(F q)� (3)

Fig. 3.  The framework of the denoising networks module.
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where F(·) represents one-dimensional Fast Fourier transform, and Xq  represents the transformed frequency 
domain signal. We employ dual-scale learnable filters to modulate the spectrum, dividing low-frequency 
signals Xl and high-frequency signals Xh in the frequency domain based on the median frequency and setting 
corresponding learnable filters:

	 Xq
l = Wl ⊙ Xq · �{f≤fmedian} � (4)

	 Xq
h = Wh ⊙ Xq · �{f>fmedian} � (5)

	 X̃q = Xq
l + Xq

h
� (6)

where Wl, Wh ∈ Cn×d are learnable filters, and ⊙ represents element-wise multiplication, f denotes the 
frequency, and �{f≤fmedian} represents an indicator function that selects signals with frequencies less than 
or equal to the median frequency. Since different SR models may correspond to different and complex data 
distributions and embedding matrix features, the most suitable filtering algorithm may also differ. Therefore, 
using learnable filters with the ability to handle complex signal patterns allows the model to adaptively learn 
the most appropriate filtering algorithm. Additionally, study32 have shown that low-frequency signals in the 
frequency domain typically contain more meaningful key information, such as primary trends and temporal 
correlations, while high-frequency signals tend to carry noise-related information and may potentially encompass 
some detailed features.We introduce two learnable filters optimized by stochastic gradient descent to handle 
these two parts respectively, thereby adaptively representing any filter in the frequency domain, influencing the 
output of the filter, and improving the model ability to extract useful signals.

For the information after denoising, we utilize the inverse fast Fourier transform to convert the modulated 
spectrum X̃q  back to the time domain. Following the inverse fast Fourier transform, we update the sequence 
representation through residual connections, layer normalization, and dropout operations to stabilize the 
network training process and alleviate the gradient vanishing problem:

	 F̃ q = F−1(X̃q) ∈ Rn×d � (7)

	 F̃ q = Layernorm(F q + Dropout(F̃ q)) � (8)

where F−1(·) represents one-dimensional inverse fast Fourier transform.

Explicit intent enhanced encoder
Existing SR models typically treat users’ historical records as a single long sequence, aiming to extract implicit 
information from the data. However, they often overlook the fact that the transformation patterns of explicit 
features within the sequence, such as item categories, also reflect user intents. These neglected category 
transformation patterns in the sequence also contain valuable user intent information, which we refer to as 
explicit intent. For example, for a given user, if transitions from clothing (category 1) to shoes (category 2) 
frequently appear in their history, it indicates that after viewing clothing items, the user is likely to have an intent 
to purchase shoes. Their next action is likely to be related to shoe items. Such explicit intent signals embedded in 
item category transitions can significantly enhance the prediction of the user’s next interaction item.

Current mainstream sequence encoders typically employ deep neural networks incorporating attention 
mechanisms12–14 to encode user behavior sequences, model sequence patterns, and predict users’ next behaviors. 
Inspired by the Transformer-based SR model12, we define a sequence encoder fθ(·), but our sequence encoder 
does not employ the computationally expensive self-attention mechanism, we train and capture features of item 
representation vectors using a multilayer perceptron architecture to reduce model computational costs and 
improve training efficiency37.

The sequence encoder fθ(·) encodes users’ historical interaction item sequences Su and outputs user interest 
representations Hu = fθ(Su) at all time steps, where hu

t  represents user interest at time t. The objective of this 
paper is to find the optimal encoder parameters θ that maximize the log-likelihood function of the expected next 
item at all time steps of a given sequence:

	
θ∗ = argmax

θ

∑
Su∈SN

∑
1≤t≤n

lnPθ(iu
t , ou

t )� (9)

where SN  represents the batch size of the input model. Specifically, the core of the sequence modeling module 
is a Feed Forward Neural Network (FFN). According to previous studies12, as the network depth increases, 
the increase in model capacity exacerbates the problem of overfitting, and the stability of the training process 
significantly decreases due to factors such as gradient vanishing. In this case, residual connections38 have been 
shown to effectively propagate low-level features to high levels, allowing the network to better utilize these useful 
features. Additionally, layer normalization plays a stabilizing and accelerating role in the training process of 
neural networks by normalizing across features, contributing to the stability of the network. To address the 
overfitting problem in deep neural networks, the dropout regularization technique has been widely applied and 
shown effectiveness in various neural network architectures39. Therefore, we incorporate residual connections, 
layer normalization, and dropout operations to alleviate the issues of gradient vanishing and instability, 
representing the output of the sequence modeling module of the q-th layer:
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	 F̃ q = F F N(F̃ q) = (GELU(F̃ qW1 + b1))W2 + b2 � (10)

