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With the increasing attention to shale oil and gas in the field of oil and gas exploration and 
development, accurate prediction of TOC content has become the key to evaluating shale gas sweet 
spots. This paper studies a method for predicting shale TOC content using a BP neural network 
optimized by an improved cuckoo search algorithm. First, for the Longmaxi Formation shale, through 
logging sensitivity analysis, seven logging parameters sensitive to TOC content were determined: 
DEN, AC, RT, U, K, GR, and CNL. Using these parameters, a CSBP model was established and compared 
with the traditional BP neural network, multiple linear fitting method, and extended ∆lgR method. The 
results show that the CSBP model has higher prediction accuracy and generalization ability, with the 
mean absolute error and mean absolute percentage error being 0.38 and 15.00% respectively, which 
are significantly better than other methods. Further, the CSBP model was applied to predict the TOC 
content of Well W16 in the study area and verified by comparing with the measured TOC values. The 
correlation between the predicted and measured values is 0.89, and the change trends are consistent, 
confirming the applicability of the CSBP model. Finally, combined with the seismic waveform-guided 
simulation inversion technology, the planar and spatial distribution of TOC in the study area was 
predicted. The correlations between the predicted and measured values of four wells in the study 
area are all greater than 0.89. This method has high accuracy in the three-dimensional TOC content 
prediction of shale reservoirs and provides technical support for the evaluation of shale gas sweet spots 
in the work area.

In recent years, the escalating demands of resources and energy in the modern economy and society have 
underscored the significance of shale oil and gas as pivotal energy sources and potential substitutes for 
conventional oil and gas reserves. Consequently, shale oil and gas exploration has emerged as a focal point in the 
energy sector1. The total organic carbon (TOC) content serves as a critical geological parameter for assessing the 
viability of shale oil and gas reservoirs2,3. Hence, investigating the TOC content distribution holds paramount 
importance in evaluating shale gas reservoirs and devising strategies for horizontal well placement4,5.

Currently, the TOC logging prediction methods mainly include geochemical experimental methods, 
conventional logging simulation methods, mathematical statistical methods, and empirical formula methods6. 
Among them: ① Although the geochemical experimental method can accurately obtain TOC values, the obtained 
data are discrete, making it difficult to characterize the spatial distribution of TOC, and the cost is high7,8; ② 
The conventional logging simulation method mainly uses the linear relationship fitted by TOC and logging 
curves such as acoustic time difference (AC), resistivity (RT), natural gamma (GR), and density (DEN) to predict 
TOC9,10; ③ The mathematical statistical method mainly uses mathematical statistical methods to analyze and 
process logging data, so as to establish a statistical model and then realize the prediction of TOC11,12; ④ The 
empirical formula method mainly realizes the prediction of TOC based on empirical formulas. For example, an 
empirical formula for predicting TOC is established based on the relationship between density and TOC5; the 
∆lgR method13 and the improved ∆lgR method14 established based on acoustic time difference and resistivity 
are used to predict TOC.

In general, geochemical experimental methods, despite their high measurement accuracy, have difficulty in 
evaluating TOC across the entire work area. Conventional well-logging model methods are only applicable to 
TOC prediction at well locations. Mathematical statistical methods are suitable for strata with simple structures 
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and shallow burial depths, and it is challenging to predict TOC in strata with complex structures and deep burial 
depths. Empirical formula methods are restricted by specific regions and conditions.

Seismic methods for predicting TOC: Predict TOC by establishing linear relationships between TOC content 
and parameters such as density, P-wave impedance, and Poisson’s ratio5,15,16; Predict TOC using the pre-stack 
angle-divided seismic inversion method based on facies constraints17.

However, the above seismic methods mainly utilize pre-stack data, which are difficult to collect. Moreover, 
the accuracy of pre-stack data is subject to issues such as the incident angle and the requirement that the 
vertical variation of elastic parameters should tend to be stable18. In post-stack seismic data processing, seismic 
waveform-guided simulation is based on the principle of facies constraint, making full use of well logging and 
seismic data to improve the accuracy of inversion19,20. This method can not only invert conventional parameters 
such as the wave impedance of the stratum, but also simulate various non-impedance parameters such as natural 
gamma and porosity, and has been widely used in thin reservoir prediction21.

