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Exposure to atmospheric pollutants and meteorological factors is closely linked to human health 
risks, however, studies in tropical regions remain limited. Assessment of the associations between 
air pollutants, meteorological factors, and all-cause emergency department visits in Haikou City 
was conducted to validate the generalizability of previous findings and uncover novel environment-
health linkages. We analyzed 1,041,760 ED visits from January 1, 2018, to December 31, 2021, using 
a distributed lag non-linear model to assess environmental factors’ health effects and lagged impacts 
with subgroup analyses stratified by gender and age. Additionally, four sensitivity analyses were 
conducted to verify the robustness of the findings. The results demonstrated significant nonlinear 
associations between meteorological factors, air pollutants, and emergency department visit risks in 
Haikou City. PM₂.₅ and PM₁₀ showed nonsignificant effect magnitudes, while temperature (12–25 °C) 
and relative humidity (80–85%) exhibited protective effects. Low-concentration SO₂ (< 15 µg/m³) and 
CO (< 0.5 mg/m³) exposures significantly elevated visit risks, whereas high-concentration NO₂ (> 30 µg/
m³) exposure displayed hazardous effects. Stratified analyses revealed: that elevated temperatures 
disproportionately affected males and children; humidity above 80% conferred protection on males 
and individuals younger than 34 years; elderly males exhibited heightened sensitivity to O₃ and NO₂ 
exposures; female children faced increased risks from low-concentration CO exposure, and females 
aged 15–34 showed specific responses to SO₂ exposure. In the tropical coastal city, PM2.5 and PM10 
exhibited no significant associations with all-cause emergency risks, while low-level concentrations of 
SO2 and CO demonstrated specific effects. Although pandemic measures modified certain exposure 
scenarios, the core mechanisms underlying environment-health associations remained fundamentally 
unaltered. These findings provide references for revising air quality standards in tropical coastal 
regions, suggest incorporating SO₂/CO into health warning systems, and propose a climate-pollution 
co-regulation paradigm for global cities with similar environmental profiles.

Keywords  Atmospheric pollution, Meteorological factors, Environmental exposure, Distribution lag 
nonlinear model, Emergency department visits

Since the turn of the 21st century, global attention has increasingly focused on air pollution and meteorological 
conditions. As of 2019, an alarming 99% of the world’s population lived in areas that did not meet the World 
Health Organization’s air quality guidelines1. Air pollution poses a significant environmental risk to health, 
contributing to stroke, heart disease, lung cancer, and respiratory diseases such as asthma. Particulate matter 
and gaseous pollutants are among the most studied air pollutants, along with metals and organic compounds2–4. 
Meteorological factors also play a crucial role in population health, influencing the occurrence and development 
of diseases1,5. The exposure-response curve between temperature and mortality generally was J-, V-, or U-shaped6, 
with unsuitable temperatures in a fatality rate of 7.71% (95% CI: 7.43–7.91%). Unsuitable temperatures 
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typically refer to extreme ranges deviating from the minimum mortality temperature (MMT), a critical metric 
for evaluating temperature-mortality associations, reflecting long-term climatic adaptation. The geographic 
distribution of MMTs varies across countries, ranging from 14.2  °C to 31.1  °C, decreasing with latitude7. 
Due to temperature factors, China has the highest economic burden and mortality8. The combined effects of 
geographical location, climatic characteristics, and demographic structure lead to significant heterogeneity in 
the associations between environmental factors and health outcomes across studies9,10. Emergency department 
data were used to assess more temporally sensitive environmental factors and represent their health effects. 
Short-term exposure to air pollution, particularly SO2, and CO, is associated with increased emergency visits 
to hospitals for upper respiratory tract infections. This effect is more severe during the cold season than in the 
warm season11. This study differs from previous reports, which attributed the health effects of air pollution to 
multiple factors (e.g., air pollution concentration, population characteristics, and the duration and intensity of 
exposure to air pollutants). Increasing temperatures have a positive correlation with emergency department 
visits, with children and people in poor areas experiencing the highest impact12. A study in Beijing on the effect 
of extreme temperatures on the number of emergency department visits for patients with respiratory diseases 
showed that, particularly in the elderly (age ≥ 65 years), women were more susceptible to extreme temperatures 
than men13. Wang et al.14 analyzed a risk assessment of heat and emergency department visits at 18 locations 
with different climatic characteristics in China and noted that heat had a more severe negative health impact on 
residents living in southern China, subtropical monsoon climate areas, or counties.

