Table 6 Performance of different boosting algorithms under \(CV_1.\)
From: Predicting lncRNA and disease associations with graph autoencoder and noise robust gradient boosting
 | Dataset | XGBoost | AdaBoost | CatBoost | LightGBM | LDA-GARB |
---|---|---|---|---|---|---|
Precision | Dataset 1 | 0.8285 ± 0.0450 | 0.8014 ± 0.0467 | 0.8436 ± 0.0386 | 0.8359 ± 0.0537 | 0.8636\({\varvec{\pm }}\)0.0450 |
Dataset 2 | 0.9094 ± 0.0203 | 0.8945 ± 0.0250 | 0.9200 ± 0.0224 | 0.9007 ± 0.0240 | 0.9344\({\varvec{\pm }}\)0.0147 | |
Recall | Dataset 1 | 0.7627 ± 0.0615 | 0.7407 ± 0.0855 | 0.7772\({\varvec{\pm }}\)0.0541 | 0.7624 ± 0.0668 | 0.7682 ± 0.0452 |
Dataset 2 | 0.8739 ± 0.0305 | 0.8605 ± 0.0432 | 0.8761\({\varvec{\pm }}\)0.0427 | 0.8755 ± 0.0346 | 0.8680 ± 0.0429 | |
Accuracy | Dataset 1 | 0.8083 ± 0.0325 | 0.7946 ± 0.0312 | 0.8191 ± 0.0322 | 0.8190 ± 0.0268 | 0.8282\({\varvec{\pm }}\)0.0338 |
Dataset 2 | 0.8935 ± 0.0241 | 0.8795 ± 0.0263 | 0.8997 ± 0.0288 | 0.8895 ± 0.0293 | 0.9036\({\varvec{\pm }}\)0.0281 | |
F1-score | Dataset 1 | 0.7925 ± 0.0410 | 0.7681 ± 0.0626 | 0.8077 ± 0.0352 | 0.7964 ± 0.0550 | 0.8117\({\varvec{\pm }}\)0.0312 |
Dataset 2 | 0.8910 ± 0.0205 | 0.8764 ± 0.0248 | 0.8969 ± 0.0266 | 0.8876 ± 0.0251 | 0.8995\({\varvec{\pm }}\)0.0266 | |
AUC | Dataset 1 | 0.8938 ± 0.0263 | 0.8528 ± 0.0386 | 0.9099 ± 0.0214 | 0.8988 ± 0.0277 | 0.9180\({\varvec{\pm }}\)0.0219 |
Dataset 2 | 0.9629 ± 0.0125 | 0.9421 ± 0.0265 | 0.9660 ± 0.0133 | 0.9574 ± 0.0212 | 0.9716\({\varvec{\pm }}\)0.0134 | |
AUPR | Dataset 1 | 0.8799 ± 0.0421 | 0.8558 ± 0.0591 | 0.9053 ± 0.0275 | 0.8939 ± 0.0582 | 0.9160\({\varvec{\pm }}\)0.0286 |
Dataset 2 | 0.9660 ± 0.0097 | 0.9495 ± 0.0189 | 0.9674 ± 0.0111 | 0.9628 ± 0.0135 | 0.9723\({\varvec{\pm }}\)0.0101 |