To address the issues such as the lack of inter-well sample data and thin reservoir thickness in shale reservoirs, 
this paper proposes a TOC quantitative prediction method based on the BP neural network optimized by 
the Cuckoo Search (CS) algorithm. First, combined with the actual geological conditions of the study area, a 
correlation analysis is conducted between the well-logging data and the core TOC data. Then, the well-logging 
method for TOC prediction is used to predict the TOC of the Longmaxi Formation shale in the study area, so 
as to determine the method with the optimal prediction effect. Finally, an exploration is carried out to realize 
the prediction of the spatial distribution of the TOC of the Longmaxi Formation shale in the study area by 
combining the optimal well-logging method with the seismic waveform-guided simulation method, which can 
provide assistance for the exploration and development of shale oil and gas in the Longmaxi Formation of the 
study area.

Results

	(1)	 To address issues such as the lack of inter - well sample data and relatively thin reservoir thickness in shale 
reservoirs, this paper proposes a TOC quantitative prediction method based on a BP neural network opti-
mized by the cuckoo search (CS) algorithm.

	(2)	 Through sensitivity analysis of various logging parameters of the Longmaxi Formation shale, seven pa-
rameters, namely DEN, AC, RT, U, K, GR, and CNL, were determined. Then, high-resolution inversion of 
sensitive parameters in the study area was carried out in combination with waveform indicator simulation. 
Finally, with the inverted parameter data as input, three-dimensional high-precision quantitative prediction 
of shale TOC was achieved.

	(3)	 This method is applicable to areas where there is a good response between well - logging parameters and 
TOC. Further research is still required for regions with complex and chaotic underground lithological and 
electrical characteristics.

Discussion

	(1)	 In this study, the prediction accuracy of the CSBP model is higher than that of the BP model, the multiple 
linear fitting method, and the extended ΔlgR method. Specifically, the mean absolute error (MAE) and 
mean absolute percentage error (MAPE) of the CSBP model are 0.38 and 15.00% respectively, which are 
significantly lower than those of other methods. This is because traditional TOC prediction methods, such 
as the multiple linear fitting method and the extended ΔlgR method, rely on simplified geological models 
and limited datasets, which restrict their prediction accuracy and generalization ability. In contrast, the 
CSBP model utilizes more geological parameters and combines advanced optimization algorithms, thereby 
improving the accuracy and reliability of prediction.

	(2)	 The CSBP model was used to predict Well W16 in the work area. The predicted TOC values showed a good 
correlation with the measured values, with a correlation coefficient of 0.89. Moreover, the MAE and MAPE 
were 0.47 and 37.57% respectively, indicating relatively small prediction errors.

	(3)	 Although the CSBP model performed excellently in this study, there is still room for further improvement 
and expansion. First, the prediction ability of the model is limited by the quality and integrity of the input 
data. For example, when predicting the TOC values across the entire work area, although there is a good 
correlation between the predicted TOC values and the measured TOC values for Well W16, the predicted 
MAE and MAPE reached 0.67 and 106.3% respectively. Future research can improve the model’s prediction 
ability by integrating more geological parameters and using more complex network structures. Second, the 
applicability of the CSBP model in different types of shale formations needs further verification.

Methodology
Sensitivity analysis of Toc logging in the study
The first sub-member of the first member of the Longmaxi Formation (S1L1) in the study area is close to the 
bottom of the Longmaxi Formation. It is currently the main target production interval for shale gas and also a 
high-quality shale interval. The measured minimum TOC value of the core is 0.08%, the maximum is 5.64%, and 
the average is 1.65% (Table 1), indicating that the TOC varies greatly vertically and the heterogeneity is strong.

In this study, various well-logging data of the first member of the Longmaxi Formation (S1L1) were collected, 
including acoustic travel time (AC), neutron porosity (CNL), compensated density (DEN), natural gamma ray 
(GR), potassium (K), photoelectric absorption cross-section index (PE), resistivity (RT), uranium (U), etc. In the 
following, the TOC logging sensitivity analysis of the S1L1 section will be carried out by combining the response 
mechanism and correlation analysis of logging parameters.
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Analysis of the response mechanism between TOC content and logging parameters
The high organic matter content in shale leads to an increase in porosity, a decrease in density, and a reduction 
in velocity22,23. Therefore, AC is directly proportional to the measured TOC content (Fig. 1A); DEN is inversely 
proportional to the measured TOC (Fig. 1C).