	 F̃ q = Layernorm(F̃ q + Dropout(F̃ q)) � (11)

where GELU(·) is the activation function, W1 and W2 are trainable parameter matrices, and b1 and b2 are 
trainable bias vectors. We model both the item sequence and the item category sequence separately. Given the 
item embedding F i and the category feature embedding F o, our encoder outputs Ri ∈ Rn×d and Ro ∈ Rn×d 
as representations of the item sequence and the explicit intent sequence, respectively. Considering that the 
current item sequence output Ri mainly focuses on the most recent items, to incorporate long-term preferences 
and obtain prior knowledge from the explicit intent of uncommon items, we combine Ri and Ro to obtain the 
final representation RS ∈ Rn×d:

	 RS = Ri + Ro� (12)

Then, we simultaneously use Ro and Ri to calculate the correlation ro
j,t and ri

k,t with the original embeddings 
at step t:

	 ro
j,t = Ro

t EoT

j , ri
k,t = Ri

tE
iT

k � (13)

where Eo
j , Ei

k ∈ Rd respectively represent the embeddings of the j-th explicit intent and the k-th item in Eo 
and Ei. Unlike previous SR models that only predict the next item based on historical items, the distinctiveness 
of our sequence encoder module lies in predicting by maximizing the joint probability distribution between 
previous items and explicit intents:

	 P (oj , ik|So
u, Si

u, Θ) = P (oj |So
u, Θ)P (ik|oj , So

u, Si
u, Θ) = σ(ro

j,t)σ(ri
k,t)� (14)

where σ(·) is the sigmoid function, Θ represents the parameter set of the sequence encoder, So
u and Si

u are the 
user’s explicit intent sequence and item sequence, respectively. We train using binary cross-entropy loss:

	

LEDN = Li + Lo = −
∑

Su∈SN

∑
1≤t≤n

[
log

(
σ

(
ri

yi,t

))
+

∑
ik /∈Su

log
(
1 − σ(ri

ik,t)
)
]

−
∑

Su∈SN

∑
1≤t≤n

[
log

(
σ(ro

yo,t)
)

+
∑

oi /∈Su

log
(
1 − σ

(
ro

oj ,t

))] � (15)

where σ(·) represents the sigmoid function. To train the model and maximize the log-likelihood function, we 
employ sampled softmax, as described in strategies12,19, to sample a negative item at each time step of every 
sequence, allowing it to be compared with the positive item.

Pure intent contrastive learning
In addition to user-item interactions and item categories, user interests may also be influenced by latent factors19. 
These latent factors implicit in user behavior sequences can be regarded as the user’s implicit intent. Although 
some CL-based recommendation models19,20 in recent years have been able to alleviate data sparsity issues 
and effectively utilize users’ implicit intent, they also amplify the deteriorating effect of sequence noise on the 
representation of user implicit intent. In our model, by combining the encoder with denoising network modules 
and explicit intent enhancement modules, we can effectively address this issue, enabling the model to learn 
more accurate representations of user implicit intent.Specifically, for the user intention information contained 
in the feature transition patterns of items, this paper terms it as “Explicit Intent”, such as the category attribute 
transition patterns utilized in this study. For instance, if a user behavior sequence contains multiple records 
like “steak (food category), black pepper (seasoning category), frying pan (kitchenware category)”, it indicates 
that after viewing food and seasoning items, the user likely exhibits an intention to purchase kitchenware. The 
subsequent interaction may potentially relate to kitchenware category items. Such explicit intentional signals 
embedded in category transitions significantly contribute to the learning of intention representations.