Existing literature has predominantly focused on inland regions in China, particularly heavily industrialized 
and polluted areas such as North China and the Yangtze River Delta, while research on tropical coastal cities 
remains limited. As China’s first pilot free trade port city, Haikou presents a distinctive context of rapid 
urbanization coupled with environmental health challenges, requiring localized research to support policy 
formulation. Compared to typical industrial cities in China (Supplementary Table S1), Haikou, a tourism-
driven city with no heavy industries, exhibits concentrations of five major air pollutants below China’s Class I 
Ambient Air Quality Standards, except for PM2.5 levels slightly exceeding the Class I threshold. Although certain 
pollutants (PM2.5, PM10, and O3) remain above WHO-recommended guidelines, their exposure levels are among 
the lowest in Chinese cities, providing a unique perspective for investigating environmental health effects under 
non-extreme pollution conditions. Our previous study15 confirmed significant associations between short-term 
exposures to PM2.5, PM10, O3, elevated temperature, and respiratory disease-related emergency department 
visits in Haikou, identifying susceptible subgroups such as female children and elderly males. This research 
provided critical baseline data on environmental health effects under non-extreme pollution conditions in 
tropical settings. However, two major limitations remain in understanding the environmental drivers of all-
cause emergency admissions in tropical regions: (1) the environmental-attributable risks for non-respiratory 
diseases under non-extreme pollution conditions have not been quantified, and (2) the synergistic health effects 
between tropical climate and complex pollution exposures in China’s non-industrial cities remain insufficiently 
elucidated. By extending analyses to all-cause emergency visits and refining age stratification (including a newly 
identified susceptible subgroup aged 15–34 years), this study aims to validate the generalizability of previous 
findings while uncovering novel environment-health relationships. It provides evidence for formulating 
regionally differentiated environmental standards—identifying region-specific sensitive pollutants may yield 
greater public health benefits than solely pursuing WHO global uniform thresholds.

Materials and methods
Study area and study population
Haikou City (19°31′-20°04′ N, 110°07′-110°42′ E), China’s only tropical coastal provincial capital, exhibits 
three distinctive features16. First, climatically, it is influenced by monsoons and oceanic regulation, with 
an annual average temperature of 24.4  °C, average relative humidity exceeding 80%, annual precipitation of 
approximately 1,664  mm, prolonged sunshine duration, and intense solar radiation. Second, regarding air 
pollutant characteristics, Haikou consistently ranks among China’s cities with the highest air quality, classified in 
the lowest pollution tier among 168 key monitored cities, exhibiting a pollution profile dominated by traffic and 
construction emissions rather than industrial sources. Third, in terms of population dynamics, the city receives 
over 25 million annual tourists, resulting in seasonal overloads of healthcare resources. The case data used in this 
study were derived from the medical record information systems of three tertiary A general hospitals in Haikou 
City. The data covers daily emergency department visits from January 1, 2018, to December 31, 2021, including 
outpatient and inpatient medical records. The main information extracted from the records includes the patient’s 
name, age, gender, date of visit, disease category, and current address. This study follows the data collection 
framework of previous research, including identical hospitals, timeframes, and quality control procedures, but 
expands the case selection criteria from respiratory diseases (ICD-10: J00-J99) to all-cause emergency visits to 
comprehensively assess environmental health burdens.

