Table 11 Performance of LDA-GARB with \(k=64\) and different N on two datasets under \(CV_2\).

From: Predicting lncRNA and disease associations with graph autoencoder and noise robust gradient boosting

 

Dataset

\(k=64,\,N=1\)

\(k=64,\,N=2\)

\(k=64,\,N=3\)

\(k=64,\,N=4\)

\(k=64,\,N=5\)

Precision

Dataset 1

0.8724 ± 0.0365

0.8686 ± 0.0332

0.8897 ± 0.0272

0.8747 ± 0.0248

0.8980 ± 0.0278

Dataset 2

0.9321 ± 0.0277

0.9339 ± 0.0228

0.9264 ± 0.0269

0.9381 ± 0.0225

0.9379 ± 0.0268

Recall

Dataset 1

0.8699 ± 0.0377

0.8784 ± 0.0393

0.8764 ± 0.0317

0.8535 ± 0.0455

0.8630 ± 0.0422

Dataset 2

0.9409 ± 0.0262

0.9448 ± 0.0233

0.9411 ± 0.0237

0.9357 ± 0.0235

0.9343 ± 0.0251

Accuracy

Dataset 1

0.8744 ± 0.0255

0.8760 ± 0.0210

0.8855 ± 0.0221

0.8689 ± 0.0243

0.8845 ± 0.0239

Dataset 2

0.9409 ± 0.0158

0.9432 ± 0.0136

0.9371 ± 0.0149

0.9409 ± 0.0113

0.9403 ± 0.0131

F1-score

Dataset 1

0.8707 ± 0.0316

0.8729 ± 0.0292

0.8826 ± 0.0227

0.8634 ± 0.0298

0.8795 ± 0.0282

Dataset 2

0.9363 ± 0.0243

0.9392 ± 0.0209

0.9336 ± 0.0225

0.9368 ± 0.0203

0.9359 ± 0.0219

AUC

Dataset 1

0.9493 ± 0.0160

0.9516 ± 0.0137

0.9558 ± 0.0138

0.9340 ± 0.0202

0.9474 ± 0.0164

Dataset 2

0.9817 ± 0.0083

0.9824 ± 0.0063

0.9800 ± 0.0066

0.9817 ± 0.0066

0.9828 ± 0.0064

AUPR

Dataset 1

0.9415 ± 0.0228

0.9468 ± 0.0219

0.9548 ± 0.0160

0.9316 ± 0.0219

0.9475 ± 0.0194

Dataset 2

0.9757 ± 0.0176

0.9774 ± 0.0146

0.9752 ± 0.0126

0.9754 ± 0.0202

0.9793 ± 0.0143

  1. The best performance is denoted as bold.
  2. The second-best performance is denoted as underline.