We denote by C the implicit intent set implied in the user behavior sequence Su, assuming Su reflects Z 
implicit intents {ci}Z

i=1. Then, the optimization objective function for the interaction between a user and a 
certain item can be expressed as follows:

	
θ∗ = argmax

θ

∑
Su∈SN

∑
1≤t≤n

lnE(c)[Pθ(iu
t , ou

t , ci)]� (16)

Since the variables θ and implicit intent ci are both missing values, we follow strategy19, we construct a lower 
bound for the maximization of the expression Eq. (16) using the Expectation-Maximization (EM) algorithm. We 
assume the implicit intent follows the distribution Q(C), and 

∑Z

i=1 Q(ci) = 1&Q(ci) > 0, then the Eq. (16) 
can be constructed as the objective function of the lower bound function:
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∑
Su∈SN

∑
1≤t≤n

lnE(c)[Pθ(iu
t , ou

t , ci)] =
∑

Su∈S

∑
1≤t≤n

ln
∑

1≤i≤Z

Q(ci)
Pθ(iu

t , ou
t , ci)

Q(ci) � (17)

According to Jensen’s inequality and to reduce the complexity of the loss function calculation, we only consider 
the lower bound of each final step (i.e., the t-th step). Thus, the definition can be obtained as follows:

	

∑
Su∈SN

∑
1≤i≤Z

Q(ci) · lnPθ(Su, ci)� (18)

In the above formula, Q(ci) and Pθ(Su, ci) are unknown. To learn the distribution of the user’s implicit intent 
Q(C), we utilize our proposed sequence encoder fθ(·) to encode all interaction sequences {Su}|U|

u=1. Through 
explicit intent enhancement and denoising networks module, it can output purer representations, which aids 
in extracting users’ true intents. Subsequently, K-means clustering operations are performed on the output 
representations {hu}|U|

u=1, resulting in Q(ci) = Pθ(ci|Su):

	
Q(ci) = Pθ(ci|Su) =

{ 1, if Su in cluster i
0, else. � (19)

Then, we employ the average pooling method to compute the mean of the representations in each cluster, 
obtaining the cluster centers as representations of the implicit intent ci. After obtaining the distribution 
of implicit intent Q(C), to maximize the lower bound, it is necessary to calculate Pθ(Su, ci). We define its 
calculation formula as follows:

	
Pθ(Su, ci) = Pθ(ci)Pθ(Su|ci) ∝ 1

Z
· exp(hu · ci)∑Z

j=1 exp(hu · cj) � (20)

where hu represents the vector representation of the sequence Su. Maximizing equation (18) is equivalent 
to minimizing formula equation (21), which aims to maximize the mutual information between a behavior 
sequence and its corresponding latent intent (the MIM principle):

	
−

V∑
v=1

log
exp(sim(hu, ci))∑Z

j=1 exp(sim(hu, cj))
� (21)

where, sim(·) represents the inner product. Following the principle of contrastive self-supervised learning, 
for each batch size of training sequences, we create two positive views, h̃u

1  and h̃u
2 , use mainstream data 

augmentations19,33 such as crop, mask, and reorder. To address the issue of false-negative samples, where 
different users’ identical intents are treated as negative samples, we follow the approach proposed by19 to mitigate 
this problem without contrastive operations, defining the loss function as follows:

	 LP ICL = LP ICL(h̃u
1 , cu) + LP ICL(h̃u

2 , cu) � (22)

	
LP ICL(h̃u

1 , cu) = −log
exp(sim(h̃u

1 , cu))∑V

v=1 �v /∈C exp(sim(h̃u
1 , cv))

� (23)

	
LP ICL(h̃u

2 , cu) = −log
exp(sim(h̃u

2 , cu))∑V

v=1 �v /∈C exp(sim(h̃u
2 , cv))

� (24)

where cu represents the vector representation of the implicit intent ci, and C  denotes the set of users who share 
the same intent as u, and cv  is the vector representation of an implicit intent not in C . Consequently, during 
the iterative execution of the EM-Step, both the intent distribution Q(C) and the model parameters θ will be 
continuously updated.