Pollutants and meteorological data
Daily time series data, comprising meteorological and air pollutant concentrations, were collected from January 
1, 2018, to December 31, 2021. The meteorological data, including daily mean temperature and daily mean 
relative humidity, were sourced from the Hainan Meteorological Bureau. The atmospheric pollutant data were 
obtained from the China Air Quality Online Monitoring Platform (https://www.aqistudy.cn/historydata/) and 
included daily mean levels of nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), 
and particulate matter (PM2.5 and PM10), the unit for CO is mg/m³, while other pollutants are measured in µg/
m³. The mean concentrations of NO2, SO2, CO, PM2.5, and PM10 represent 24-hour averages. Additionally, the 
mean concentrations of O3 were based on the maximum 8-hour value.
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Statistical analysis
In this study, Microsoft Excel 2019 software was utilized to clean and process the raw data, while SPSS 22.0 was 
employed for descriptive statistics of emergency department case data, air pollution data, and meteorological 
data. The aim was to investigate the time trend and demographic characteristics of daily emergency department 
visits, as well as to describe the time trend and distribution characteristics of air pollutants and meteorological 
factors. Normal tests were carried out for daily emergency department visits, air pollutants, and meteorological 
factors, revealing that none of them followed a normal distribution. To calculate the correlation coefficients 
between the number of emergency department visits and air pollutants and meteorological data, RStudio 
software and Spearman correlation analysis were utilized, and related factors with the number of emergency 
department visits were selected. Previous studies have established that there are intricate correlations between 
air pollution and meteorological factors17. To avoid multicollinearity issues, when the absolute value of the 
correlation coefficient between two air pollutants or two meteorological factors exceeded 0.7, it was deemed to 
have moderate to high linear correlation18, and thus could not be included in the model simultaneously when 
constructing it.

The robustness of the findings was validated through four sensitivity analyses. Temporal stratification 
analysis: The study period was stratified into three intervals—the entire period, pre-COVID-19 pandemic, 
and pandemic periods—to assess the impact of each factor on all-cause emergency visits while controlling 
for pandemic interference. Time-variable parameterization testing: The degrees of freedom for time variables 
were adjusted to test the model’s sensitivity and robustness to assumptions regarding temporal trends. Disease 
category heterogeneity analysis: All-cause emergency visits were further categorized into circulatory and 
respiratory disease emergencies to explore differential effects of exposure factors on these two disease groups. 
Segmented effect validation: Consistency in effect estimates before and during the pandemic was compared to 
confirm that conclusions were unaffected by data heterogeneity across pandemic periods.

Data analysis was conducted using the R programming language (version 4.2.0), employing the mgcv, 
splines, dlnm, and ggplot2 packages to establish the DLNM model. The median (P50) of individual factors was 
employed as the reference value, while the relative risk (RR) value with a 95% confidence interval (95% CI) was 
used to assess the effect of every single factor on the number of emergency department visits. A two-sided test 
was conducted, with P < 0.05 being considered statistically significant.

Construction of the distributed lag nonlinear model
Daily emergency department visits were combined with air pollutants and meteorological factors and linked 
by date. Time series analysis was employed to estimate the overall association for the entire study period (2018 
to 2021). The population in Haikou remained relatively stable throughout the study period, and the daily 
emergency department visits were approximately Poisson distributed. However, due to overdispersion in the 
data, the standard Poisson method may lead to larger errors. Thus, this study used a quasi-Poisson distribution 
instead of a Poisson distribution[19,20].

Numerous studies have demonstrated that the effects of environmental factors on human health are nonlinear 
and hysteretic21–24. Therefore, a distributed lag nonlinear model with quasi-Poisson distribution was employed 
in this study to investigate the effects of air pollutants and meteorological factors on emergency department 
visits.

The central concept of the DLNM is to incorporate cross-bases for the transformation of study variables 
into generalized additive models that allow simultaneous estimation of exposure effects and lag effects25. In this 
study, single air pollutants or single meteorological factors were modeled separately, and in the construction of 
the univariate model, except for the investigated univariate factors, other factors were included in the model 
as confounders in the form of natural spline functions. To control the long-term trend of time variables, time 
variables were included in the model in the form of a natural spline function. Additionally, the day-of-week 
effect and holiday effect were included in the model in the form of a dummy variable and binary variable, 
respectively, to control the daily visit volume. The final model expression was as follows:

	log [E (Yt)] = α + βXt,l + ns (T imet , df ∗ year) +
∑

ns (Xi , df) + as. factor (dowt) + as. factor (holidayt)

Where log [E (Yt)] is the link function and Yt is the number of emergency department visits on day t; E (Yt) is 
the mathematical expectation of emergency department visits on day t; α is the intercept of the model; Xt, l is 
a two-dimensional matrix of the variables studied obtained by the “crossbasis” function in the DLNM model, 
l indicates the maximum lag days and β is the coefficient of the matrix; ns indicates the use of a natural cubic 
spline function as a smoothing function to control the effect of confounders, and Timet is a time series variable 
used to control long-term trends and seasonal effects, df is the degree of freedom, year is the year of study; Xi is 
other air pollutants or meteorological factors not included in the model; as. factor is a function in R language 
used to convert the transmitted object into Factor; dowt is a categorical variable that refers to which day of the 
week has an impact and is included in the model as a dummy variable to control its impact. holidayt is a binary 
variable used to control the holiday effects.