Neutron porosity tends to exhibit high values due to the hydrogen index. In high-TOC shales, organic matter 
may replace clay minerals with relatively high hydrogen content, resulting in a decrease in the overall hydrogen 
content of the formation. Consequently, the compensated neutron logging value decreases, showing a negative 
correlation. Additionally, high-TOC shales are often associated with pyrite (FeS2). Its high density and neutron 
absorption characteristics may slightly suppress the neutron logging response. Therefore, the linear relationship 
between CNL and measured TOC is inverse (Fig. 1B).

When TOC is enriched, it can adsorb a large number of uranium ions. Source rocks rich in organic matter 
often have relatively high uranium contents and higher natural gamma values24. Therefore, GR and U are 
positively correlated with the measured TOC (Fig. 1D,G).

In a quiet and anoxic sedimentary environment of water bodies, it is conducive to the enrichment of organic 
carbon, but not conducive to the precipitation and preservation of potassium-rich minerals. Therefore, K is 
inversely proportional to the measured TOC (Fig. 1E).

The conductivity of the kerogen matrix is extremely low, far lower than that of formation water or the bound 
water in clay minerals. In high-TOC formations, organic matter replaces some conductive minerals (such as 
clay) or occupies pore spaces, which reduces the overall conductivity of the formation and leads to an increase 
in resistivity. Therefore, RT is directly proportional to the measured TOC (Fig. 1F).

Correlation analysis between TOC content and logging parameters
The correlation coefficient (r) is used to measure the sensitivity of TOC and logging parameters, which is 
calculated as Eq. (1). The coefficient of determination, R2, is used to measure the degree of fit of the two types of 
data. The positive and negative values of r indicate the correlation between the parameters, with the size of the 
absolute value of r showing the degree of correlation. A higher absolute value of r signifies a stronger correlation 
between the parameters, while a larger value of R2 indicates a better fitting effect.

As can be seen from Table 2, among the selected logging parameters, seven logging parameters have a good 
correlation with the measured TOC. The absolute values of the correlation coefficients in descending order are 
DEN, AC, RT, U, K, GR, and CNL, all of which are above 0.45. Among them, DEN has the largest absolute value 
of the correlation coefficient, which is 0.83, while K and GR have the smallest, which is 0.46. According to R2, it 
can also be seen that DEN has the best fitting effect, while K has a relatively poor fitting effect.

	

r(inxq, d) =

n∑
i=1

(inxq,i − inxq)(di − d)
√

n∑
i=1

(inxq,i − inxq)2 n∑
i=1

(di − d)
2 � (1)

 where inxq input logging parameters; d measured TOC; inxq, i ith value of input logging parameters;
−

inxq average 

value of the input logging parameter; di i th value of the measured TOC; 
−
d average value of the measured TOC.

Based on the above analysis, it is finally confirmed that seven logging parameters, namely DEN, AC, RT, U, 
K, GR, and CNL, are sensitive to TOC. These seven logging parameters are selected for subsequent research.

Analysis of prediction methods for shale TOC content
Conventional logging simulation method
After pre-processing the 195 sets of measured TOC data of cores collected in the work area and their 
corresponding DEN, AC, RT, U, K, GR, and CNL data, these 195 sets of data were divided into two categories: 
one was test data, and the other was training data. Among them, the test data accounted for 10% (20 sets of data), 
and the training data accounted for 90% (175 sets of data). The following formula of the multiple linear fitting 
model was obtained:

Parameter name Notation Unit Minimum value Maximum values Average value

Acoustic time difference AC us·ft − 1 74.20 97.46 83.05

Neutron porosity CNL % 9.46 22.13 16.01

Compensation density DEN g cm − 3 2.42 2.75 2.62

Natural gamma GR API 91.14 211.40 135.05

Potassium K % 1.05 5.48 3.26

Resistivity RT Ω·m 5.83 31.84 14.08

Uranium U % 1.32 18.29 5.09

Measured TOC % 0.08 5.64 1.65

Table 1.  Basic data statistics of logging variables and core measured Toc.
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Fig. 1.  Rendezvous of measured TOC with logging variables. (A) Rendezvous diagram of AC with TOC, 
(B) Rendezvous diagram of CNL with TOC, (C) Intersection plot of DEN with TOC, (D) Intersection plot 
of GR with TOC, (E) Rendezvous diagram of K with TOC, (F) Rendezvous diagram of RT with TOC, (G) 
Rendezvous diagram of U with TOC.
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TOCDY = 0.0585 × AC − 0.153 × CNL − 6.2209 × DEN + 0.0032 × GR
+ 0.083 × K + 0.0528 × RT + 0.0978 × U + 13.5948 � (2)

In the formula: TOCDY represents the TOC predicted by the multiple linear fitting method.