In addition to maximizing the mutual information between sequences and implicit intents as mentioned 
above, it is also necessary to consider the correlation between two sequences and maximize mutual information 
in contrastive learning. We define views within the same sequence as positive pairs, while views from different 
sequences are considered negative pairs. After encoding the behavior sequences under positive views to obtain 
their representations h̃u

1  and h̃u
2 , we construct the loss function based on the principles of the InfoNCE40 

algorithm:

	 LSeq = LSeq(h̃u
1 , h̃u

2 ) + LSeq(h̃u
2 , h̃u

1 ) � (25)

	
LSeq(h̃u

1 , h̃u
2 ) = −log

exp(sim(h̃u
1 , h̃u

2 ))∑
neg

exp(sim(h̃u
1 , h̃neg)) � (26)

where h̃neg  represents the sequence representation generated under negative views.
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Prediction layer
In sequential recommendation, predicting the next item relies on the contextual information of the entire item 
set. In the final layer of EICD-Rec, we calculate the interest score of user u for item i at step (t+1) based on the 
user’s historical interaction sequence:

	 P (it+1 = i|i1:t) = aT
i hu

t � (27)

where ai represents the vector representation of item i, and hu
t  denotes the output of the sequence encoder fθ(·) 

at step t, serving as the user’s intent representation. We train and optimize the model parameters using a multi-
task joint loss function:

	 L = LEDN + λ1 · LP ICL + λ2 · LSeq � (28)

where parameters λ1 and λ2 respectively control the strength of the sequence-to-intent SSL task and the 
sequence-to-sequence SSL task.

Experiments and analysis
In this section, we will present the specific experimental settings, compare our proposed recommendation 
model EICD-Rec with several state-of-the-art methods on three real datasets, and evaluate its performance. 
We first describe the datasets, baseline methods, evaluation metrics, and implementation details used in the 
experiments, and then analyze the experimental results. Additionally, we explore the impact of noise ratio and 
hyperparameters on the model effectiveness.

Datasets
To evaluate the effectiveness of our proposed EICD-Rec model, we conduct experiments on three available real-
world public datasets: Toys, Sports, and Beauty. They are from the three subcategory datasets of the Amazon 
dataset in study41, which contain user review actions on the items.

For all datasets, we follow the same preprocessing procedure19 to first filter out inactive users to improve data 
quality, ensuring that each user in the data used for training has interacted with at least five items. We then group 
the interactions by the user and sort them by timestamp. In the experiments, we split the training and test sets at 
an 8:2 ratio, using four historical interactions for training and one historical interaction for testing. The detailed 
statistics of the three datasets are shown in Table 2.

Evaluation metrics
To evaluate the performance, we employ two commonly used evaluation metrics:Hit Ratio @k (HR@k)and 
Normalized Discounted Cumulative Gain @k (NDCG@k), where k ∈ 5, 20 represents the top-k items in the 
candidate set. While HR@k focuses on assessing the proportion of correctly predicted samples in the ground 
truth, NDCG@k considers the ranking of items in the recommendation results. The higher the predicted items 
are ranked within the candidate set, the higher the score they receive in NDCG@k.

Baseline methods
We compare our proposed method EICD-Rec with a series of state-of-the-art baselines, including the Non-
sequential SR method, NN-based SR methods, SSL-based SR methods, and Intent-based SR methods, which are 
listed as follows:

Non-sequential method

•	 BPR-MF42: It represents the interaction between users and items as a sparse matrix, then decomposes this 
matrix into two low-dimensional matrices through matrix factorization algorithms, optimizing the model by 
maximizing the accuracy of recommendation result ranking.

NN-based SR methods

•	 GRU4Rec8: A SR model based on RNN, using Gated Recurrent Unit (GRU) to capture long-term dependen-
cies in behavioral sequences.

•	 Caser6: It adopts CNN-based sequence embedding techniques, applying convolution to extract sequential 
patterns from short-term sequences.

•	 SASRec12: Pioneering the use of self-attention mechanism to model user’s historical behavior information, 
thereby capturing dependencies between items in the sequence, and widely applied.

Datasets # Users # Items # Actions # Avg. Actions Sparsity

Beauty 22,363 12,101 198,502 8.9 99.93%

Sports 35,598 18,357 296,337 8.3 99.95%

Toys 19,412 11,924 167,597 8.6 99.93%

Table 2.  Statistics of datasets.

 

Scientific Reports |        (2025) 15:18824 9| https://doi.org/10.1038/s41598-025-03047-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


•	 BERT4Rec13: It uses bidirectional self-attention encoder representation from the BERT architecture to gener-
ate a series of hidden states to capture context and dependencies between items in the sequence.

SSL-based SR methods

•	 S3-Rec33: It proposes a self-supervised learning method for sequential recommendation, encouraging the 
model to identify meaningful patterns in the data by maximizing the mutual information between input 
sequences and output predictions.

