Table 3 Performance comparison under \(CV_1\).
From: Predicting lncRNA and disease associations with graph autoencoder and noise robust gradient boosting
 | Dataset | SDLDA | LDNFSGB | LDAenDL | LDA-VGHB | LDA-GARB |
---|---|---|---|---|---|---|
Precision | Dataset 1 | 0.8514 ± 0.0509 | 0.7004±0.0639 | 0.8764 ± 0.0493 | 0.8741 ± 0.0484 | 0.8636 ± 0.0450 |
Dataset 2 | 0.9399 ± 0.0154 | 0.8552 ± 0.0393 | 0.9391 ± 0.0290 | 0.9250 ± 0.0201 | 0.9344 ± 0.0147 | |
Recall | Dataset 1 | 0.6521 ± 0.0732 | 0.6092 ± 0.0790 | 0.7019 ± 0.0639 | 0.7180 ± 0.0713 | 0.7682 ± 0.0452 |
Dataset 2 | 0.8239 ± 0.0437 | 0.8021 ± 0.0498 | 0.8304 ± 0.0523 | 0.8602 ± 0.0395 | 0.8680 ± 0.0429 | |
Accuracy | Dataset 1 | 0.7799 ± 0.0341 | 0.6769 ± 0.0423 | 0.7996 ± 0.0312 | 0.8123 ± 0.0384 | 0.8282 ± 0.0338 |
Dataset 2 | 0.8857 ± 0.0283 | 0.8323 ± 0.0230 | 0.8879 ± 0.0289 | 0.8947 ± 0.0258 | 0.9036 ± 0.0281 | |
F1-score | Dataset 1 | 0.7365 ± 0.0563 | 0.6462 ± 0.0451 | 0.7768 ± 0.0399 | 0.7852 ± 0.0412 | 0.8117 ± 0.0312 |
Dataset 2 | 0.8775 ± 0.0278 | 0.8260 ± 0.0230 | 0.8804 ± 0.0334 | 0.8908 ± 0.0227 | 0.8995 ± 0.0266 | |
AUC | Dataset 1 | 0.8023 ± 0.0477 | 0.7346 ± 0.0465 | 0.8701 ± 0.0339 | 0.8814 ± 0.0425 | 0.9180 ± 0.0219 |
Dataset 2 | 0.9366 ± 0.0195 | 0.8839 ± 0.0270 | 0.9490 ± 0.0220 | 0.9541 ± 0.0200 | 0.9716 ± 0.0134 | |
AUPR | Dataset 1 | 0.8461 ± 0.0553 | 0.7239 ± 0.0626 | 0.8903 ± 0.0273 | 0.8949 ± 0.0322 | 0.9160 ± 0.0286 |
Dataset 2 | 0.9533 ± 0.0129 | 0.8832 ± 0.0307 | 0.9582 ± 0.0167 | 0.9617 ± 0.0131 | 0.9723 ± 0.0101 |