Table 5 Performance comparison under \(CV_3.\)
From: Predicting lncRNA and disease associations with graph autoencoder and noise robust gradient boosting
 | Dataset | SDLDA | LDNFSGB | LDAenDL | LDA-VGHB | LDA-GARB |
---|---|---|---|---|---|---|
Precision | Dataset 1 | 0.8782 ± 0.0306 | 0.7782 ± 0.0270 | 0.8637 ± 0.0312 | 0.8597 ± 0.0269 | 0.8743 ± 0.0284 |
Dataset 2 | 0.9178 ± 0.0154 | 0.8548 ± 0.0156 | 0.9351 ± 0.0157 | 0.9270 ± 0.0143 | 0.9348 ± 0.0130 | |
Recall | Dataset 1 | 0.7256 ± 0.0376 | 0.8169 ± 0.0408 | 0.8234 ± 0.0314 | 0.8388 ± 0.0332 | 0.8724 ± 0.0305 |
Dataset 2 | 0.8824 ± 0.0198 | 0.8818 ± 0.0204 | 0.8999 ± 0.0179 | 0.9088 ± 0.0169 | 0.9373 ± 0.0137 | |
Accuracy | Dataset 1 | 0.8120 ± 0.0216 | 0.7916 ± 0.0256 | 0.8462 ± 0.0229 | 0.8504 ± 0.0189 | 0.8729 ± 0.0204 |
Dataset 2 | 0.9015 ± 0.0114 | 0.8658 ± 0.0127 | 0.9186 ± 0.0126 | 0.9185 ± 0.0110 | 0.9359 ± 0.0085 | |
F1-score | Dataset 1 | 0.7939 ± 0.0260 | 0.7965 ± 0.0262 | 0.8426 ± 0.0232 | 0.8485 ± 0.0198 | 0.8728 ± 0.0204 |
Dataset 2 | 0.8996 ± 0.0119 | 0.8679 ± 0.0129 | 0.9171 ± 0.0130 | 0.9177 ± 0.0112 | 0.9359 ± 0.0085 | |
AUC | Dataset 1 | 0.8774 ± 0.0200 | 0.8578 ± 0.0234 | 0.9110 ± 0.0197 | 0.9271 ± 0.0144 | 0.9459 ± 0.0109 |
Dataset 2 | 0.9560 ± 0.0081 | 0.9346 ± 0.0074 | 0.9708 ± 0.0062 | 0.9722 ± 0.0056 | 0.9790 ± 0.0051 | |
AUPR | Dataset 1 | 0.8952 ± 0.0177 | 0.8489 ± 0.0289 | 0.9166 ± 0.0203 | 0.9364 ± 0.0157 | 0.9418 ± 0.0136 |
Dataset 2 | 0.9639 ± 0.0063 | 0.9273 ± 0.0098 | 0.9743 ± 0.0058 | 0.9761 ± 0.0051 | 0.9744 ± 0.0100 |