Table 21 Performance when using different feature selection methods under \(CV_3\).

From: Predicting lncRNA and disease associations with graph autoencoder and noise robust gradient boosting

 

Dataset

Linear feature

Nonlinear feature

LDA-GARB

Precision

Dataset 1

0.8714 ± 0.0283

0.8361 ± 0.0271

0.8743 ± 0.0284

Dataset 2

0.9328 ± 0.0119

0.9082 ± 0.0177

0.9348 ± 0.0130

Recall

Dataset 1

0.8731 ± 0.0301

0.8555 ± 0.0286

0.8724 ± 0.0305

Dataset 2

0.9330 ± 0.0149

0.8994 ± 0.0180

0.9373 ± 0.0137

Accuracy

Dataset 1

0.8717 ± 0.0227

0.8433 ± 0.0197

0.8729 ± 0.0204

Dataset 2

0.9328 ± 0.0095

0.9041 ± 0.0121

0.9359 ± 0.0085

F1-score

Dataset 1

0.8719 ± 0.0227

0.8452 ± 0.0193

0.8728 ± 0.0204

Dataset 2

0.9328 ± 0.0097

0.9036 ± 0.0122

0.9359 ± 0.0085

AUC

Dataset 1

0.9315 ± 0.0159

0.9256 ± 0.0143

0.9459 ± 0.0109

Dataset 2

0.9782 ± 0.0049

0.9710 ± 0.0057

0.9790 ± 0.0051

AUPR

Dataset 1

0.9257 ± 0.0224

0.9186 ± 0.0204

0.9418 ± 0.0136

Dataset 2

0.9762 ± 0.0063

0.9712 ± 0.0061

0.9744 ± 0.0100

  1. The best performance is denoted as bold.