•	 DSSRec34: It utilizes the idea of Disentangled Self-Supervision (DSS) and proposes a seq2seq training method 
to learn representations of separate input data, allowing the model to understand finer patterns in user con-
sumption history.

•	 CL4SRec35: The model introduces random data augmentation techniques to sequential recommendation and 
employs contrastive learning to learn user embeddings, alleviating data sparsity issues.

•	 CoSeRec43: Building upon CL4SRec, it designs two superior data augmentation operators, insertion, and 
replacement, based on item correlations.

Intent-based SR methods

•	 ICLRec19: A SR model utilizing intent contrastive learning, distinguishing different user-item interaction 
pairs through training, even if users interact with items in different contexts but have similar latent intents, 
the model attempts to identify these users’ intents as similar.

•	 IOCRec20: Also a SR model based on intent contrastive learning, proposing a framework for extracting pri-
mary and local intents to address the denoising problem in SR tasks.

Parameter settings
For our eleven baseline methods, all parameters are set according to the recommendations provided by their 
respective authors. Among them, Caser, BERT4Rec, S3-Rec, CoSeRec, ICLRec, and IOCRec are implemented 
using the source code provided by their authors, while BPR, SASRec, GRU4Rec, DSSRec, and CL4SRec are 
implemented based on publicly available resources.

Our method is implemented based on PyTorch. We set the number of layers in the learnable filtering network 
to 2, the maximum sequence length n to 50, the embedding size to 128, the batch size to 256, and the number 
of implicit intents Z to be within the range of {64, 128, ..., 2048}. Parameters λ1 and λ2 are varied within the 
range of {0.1, 0.2, ..., 0.6}. Our model uses the Adam optimizer44 with a learning rate of 0.001, a dropout rate 
of 0.5, β1 = 0.9, and β2 = 0.999. We conduct an evaluation whenever there is an improvement in the model 
performance. If the NDCG@10 metric does not improve within 40 evaluations, the experiment is terminated 
early. All experiments are performed on a server with Intel(R) Xeon(R) Silver 4210 × 4 CPU, NVIDIA GTX 
3090(24GB) GPU, and 256GB memory.

Performance comparison
To demonstrate the overall performance of our proposed model, we compare it with several state-of-the-art 
recommendation methods. The experimental results are shown in Table 3, where the best results are indicated in 
bold, the second-best results are underscored, and the last row show the relative improvements compared to the 
best baseline results. We have the following observations: 

Dataset Toys Sports Beauty

Metrics

HR NDCG HR NDCG HR NDCG

@5 @20 @5 @20 @5 @20 @5 @20 @5 @20 @5 @20

BPR 0.0120 0.0312 0.0082 0.0136 0.0141 0.0323 0.0091 0.0142 0.0212 0.0589 0.0130 0.0236

GRU4Rec 0.0097 0.0301 0.0059 0.0116 0.0162 0.0421 0.0103 0.0186 0.0111 0.0478 0.0058 0.0104

Caser 0.0166 0.0420 0.0107 0.0179 0.0154 0.0399 0.0114 0.0178 0.0251 0.0643 0.0145 0.0298

SASRec 0.0463 0.0941 0.0306 0.0441 0.0206 0.0497 0.0135 0.0216 0.0374 0.0901 0.0241 0.0387

BERT4Rec 0.0274 0.0688 0.0174 0.0291 0.0217 0.0604 0.0143 0.0251 0.0410 0.0914 0.0261 0.0403

S3-RecISP 0.0143 0.0235 0.0123 0.0162 0.0121 0.0344 0.0084 0.0146 0.0189 0.0487 0.0115 0.0198

DSSRec 0.0447 0.0942 0.0297 0.0437 0.0209 0.0499 0.0139 0.0221 0.0408 0.0894 0.0263 0.0399

CL4SRec 0.0503 0.0990 0.0392 0.0506 0.0231 0.0557 0.0146 0.0238 0.0401 0.0974 0.0268 0.0428

CoSeRec 0.0533 0.1037 0.0370 0.0513 0.0290 0.0636 0.0196 0.0293 0.0504 0.1034 0.0339 0.0487

ICLRec 0.0598 0.1138 0.0404 0.0557 0.0283 0.0641 0.0182 0.0285 0.0500 0.1058 0.0326 0.0483