Empirical formula method
The traditional ∆lgR method uses the overlapping acoustic travel time (AC) and resistivity (RT) curves as the 
baseline, and the difference between the AC and RT curves is the ∆lgR value25.

The formula for predicting TOC using the traditional ∆lgR method is as follows:

	
∆lgR = lg(

RT
RTb

) + 00.02 × (AC − ACb)� (3)

	 T OC = (∆lgR) × 102.297−0.1688×LOM � (4)

 where TOC is the TOC predicted by the conventional ∆lgR method; LOM is the cheese root maturity; ACb is 
the baseline AC curve value; RTb is the baseline AC curve value.

Since the traditional ∆lgR method requires maturity data and is based on medium to shallow, normally 
compacted strata, it is not suitable for the Longmaxi Formation shale in this work area, which lacks maturity 
parameters and is deeply buried.

According to previous studies, GR is less affected by compaction and is more sensitive to deep source rocks26. 
Therefore, GR can be considered to replace the maturity parameter. Based on this, the calculation formula of the 
extended ∆lgR method can be established:

	 ∆lgRTOC = (a × GR + b) lgR + c� (5)

 where ∆lgRTOC is the TOC predicted by expanding the ∆lgR method, and a, b, c are constants.
Expanded ∆lgR method model building again followed the same data division as in the multivariate linear 

fitting model building. The selected DEN, U, GR, AC, RT, and K logging parameters were used to build the 
expanded ∆lgR method model, and the following model equations were obtained:

	 ∆lgRTOC = (0.0149 × GR + 3.4239) lgR − 4.4746� (6)

BP neural network improved by CS algorithm
Currently, the emerging artificial intelligence methods are data-driven, and they search for the intrinsic mapping 
relationships among complex data through machine learning, which is highly suitable for handling such multi-
dimensional mapping problems. Among numerous artificial intelligence methods, the BP neural network 
features a simple structure, strong anti-noise ability, and good generalization ability, making it well-suited for 
fitting various complex mappings. However, the BP neural network has the problem of easily converging to local 
minima instead of obtaining the global optimum27. To address this issue, the cuckoo search (CS) algorithm is 
employed to optimize the BP neural network.

BP neural networks: In 1986, a research team led by Rumelhart, McClelland et al. proposed a multi-layer feed-
forward network model called the BP neural network, which learns through the back-propagation algorithm. 
The learning process of this network mainly consists of two stages: forward propagation and back-propagation. 
Structurally, the BP neural network is composed of an input layer, a hidden layer, and an output layer. In the 
forward propagation stage, the input data starts to be transmitted from the input layer. If there is a deviation 
between the actual output of the output layer and the expected output, the back-propagation process is initiated, 
and the connection weights of each layer are adjusted according to the error28. Thanks to this back-propagation 
ability, it is very easy to find the mapping relationship between the input and the output. The method to reduce 
the network output error is to adjust the weights and thresholds using the gradient descent method29,30.

Figure 2 shows the structure of a BP neural network. Suppose the training data set V = (X1, X2, ..., Xm)T 
contains m parameters. That is, the training set contains m logging parameters, with each parameter containing 
q elements. In other words, Xm =(x1, x2 ,... ,xq).The number of nodes in the input layer is m, and the number of 
nodes in the hidden layer is h. The hidden layer input vector is Z = (z1 ,z2 ,... ,zh)T ; the number of nodes in the 
output layer is p, then the output layer vector is Y=(y1 ,y2 ,... ,yq)T, i.e., the predicted value of BP neural network 

Typology r R2

Measured TOC/AC 0.67 0.46

Measured TOC/CNL − 0.46 0.21

Measured TOC/DEN − 0.83 0.69

Measured TOC/GR 0.46 0.22

Measured TOC/K − 0.50 0.25

Measured TOC/RT 0.62 0.39

Measured TOC/U 0.62 0.39

Table 2.  Table of correlation coefficients between logging variables and measured Toc.
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about TOC TOC=(y1 ,y2 ,... ,yq)T ; the desired output vector is D=(d1 ,d2 ,... ,dq)T, i.e., the measured TOC. The 
weight matrix between the input layer and the hidden layer is Wmh =(w1h ,w2h ,... ,wmh)T, and the weights between 
the hidden layer to the output layer Whp =(w1p ,w2p ,… ,whp)T ; the threshold of the ith node of the hidden layer is 
θi, the threshold of the jth node of the output layer is θj, the activation function of the hidden layer is ξ(net), and 
the activation function of the output layer is φ(net), ξ (net) = ϕ (net) = 1

