Table 8 Performance of different boosting algorithms under \(CV_3.\)

From: Predicting lncRNA and disease associations with graph autoencoder and noise robust gradient boosting

 

Dataset

XGBoost

AdaBoost

CatBoost

LightGBM

LDA-GARB

Precision

Dataset 1

0.8624 ± 0.0222

0.8085 ± 0.0251

0.8737 ± 0.0285

0.8531 ± 0.0267

0.8743\({\varvec{\pm }}\)0.0284

Dataset 2

0.8983 ± 0.0156

0.9041 ± 0.0155

0.9121 ± 0.0173

0.9070 ± 0.0130

0.9348\({\varvec{\pm }}\)0.0130

Recall

Dataset 1

0.8450 ± 0.0334

0.8147 ± 0.0338

0.8590 ± 0.0320

0.8245 ± 0.0303

0.8724\({\varvec{\pm }}\)0.0305

Dataset 2

0.9052 ± 0.0144

0.8596 ± 0.0193

0.9073 ± 0.0144

0.9115 ± 0.0148

0.9373\({\varvec{\pm }}\)0.0137

Accuracy

Dataset 1

0.8547 ± 0.0178

0.8103 ± 0.0197

0.8668 ± 0.0189

0.8408 ± 0.0201

0.8729\({\varvec{\pm }}\)0.0204

Dataset 2

0.9012 ± 0.0118

0.8841 ± 0.0129

0.9097 ± 0.0104

0.9089 ± 0.0089

0.9359\({\varvec{\pm }}\)0.0085

F1-score

Dataset 1

0.8531 ± 0.0192

0.8110 ± 0.0207

0.8657 ± 0.0192

0.8381 ± 0.0208

0.8728\({\varvec{\pm }}\)0.0204

Dataset 2

0.9016 ± 0.0117

0.8811 ± 0.0135

0.9096 ± 0.0102

0.9091 ± 0.0090

0.9359\({\varvec{\pm }}\)0.0085

AUC

Dataset 1

0.9260 ± 0.0131

0.8788 ± 0.0168

0.9427 ± 0.0109

0.9163 ± 0.0141

0.9459\({\varvec{\pm }}\)0.0109

Dataset 2

0.9679 ± 0.0050

0.9580 ± 0.0065

0.9723 ± 0.0045

0.9689 ± 0.0053

0.9790\({\varvec{\pm }}\)0.0051

AUPR

Dataset 1

0.9240 ± 0.0145

0.8750 ± 0.0194

0.9411 ± 0.0108

0.9135 ± 0.0174

0.9418\({\varvec{\pm }}\)0.0136

Dataset 2

0.9690 ± 0.0048

0.9601 ± 0.0065

0.9732 ± 0.0046

0.9696 ± 0.0061

0.9744\({\varvec{\pm }}\)0.0100

  1. The best performance is denoted as bold.