Table 15 Performance of LDA-GARB with \(k=128\) and different N on two datasets under \(CV_3\).
From: Predicting lncRNA and disease associations with graph autoencoder and noise robust gradient boosting
 | Dataset | \(k=128,\,N=1\) | \(k=128,\,N=2\) | \(k=128,\,N=3\) | \(k=128,\,N=4\) | \(k=128,\,N=5\) |
---|---|---|---|---|---|---|
Precision | Dataset 1 | 0.8631 ± 0.0282 | 0.8631 ± 0.0234 | 0.8626 ± 0.0267 | 0.8584 ± 0.0291 | 0.8733 ± 0.0285 |
Dataset 2 | 0.9329 ± 0.0117 | 0.9367 ± 0.0127 | 0.9293 ± 0.0129 | 0.9310 ± 0.0130 | 0.9375 ± 0.0140 | |
Recall | Dataset 1 | 0.8694 ± 0.0326 | 0.8653 ± 0.0309 | 0.8583 ± 0.0336 | 0.8620 ± 0.0309 | 0.8750 ± 0.0328 |
Dataset 2 | 0.9329 ± 0.0169 | 0.9378 ± 0.0131 | 0.9283 ± 0.0135 | 0.9303 ± 0.0154 | 0.9357 ± 0.0147 | |
Accuracy | Dataset 1 | 0.8653 ± 0.0228 | 0.8636 ± 0.0190 | 0.8603 ± 0.0212 | 0.8593 ± 0.0213 | 0.8735 ± 0.0213 |
Dataset 2 | 0.9328 ± 0.0101 | 0.9371 ± 0.0091 | 0.9287 ± 0.0091 | 0.9306 ± 0.0093 | 0.9366 ± 0.0089 | |
F1-score | Dataset 1 | 0.8658 ± 0.0229 | 0.8637 ± 0.0196 | 0.8599 ± 0.0218 | 0.8596 ± 0.0211 | 0.8736 ± 0.0216 |
Dataset 2 | 0.9328 ± 0.0103 | 0.9372 ± 0.0091 | 0.9287 ± 0.0091 | 0.9306 ± 0.0094 | 0.9365 ± 0.0089 | |
AUC | Dataset 1 | 0.9356 ± 0.0159 | 0.9370 ± 0.0134 | 0.9345 ± 0.0140 | 0.9381 ± 0.0146 | 0.9317 ± 0.0152 |
Dataset 2 | 0.9812 ± 0.0049 | 0.9817 ± 0.0038 | 0.9789 ± 0.0042 | 0.9765 ± 0.0048 | 0.9790 ± 0.0047 | |
AUPR | Dataset 1 | 0.9258 ± 0.0222 | 0.9355 ± 0.0146 | 0.9300 ± 0.0168 | 0.9359 ± 0.0184 | 0.9333 ± 0.0172 |
Dataset 2 | 0.9812 ± 0.0056 | 0.9816 ± 0.0041 | 0.9796 ± 0.0045 | 0.9749 ± 0.0065 | 0.9799 ± 0.0050 |