1+exp−net .
The input layer signals input to the ith node of the hidden layer as:

	
neti =

m∑
k=1

wkixki + θi, i = 1, 2, . . . , h� (7)

	 zi = ξ(neti)� (8)

 where xki is the input layer composition matrix element.
The jth node of the hidden layer sends input to the output layer as follows:

	
netj =

h∑
i=1

wijzi + θj , j = 1, 2, . . . , p� (9)

	 yq = ϕ(netj), j = 1, 2, . . . , p� (10)

Equation (10) is the formula for calculating TOC using a BP neural network.
The error formula for sample q is as follows:

	
E = 1

2

q∑
k=1

(dq − yq)2� (11)

The weights from the input layer to the hidden layer and from the hidden layer to the output layer are adjusted 
by the gradient descent method to reduce the total error. The formulas for adjusting the weights and thresholds 
between the input layer to the hidden layer are respectively (in the formula η ∈ (0, 1) is the learning rate):

Fig. 2.  Structural diagram of BP neural network.
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∆wmh = −η

∂E

∂yq

∂yq

∂zi

∂zi

∂neti

∂neti

∂wmh
� (12)

	
∆θi = −η

∂E

∂yq

∂yq

∂zi

∂zi

∂neti

∂neti

∂θi
� (13)

The weights and threshold adjustment formulas between the hidden layer and the output layer are as follows:

	
∆whp = −η

∂E

∂yq

∂yq

∂netj

∂netj

∂whp
� (14)

	
∆θj = −η

∂E

∂yq

∂yq

∂netj

∂netj

∂θj
� (15)

The final adjustment formulas for the weights and thresholds of the layers are obtained as:

	
∆wmh = −η

m∑
k=1

h∑
i=1

(dq − yq)ϕ′(netj)whpξ′(neti)xkq � (16)

	
∆θi = −η

m∑
k=1

h∑
i=1

(dq − yq)ϕ′(netj)whpξ′(neti)� (17)

	
∆whp = −η

h∑
i=1

(dq − yq)ϕ′(netj)zi� (18)

	
∆θj = −η

h∑
i=1

(dq − yq)ϕ′(netj)� (19)

Cuckoo (CS) Algorithm: The cuckoo search algorithm is a novel heuristic optimization algorithm proposed 
based on the breeding characteristics of cuckoos and the flight mode of fruit flies. This method has significant 
advantages over the particle swarm optimization and genetic algorithms, mainly manifested in aspects such as 
stronger global search ability, faster convergence speed, fewer parameter requirements, and better generality 
and robustness28. Its concept originates from the Lévy flight behavior of birds and the parasitic behavior of 
cuckoos. The well-known scholar Yang from the University of Cambridge in the UK proposed the cuckoo search 
algorithm based on the following three assumptions: (1) Each cuckoo lays only one egg at a time and randomly 
selects a nest to lay the egg; (2) High-quality eggs in the best nests will be retained and hatch the next generation; 
(3) The probability that the host discovers a foreign egg is Pa. Once discovered, the host will directly abandon 
the egg or the nest. Under the above assumptions, the position update formula of the cuckoo search algorithm 
is proposed:

	 Xt+1
ij = Xt

ij + α × L(λ)� (20)

 where Xt
i+1j and Xt

ij denote the i (i = 1,2 ,… ,m) nest at generation t and t + 1 in j (j = 1,2,… ,h)-dimensional 
positions; L (λ ) is the jump position of the Lévy ( λ )  flight random search jump path. α  is the step size control 
quantity, this time set α  = 0.01.

