Table 7 Performance of different boosting algorithms under \(CV_2\).

From: Predicting lncRNA and disease associations with graph autoencoder and noise robust gradient boosting

 

Dataset

XGBoost

AdaBoost

CatBoost

LightGBM

LDA-GARB

Precision

Dataset 1

0.8609 ± 0.0409

0.8172 ± 0.0457

0.8621 ± 0.0391

0.8565 ± 0.0393

0.8724\({\varvec{\pm }}\)0.0365

Dataset 2

0.8966 ± 0.0316

0.8805 ± 0.0367

0.9126 ± 0.0271

0.9052 ± 0.0341

0.9321\({\varvec{\pm }}\)0.0277

Recall

Dataset 1

0.8230 ± 0.0422

0.8271 ± 0.0581

0.8342 ± 0.0444

0.8358 ± 0.0503

0.8699\({\varvec{\pm }}\)0.0377

Dataset 2

0.9026 ± 0.0345

0.8569 ± 0.0597

0.9126 ± 0.0271

0.9063 ± 0.0354

0.9409\({\varvec{\pm }}\)0.0262

Accuracy

Dataset 1

0.8486 ± 0.0239

0.8283 ± 0.0245

0.8533 ± 0.0251

0.8515 ± 0.0252

0.8744\({\varvec{\pm }}\)0.0255

Dataset 2

0.9055 ± 0.0161

0.8815 ± 0.0161

0.9177 ± 0.0116

0.9122 ± 0.0143

0.9409\({\varvec{\pm }}\)0.0158

F1-score

Dataset 1

0.8406 ± 0.0315

0.8214 ± 0.0468

0.8473 ± 0.0350

0.8449 ± 0.0345

0.8707\({\varvec{\pm }}\)0.0316

Dataset 2

0.8994 ± 0.0306

0.8681 ± 0.0461

0.9094 ± 0.0305

0.9056 ± 0.0326

0.9363\({\varvec{\pm }}\)0.0243

AUC

Dataset 1

0.9291 ± 0.0168

0.8926 ± 0.0246

0.9424 ± 0.0162

0.9325 ± 0.0171

0.9493\({\varvec{\pm }}\)0.0160

Dataset 2

0.9666 ± 0.0098

0.9521 ± 0.0116

0.9731 ± 0.0076

0.9702 ± 0.0093

0.9817\({\varvec{\pm }}\)0.0083

AUPR

Dataset 1

0.9258 ± 0.0274

0.8859 ± 0.0477

0.9420\({\varvec{\pm }}\)0.0222

0.9242 ± 0.0282

0.9415 ± 0.0228

Dataset 2

0.9603 ± 0.0233

0.9463 ± 0.0296

0.9687 ± 0.0198

0.9649 ± 0.0310

0.9757\({\varvec{\pm }}\)0.0176

  1. The best performance is denoted as bold.