IOCRec 0.0545 0.1133 0.0297 0.0465 0.0293 0.0684 0.0166 0.0279 0.0511 0.1126 0.0312 0.0490

EICD-Rec 0.0663 0.1184 0.0469 0.0614 0.0305 0.0667 0.0203 0.0306 0.0580 0.1130 0.0397 0.0553

Improv. 10.87% 4.04% 16.09% 10.23% 4.10% − 2.49% 3.57% 4.44% 13.50% 0.36% 17.11% 12.86%

Table 3.  Performance comparisons of different methods.
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	(1)	 Generally, non-sequential methods like BPR perform worse than NN-based SR models. This is because 
they cannot effectively utilize the temporal order information in user behavior sequences, indicating the 
importance of capturing sequential patterns in constructing recommendation models.

	(2)	 For NN-based SR models, we find that SASRec and BERT4Rec, which use encoders based on self-attention 
mechanisms, outperform models without attention mechanisms like Caser (CNN-based model) and GRU-
4Rec (RNN-based model). This demonstrates the effectiveness of self-attention mechanisms in capturing 
sequential patterns.

	(3)	 For SSL-based SR models, we find that although S3-Rec introduces SSL to gain enhanced signals, its per-
formance is worse than models based on attention mechanisms. This is because it uses a two-stage training 
strategy and requires sequences to provide sufficiently long contextual information, leading to decreased 
performance when facing datasets with mostly short sequences. DSSRec, by decoupling operations when 
selecting training samples for seq2seq and performing self-supervision in the latent space to promote con-
vergence, achieves better performance than BERT4Rec on some datasets (e.g., Toys). CL4SRec and CoS-
eRec, by introducing contrastive learning and data augmentation, outperform models based on attention 
mechanisms overall, proving the superiority of introducing contrastive learning to enhance sequential rep-
resentations.

	(4)	 For Intent-based SR models, we find that ICLRec and IOCRec, by introducing intent-level representation 
learning modules and contrastive SSL modules to enhance SR tasks, outperform most self-supervised SR 
models except for CoSeRec. In some cases, they are less effective than CoSeRec (e.g., NDCG@k in the 
Sports dataset), possibly due to the amplification of noise signals present in the original sequences by ran-
dom data augmentation, resulting in decreased performance.

	(5)	 Finally, our proposed EICD-Rec can adaptively filter noise information at different frequency scales and 
model category features to explore the transformation information between explicit user intent and item 
categories, helping to obtain high-quality representations of the user’s true intent. By comparing our pro-
posed method with all baseline methods, EICD-Rec outperforms other methods in most cases, demonstrat-
ing the effectiveness of EICD-Rec.

Ablation study
To thoroughly validate the effectiveness of each component of the model, we conducted ablation experiments 
on EICD-Rec and several variants. The experimental results are shown in Table 4, where (A) represents the 
complete version of our proposed EICD-Rec, (B) represents removing the denoising networks, (C) represents 
removing the explicit intent enhancement module obtained by modeling category features, and (D) represents 
removing the contrastive learning enhancement module for intent and sequences.

According to the results of the ablation experiments, we found that our proposed EICD-Rec achieved the best 
performance on all datasets, indicating the effectiveness of each component of our model. Comparing the results 
between (A) and (B), our noise filtering network adaptively filters noise information at different frequency scales, 
aiding the model in learning representations of users’ true intent. Comparing the results between (A) and (C), 
modeling category feature information to obtain explicit intent representations of users can effectively improve 
the model accuracy. Comparing the results between (A) and (D), utilizing intent representation learning for 
contrastive SSL enhancement can significantly enhance the model performance.

Influence of the number of implicit intents
To explore the impact of the hyperparameter Z (i.e., the number of user implicit intents), we conducted 
experiments on Beauty and Toys datasets. Figure 4 shows the influence of different numbers of user implicit 
intents on model performance.