Yang et al. simplified the L (λ ) distribution function was simplified and obtained by Fourier transform:

	 L(λ) ∼ u = t−λ, 1 < λ < 3� (21)

To facilitate programming needs, in 1992 Yang used Mantegna’s proposed simulation of the Lévy ( λ )  flight 
jump path formula:

	
s = µ

|ν| 1
λ

� (22)

 where λ  = 1.5, µ  and ν  obeys the normal distribution:

	

{
µ ∼ N(0, σ2

µ)
ν ∼ N(0, σ2

ν) � (23)

	





σµ =
[

Γ(1+λ) sin( πλ
2 )

Γ( 1+λ
2 )λ

λ−1
2

]

σν = 1

1
λ

� (24)

Thus Eq. (20) reduces to:
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	 Xt+1
ij = Xt

ij + α × s� (25)

The CS algorithm enhances the performance of the BP neural network. The primary objective of integrating the 
CS algorithm with the BP neural network is to optimize the initial parameter settings of the gradient descent 
method, specifically the adjustment of the initial weights and bias values of the BP neural network. This integration 
is referred to as the CSBP neural network algorithm. The CSBP neural network algorithm is optimized at the 
end of the cuckoo after undergoing multiple iterations. The results obtained from the best search are then passed 
on to the BP neural network, resulting in a more accurate outcome with faster convergence and fewer errors.At 
the same time, it overcomes the dilemma of the traditional BP neural network that is trapped in local minima.

The flow of the whole algorithm is shown in Fig. 3. The basic idea is:
Firstly, the necessary pre-processing of the data (outliers removal, data normalisation) is carried out, and 

then the pre-processed data is used as input data to the CSBP neural network algorithm.
Randomly generate m bird nests with a given spatial extent. Each bird’s nest represents a set of weights 

and thresholds of the neural network to be optimised, the parameters of the algorithm are set, and then the 

Fig. 3.  Flowchart of CSBP neural network algorithm.
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optimisation training is performed and calculated according to the fitness function to find the current optimal 
bird’s nest location.

Retain the optimal bird nest position of the previous generation and update the position of n bird nests 
according to the Lévy flight pattern. Calculate the fitness value of the updated contemporary nests and compare 
it with the fitness value of the previous generation. If the updated position is better, then it is retained; otherwise, 
the position of the previous generation nests is kept.

To update the positions of all bird nests, generate random numbers k from the range (0,1) and set Pa = 0.25. 
If k is greater than Pa, the position of the original bird’s nest is retained; if k is less than Pa, update the position 
of the bird’s nest according to Eq. (25). At the same time, it is compared with the position of the original bird’s 
nest; if it is better, it is retained. Otherwise, the original bird’s nest is still used, and the updated m bird’s nest 
positions are obtained.

Finally, the optimal bird’s nest from many iterations is used as the optimal weights and thresholds for the BP 
neural network. The preprocessed data is inputted as the algorithm’s input data, and the prediction results are 
obtained in the output layer.

Normalization of data and development of CSBP prediction model: Logging data scales are usually different. 
Therefore, it is necessary to normalize the input parameters before algorithm training. Normalize the logging 
parameters DEN, AC, RT, U, K, GR, and CNL selected in this study. The normalization formula is:

	
x∗

i =
xi − xmin

xmax − xmin
� (26)

 where xi
* ith normalised data, xi ith original data, xmax maximum value in the data, xmin minimum value in the 

data.
Establishment of the CSBP prediction model: The relevant program for the CSBP was written using MATLAB 

software. Then, the selected logging parameters DEN, AC, RT, U, K, GR, and CNL were normalized and input 
into the program to train the CSBP neural network algorithm. During the algorithm training process, certain 
evaluation indicators are required to assess the reliability of the model and the accuracy of the prediction results. 
Among them, the mean absolute error (MAE) can avoid the problem of error cancellation, thus accurately 
reflecting the actual prediction error. The mean absolute percentage error (MAPE) reflects the relative size of the 
error, and a smaller value indicates higher prediction accuracy31. Therefore, in this paper, MAE and MAPE were 
used as the evaluation indicators for the CSBP prediction model, and their calculation formulas are as follows:

	
MAE =

N∑
i=1

|yi − di|

N

� (27)

	
MAP E =

N∑
i=1

|yi−di|
di

N
× 100%

� (28)

 where N is the number of samples.
Establishment of the CSBP prediction model: Similarly, using the data division method adopted in the 

establishment of the multiple linear fitting model, the selected logging parameters of DEN, AC, RT, U, K, GR, 
and CNL were used to train the CSBP prediction model.

The prediction results of different methods are shown in Fig. 4: The results of the BP model, CSBP model, 
and multiple linear fitting method are basically consistent with the measured TOC, and their changing trends 
are quite similar.

The MAE and MAPE of the CSBP prediction results are 0.38 and 15.00% respectively, with the smallest 
prediction error. Its correlation with the measured TOC is also the highest, reaching 0.85. The MAE and MAPE 
of the extended ∆lgR method prediction results are 0.62 and 24.83% respectively, with the largest prediction 
error. Its correlation with the measured TOC is also the poorest, at 0.48 (Table 3).

