Table 12 Performance of LDA-GARB with \(k=64\) and different N on two datasets under \(CV_3\).
From: Predicting lncRNA and disease associations with graph autoencoder and noise robust gradient boosting
 | Dataset | \(k=64,\,N=1\) | \(k=64,\,N=2\) | \(k=64,\,N=3\) | \(k=64,\,N=4\) | \(k=64,\,N=5\) |
---|---|---|---|---|---|---|
Precision | Dataset 1 | 0.8743 ± 0.0284 | 0.8714 ± 0.0289 | 0.8704 ± 0.0269 | 0.8711 ± 0.0274 | 0.8835 ± 0.0260 |
Dataset 2 | 0.9348 ± 0.0130 | 0.9413 ± 0.0132 | 0.9336±0.0138 | 0.9327 ± 0.0125 | 0.9343 ± 0.0104 | |
Recall | Dataset 1 | 0.8724 ± 0.0305 | 0.8689 ± 0.0309 | 0.8781 ± 0.0346 | 0.8767 ± 0.0292 | 0.8806 ± 0.0343 |
Dataset 2 | 0.9373 ± 0.0137 | 0.9407 ± 0.0132 | 0.9335 ± 0.0134 | 0.9329 ± 0.0160 | 0.9365 ± 0.0147 | |
Accuracy | Dataset 1 | 0.8729 ± 0.0204 | 0.8698 ± 0.0208 | 0.8733 ± 0.0225 | 0.8731 ± 0.0223 | 0.8819 ± 0.0225 |
Dataset 2 | 0.9359 ± 0.0085 | 0.9409 ± 0.0090 | 0.9335 ± 0.0096 | 0.9327 ± 0.0094 | 0.9353 ± 0.0090 | |
F1-score | Dataset 1 | 0.8728 ± 0.0204 | 0.8696 ± 0.0208 | 0.8737 ± 0.0231 | 0.8735 ± 0.0221 | 0.8816 ± 0.0231 |
Dataset 2 | 0.9359 ± 0.0085 | 0.9409 ± 0.0090 | 0.9335 ± 0.0096 | 0.9327 ± 0.0095 | 0.9353 ± 0.0091 | |
AUC | Dataset 1 | 0.9459 ± 0.0109 | 0.9462 ± 0.0133 | 0.9479 ± 0.0134 | 0.9367 ± 0.0174 | 0.9409 ± 0.0174 |
Dataset 2 | 0.9790 ± 0.0051 | 0.9824 ± 0.0034 | 0.9801 ± 0.0046 | 0.9790 ± 0.0048 | 0.9798 ± 0.0050 | |
AUPR | Dataset 1 | 0.9418 ± 0.0136 | 0.9449 ± 0.0161 | 0.9432 ± 0.0192 | 0.9331 ± 0.0206 | 0.9371 ± 0.0214 |
Dataset 2 | 0.9744 ± 0.0100 | 0.9818 ± 0.0040 | 0.9787 ± 0.0061 | 0.9781 ± 0.0060 | 0.9790 ± 0.0065 |