Table 10 Performance of LDA-GARB with \(k=64\) and different N on two datasets under \(CV_1\).

From: Predicting lncRNA and disease associations with graph autoencoder and noise robust gradient boosting

 

Dataset

\(k=64,\,N=1\)

\(k=64,\,N=2\)

\(k=64,\,N=3\)

\(k=64,\,N=4\)

\(k=64,\,N=5\)

Precision

Dataset 1

0.8636 ± 0.0450

0.8502 ± 0.0510

0.8513 ± 0.0391

0.8697 ± 0.0422

0.8764 ± 0.0419

Dataset 2

0.9344 ± 0.0147

0.9342 ± 0.0155

0.9277 ± 0.0186

0.9315 ± 0.0164

0.9403 ± 0.0183

Recall

Dataset 1

0.7682 ± 0.0452

0.7716 ± 0.0501

0.7690 ± 0.0570

0.7469 ± 0.0642

0.7552 ± 0.0677

Dataset 2

0.8680 ± 0.0429

0.8633 ± 0.0439

0.8698 ± 0.0374

0.8620 ± 0.0430

0.8459 ± 0.0498

Accuracy

Dataset 1

0.8282 ± 0.0338

0.8241 ± 0.0298

0.8218 ± 0.0325

0.8234 ± 0.0394

0.8281 ± 0.0350

Dataset 2

0.9036 ± 0.0281

0.9010 ± 0.0264

0.9011 ± 0.0257

0.8990 ± 0.0259

0.8957 ± 0.0289

F1-score

Dataset 1

0.8117 ± 0.0312

0.8077 ± 0.0394

0.8066 ± 0.0370

0.8017 ± 0.0424

0.8088 ± 0.0392

Dataset 2

0.8995 ± 0.0266

0.8967 ± 0.0244

0.8974 ± 0.0230

0.8948 ± 0.0251

0.8897 ± 0.0280

AUC

Dataset 1

0.9180 ± 0.0219

0.9167 ± 0.0244

0.9144 ± 0.0249

0.8988 ± 0.0324

0.8998 ± 0.0269

Dataset 2

0.9716 ± 0.0134

0.9709 ± 0.0121

0.9714 ± 0.0123

0.9692 ± 0.0120

0.9669 ± 0.0110

AUPR

Dataset 1

0.9160 ± 0.0286

0.9048 ± 0.0395

0.9119 ± 0.0303

0.9014 ± 0.0323

0.9007 ± 0.0324

Dataset 2

0.9723 ± 0.0101

0.9706 ± 0.0096

0.9730 ± 0.0090

0.9701 ± 0.0095

0.9660 ± 0.0113

  1. The best performance is denoted as bold.
  2. The second-best performance is denoted as underline.