By comparing the results of TOC prediction using different methods, it can be known that the prediction 
effect follows the order: CSBP model > BP model > multiple linear fitting method > extended ∆lgR method. 
Therefore, it can be confirmed that the CSBP neural network is the optimal method, and the CSBP prediction 
model established by it will be used in the subsequent research.

Application
Practical application of the CSBP prediction model
Based on the previous research, the accuracy of the CSBP prediction model has been verified. To further validate 
the applicability of this method, it is used to predict the TOC of other wells. The TOC content of the reservoir 
section (S1L1) of Well W16 in the study area was predicted and compared with the TOC measured from the 
core. After pre - processing the seven logging variables (DEN, AC, RT, U, K, GR, and CNL) of Well W16, such 
as removing outliers and normalizing, they were input into the CSBP prediction model. Figure 5 shows the 
prediction results of the TOC content of Well W16, where TOCCSBP represents the predicted value by CSBP.

The prediction results of Well W16 show that: the predicted CSBP values of Well W16 have a good correlation 
with the measured TOC values, with a correlation coefficient of 0.89 (Fig. 5). The MAE and MAPE are 0.47 and 
37.57% respectively. The variation trend of the predicted CSBP values is the same as that of the measured TOC 
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values (Fig. 6), indicating that the overall prediction effect of the predicted CSBP values is good, and the CSBP 
prediction model has good applicability.

The CSBP prediction results show that the thickness of the S1L1 layer in Well W16 is 34.75 m, with an average 
TOC of 1.77%. The prediction results for each sub-layer are as follows: The thickness of the S1L1

2 layer is 19.5 m, 
with an average TOC of 0.19%; the thickness of the S1L1

14c layer is 6 m, with an average TOC of 1.03%; the 
thickness of the S1L1

14b layer is 17 m, with an average TOC of 2.62%; the thickness of the S1L1
14a layer is 4.2 m, 

with an average TOC of 3.28%; the thickness of the S1L1
13 layer is 5.4 m, with an average TOC of 3.07%; the 

thickness of the S1L1
12 layer is 4 m, with an average TOC of 3.14%; the thickness of the S1L1

11 layer is 2.4 m, with 
an average TOC of 2.93%. According to the reservoir classification standard based on TOC content in the work 
area: shales with TOC content ≥ 3% are Class I high-quality shales; shales with 2% ≤ TOC content < 3% are Class 
II high-quality shales; shales with TOC content < 2% are Class III ordinary shales. It can be seen that the S1L1

2 
and S1L1

14c layers in Well W16 are Class III ordinary shales; the S1L1
14b and S1L1

11 layers are Class II high-quality 
shales; the S1L1

14a, S1L1
13 and S1L1

12 layers are Class I high - quality shales.

Forecasting methodology r MAE MAPE

Multivariate Fit 0.79 0.51 21.07%

∆lgR Extended 0.48 0.62 24.83%

BP Model 0.83 0.49 20.10%

CSBP Model 0.85 0.38 15.00%

Table 3.  Statistical table of prediction errors of different methods.

 

Fig. 4.  Comparison of prediction results of different methods.
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Application of CSBP prediction model and seismic waveform indicator simulation inversion
In the previous work, the CSBP prediction model was used to predict the TOC of a single well, yielding high-
precision single-well prediction results. However, due to the limited drilling and logging data in the work area, 
it is impossible to obtain the TOC distribution characteristics of the entire work area. Therefore, in this study, 
an attempt was made to use the CSBP prediction model to predict the planar and spatial distribution of TOC in 
the study area based on the TOC-sensitive logging parameter volume obtained from high-resolution waveform 
indicator simulation inversion19.

Basic principle of waveform-indicated simulation inversion: In the same sedimentary environment, seismic 
waveforms have similar characteristics. Similar-characteristic wells can be selected as effective samples for 
high-resolution well-seismic joint inversion32. Based on the above idea, a well-connected seismic section in 
the work area was selected for research (Fig. 7). There are two wells, W3 and W9, in the section. Then, the 
seismic waveforms of the well-side traces of the same layer in Wells W3 and W9 were extracted, and the seismic 
waveforms were compared by superposition (Fig. 8). The results show that the waveforms of the two are very 
similar, with a coincidence rate of over 95%. Therefore, the results of this study area show that the stratigraphic 
distribution areas with similar lithological combinations often have similar seismic waveform response 
characteristics, indicating that the seismic waveform-indicated simulation inversion is also applicable in this 
study area.