A larger number of implicit intent categories implies that users have more distinct intents. As shown in Fig. 
4, taking the results on the Beauty dataset as an example, while keeping other parameters fixed, we can see that 
when Z increases to 2048, the EICD-Rec model achieves the best performance. This may be because when Z is 
very small, the number of users under each intent prototype could be large, causing the differences between users 
to become blurred. Consequently, it would introduce false negatives to the contrastive self-supervised learning 
task, where users with different intents are mistakenly treated as having the same intent, potentially leading to 
information loss in item representation learning and affecting the accuracy of recommendations. However, we 
found that for the Toys dataset, the EICD-Rec model achieves the best performance when Z increases to 512, and 
the performance starts to decline as Z further increases. This may be because when Z is too large, the number 
of data samples in each intent category could decrease, increasing data sparsity and adversely affecting model 
training. In the Beauty dataset, 2048 user implicit intent categories best cover the different behaviors of users, 
while in the Toys dataset, 512 user implicit intent categories best cover the different behaviors of users.

Dataset Toys Sports Beauty

Metrics HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20

(A)EICD-Rec 0.1184 0.0614 0.0667 0.0306 0.1130 0.0553

(B)w/o DN 0.1113 0.0558 0.0594 0.0281 0.1062 0.0511

(C)w/o Category 0.1043 0.0553 0.0616 0.0276 0.1043 0.0492

(D)w/o CL 0.0853 0.0431 0.0457 0.0190 0.0850 0.0383

Table 4.  The HR@20 and NDCG@20 performances achieved by EICD-Rec variants on three datasets.
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In summary, excessively high or low numbers of implicit intent categories would affect the quality of 
item representation learning and the accuracy of recommendations. Therefore, when dividing implicit intent 
categories, an appropriate number of categories should be chosen to fully capture the differences between user 
behaviors.

Influence of implicit intent contrastive learning strength
We also conducted experiments on the influence of the contrastive learning strength λ1 of implicit intents on 
Beauty and Toys datasets. Figure 5 illustrates the impact of different strengths of user implicit intent contrastive 
learning on model performance. We observed that as λ1 increases, the model’s performance improves on both 
the Beauty and Toys datasets, indicating that introducing appropriate weights can enhance recommendation 
performance, thus demonstrating the effectiveness of EICD-Rec. The model λ1 = 0.2 performance peaks when 
and then begins to deteriorate, possibly because excessively high implicit intent contrastive learning strength 
leads the model to overly rely on certain specific samples, thus affecting its generalization ability.

Noise robustness analysis
We conducted noise robustness experiments on the ICLRec model and EICD-Rec model across the three datasets 
to validate the stability of our proposed method against noise interference during the testing phase. Specifically, 
we randomly added a certain proportion (i.e., 5%, 10%, 15%, 20%) of negative items to the original sequences. 
From the Fig. 6, we can observe that as the ratio of added noise data increases, the performance of both models 
declines to a certain extent. This demonstrates the significant negative impact of noise data on recommendation 
effectiveness. However, the performance degradation rate of our proposed EICD-Rec model is lower than that of 
the ICLRec model in most cases, especially after adding 20% noise data, where the performance of the ICLRec 
model drops sharply while our proposed model still exhibits relatively good performance. This indicates that our 
dual-scale learnable filters can effectively filter out noise information, improving the model’s anti-interference 
ability. Moreover, from the Fig. 6, we can see that on the Toys, Sports and Beauty datasets, the performance of 
the EICD-Rec model with a 15% noise ratio is still better than that of the ICLRec model without noise data. 
This may be due to the introduction of category feature modeling of explicit user intent representations, which 

Fig. 5.  The impact of implicit intent contrastive learning strength λ1.

 

Fig. 4.  The impact of different numbers of implicit intents Z.
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enhances the mutual information modeling between sequences and intents, enabling the model to learn more 
effective behavior feature semantics.

Conclusion
In this paper, we address the issue of noise amplification in users’ original interaction sequences caused by data 
augmentation and propose a novel CL-based SR model, EICD-Rec. First, we design a denoising network based on 
dual-scale adaptivity to denoise the data, enabling the acquisition of purer sequence and intent representations. 
At the same time, we explore the modeling of explicit intents embedded in item category transition patterns. 
By combining explicit and implicit intents, we construct high-quality self-supervised signals to more accurately 
represent users’ true intents. This approach not only enhances the model’s perception of category transition 
patterns but also mitigates the bias introduced by noise in sequence representations, thereby improving the 
performance of the intent contrastive learning task. Extensive experiments validate the effectiveness of EICD-
Rec. In the future, we plan to analyze multiple types of user behaviors and improve the performance of SR 
models by modeling intents in user multi-behavior sequences.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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