Table 4 Performance comparison under \(CV_2.\)
From: Predicting lncRNA and disease associations with graph autoencoder and noise robust gradient boosting
 | Dataset | SDLDA | LDNFSGB | LDAenDL | LDA-VGHB | LDA-GARB |
---|---|---|---|---|---|---|
Precision | Dataset 1 | 0.8854 ± 0.0377 | 0.7548 ± 0.0639 | 0.9135 ± 0.0317 | 0.8917 ± 0.0316 | 0.8724 ± 0.0365 |
Dataset 2 | 0.9232 ± 0.0331 | 0.8005 ± 0.0625 | 0.9528 ± 0.0225 | 0.9300 ± 0.0251 | 0.9321 ± 0.0277 | |
Recall | Dataset 1 | 0.7182 ± 0.0694 | 0.7309 ± 0.0646 | 0.6649 ± 0.0814 | 0.8415 ± 0.0449 | 0.8699 ± 0.0377 |
Dataset 2 | 0.8579 ± 0.0655 | 0.6936 ± 0.0794 | 0.4616 ± 0.1702 | 0.9190 ± 0.0397 | 0.9409 ± 0.0262 | |
Accuracy | Dataset 1 | 0.8187 ± 0.0282 | 0.7552 ± 0.0291 | 0.8005 ± 0.0381 | 0.8737 ± 0.0177 | 0.8744 ± 0.0255 |
Dataset 2 | 0.9043 ± 0.0174 | 0.7670 ± 0.0432 | 0.7196 ± 0.0821 | 0.9305 ± 0.0153 | 0.9409 ± 0.0158 | |
F1-score | Dataset 1 | 0.7917 ± 0.0519 | 0.7407 ± 0.0526 | 0.7664 ± 0.0593 | 0.8651 ± 0.0304 | 0.8707 ± 0.0316 |
Dataset 2 | 0.8886 ± 0.0475 | 0.7402 ± 0.0577 | 0.6032 ± 0.1612 | 0.9242 ± 0.0298 | 0.9363 ± 0.0243 | |
AUC | Dataset 1 | 0.8788 ± 0.0274 | 0.8329 ± 0.0273 | 0.8953 ± 0.0284 | 0.9406 ± 0.0154 | 0.9493 ± 0.0160 |
Dataset 2 | 0.9559 ± 0.0160 | 0.8603 ± 0.0363 | 0.9157 ± 0.0420 | 0.9741 ± 0.0106 | 0.9817 ± 0.0083 | |
AUPR | Dataset 1 | 0.8934 ± 0.0387 | 0.8163 ± 0.0537 | 0.9061 ± 0.0254 | 0.9429 ± 0.0233 | 0.9415 ± 0.0228 |
Dataset 2 | 0.9561 ± 0.0354 | 0.8292 ± 0.0680 | 0.9122 ± 0.0436 | 0.9728 ± 0.0204 | 0.9757 ± 0.0176 |