The seven logging parameters, namely DEN, AC, RT, U, K, GR, and CNL, confirmed in the previous section, 
were inverted using the seismic waveform-guided simulation method. As shown in Fig. 9, the inversion results 
of DEN, AC, RT, U, K, GR, and CNL along Well W9 match the logging curves. Furthermore, the inversion 
coincidence rates of each logging parameter were statistically analyzed. Wells W3 and W9 were used for the 
seismic waveform-guided simulation inversion of sensitive logging parameters, and Well W16 was used as a 
posterior well to verify the inversion results.

The results show that the inversion coincidence rates of all logging parameters are above 75.3% (Table 4). The 
average inversion coincidence rates of the seven logging parameters range from 84.99 to 88.96%. Among them, 
Well W3 has the highest average inversion coincidence rate, reaching 88.96%. For the four logging parameters, 
the average inversion coincidence rates range from 82.95 to 93.23%. Among them, the inversion coincidence 
rate of DEN is the highest, with an average value of 93.23%, indicating high inversion accuracy. Meanwhile, 
the average inversion coincidence rate of the logging parameters in the verification well W16 is 87.94%. The 
inversion coincidence rate of DEN is the highest at 95.60%, and the lowest is 78.90% for K. Therefore, in this 
study, the inversion of sensitive logging parameters has high accuracy, and the results of the verification well also 
prove the high reliability of the inversion.

Fig. 5.  Crossplot of predicted TOC values and measured TOC values in Well W16.
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Therefore, the inverted data volumes of DEN, AC, RT, U, K, GR, and CNL were input into the CSBP prediction 
model to predict the planar and spatial distribution of TOC.

Figure 10 shows the slice map of TOC along the S1L1
12 layer. As can be seen from the figure, the overall TOC 

is greater than 2%. The areas where Wells W3, W9, and W16 are located have relatively high TOC values, while 
the area where Well W17 is located has a relatively low TOC value.

As can be seen from Table 5, there is a good correlation (above 0.89) between the predicted and measured 
TOC values of the four wells in the work area. Among them, Well W9 has the best correlation of 0.96, and its 

Fig. 7.  Combined section of wells W3 and W9 in the study workings.

 

Fig. 6.  Comparison between the predicted TOC values and the measured TOC values in Well W16.
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prediction error is also smaller than those of the other three wells. Well W16 has the lowest correlation of 0.89 
and the largest prediction error.

Figure 11 shows the comparison between the predicted and measured TOC values of Wells W9 and W16. 
As can be seen from the figure, the changing trends of the predicted and measured values for the two wells are 
consistent.

Fig. 8.  Seismic waveform characteristics of wells W3 and W9 in the study work area.
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Fig. 9.  Cross-sectional view of the well-logging sensitive parameter volume across Well W9 ((A) DEN section 
over W9 well, (B) AC section over W9 well, (C) RT profile over W9 well, (D) U profile over W9 well, (E) K 
profile over well W9, (F) GR profile over well W9,(G) CNL profile over well W9).
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Logging r MAE MAPE

W3 0.89 0.23 9.07%

W9 0.96 0.23 25.73%

W16 0.89 0.67 106.3%

W17 0.91 0.39 62.79%

Table 5.  Statistical table of different logging prediction errors.

 

Fig. 10.  TOC slice map along the S1L112 layer.

 

Logging DEN CNL U GR AC RT K Average of 7 logging parameters

W3 94.50% 84.90% 90.80% 79.60% 91.20% 88.50% 93.20% 88.96%

W9 94.70% 84.40% 85.40% 86.20% 89.40% 75.30% 88.40% 86.26%

W16 95.60% 89.80% 87.50% 89.10% 89.90% 84.80% 78.90% 87.94%

W17 88.10% 84.70% 82.90% 76.90% 85.70% 88.10% 88.50% 84.99%

4 Logging average 93.23% 85.95% 86.65% 82.95% 89.05% 84.18% 87.25% 87.04%

Table 4.  Statistics of inversion compliance rate of logging parameters.
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Data availability
The dataset used and analyzed during the current study period can be obtained from the corresponding author 
upon reasonable request.
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Fig. 11.  Comparison between predicted and measured TOC values (A represents Well W9, B represents Well 
W16).
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