Given that the data are overdispersed, Akaike’s quasi-Poisson information criterion (Q-AIC) was utilized to 
determine the degrees of freedom of each variable in the model26. Finally, it was determined that the degrees of 
freedom were 3 for air pollutants or meteorological factors not included in the model and 8 for time variables. 
Based on previous literature, we set the maximum lag days to 14 days27,28.
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Results
Descriptive statistical analysis
Over the study period from January 1, 2018, to December 31, 2021, a total of 1,041,760 emergency department 
visits were recorded (Table 1). The daily average number of visits to the emergency department was 713. The 
means of meteorological factors were 25.24 ℃ for temperature, 80.33% for humidity, 5.32  h for sun time, 
2.8 m/s for wind speed, and 1004.01 hpa for air pressure. The means of air pollutants were 15.67 µg/m3 for PM2.5, 
30.16 µg/m3 for PM10, 11.3 µg/m3 for NO2, 4.62 µg/m3 for SO2, 0.54 mg/m3 for CO, and 77.81 µg/m3 for O3, 
respectively (Table 2).

Time series analysis
In Fig. 1, the number of emergency department visits increased each year, with a sharp decline observed at 
the beginning of 2020, which may be attributed to the outbreak of COVID-19. In response to the epidemic, 
cities across the country were closed, resulting in reduced visits to emergency departments. The average daily 
temperature and air pressure showed clear seasonal periodicity, with opposite directions of periodic fluctuation. 
Specifically, the average daily temperature was higher in summer and lower in winter, while air pressure was 
lower in summer and higher in winter. The average daily wind speed was greater in winter, while no significant 
periodicity was observed in the average daily relative humidity and average daily sunshine hours. The average 
daily concentrations of PM2.5, PM10, NO2, and SO2 exhibited similar periodicity and were higher in autumn and 
winter. Conversely, no significant periodicity was observed in the average daily concentrations of CO and O3.

Variables Mean SD Min Median Max IQR

Total 713 148.35 280 721 1196 188

Male 380 80.90 136 384 676 108

Female 333 71.17 121 335 538 88

Age, years

≤ 14 96 43.53 13 86 325 57

15–34 224 47.20 68 227 388 53

35–64 272 55.55 93 270 516 68

≥ 65 121 34.64 26 117 263 42

Meteorology

Temperature(℃) 25.24 4.38 8.50 26.20 33.00 6.20

Relative humidity(%) 80.33 8.20 36.00 81.00 99.00 11.00

Sun time(h) 5.32 3.86 0 5.60 12.80 7.50

Wind speed(m/s) 2.80 0.82 0.70 2.70 6.80 1.10

Air pressure(hpa) 1004.01 6.20 984.90 1004.20 1019.00 9.80

Air pollution

PM2.5(µg/m3) 15.67 9.30 0 13.00 62.00 10.00

PM10(µg/m3) 30.16 13.22 0 27.00 115.00 16.00

NO2(µg/m3) 11.38 4.80 2.00 11.00 41.00 6.00

SO2(µg/m3) 4.62 1.82 2.00 4.00 23.00 1.00

CO(mg/m3) 0.54 0.14 0.20 0.50 1.20 0.20

O3(µg/m3) 77.81 32.47 20.00 71.00 207.00 40.00

Table 2.  Descriptive statistics of daily emergency department visits, air pollutants, and meteorological factors 
in Haikou City from 2018 to 2021. 24-h averages for NO2, SO2, and CO; the maximal 8-h average for O3. SD 
standard deviation, IQR Inter quartile range.

 

Variables ED visits (%)

Total 1,041,760 (100.0)

Male 554,881 (53.3)

Female 486,879 (46.7)

≤ 14 years 146,553 (14.1)

15–34 years 326,606 (31.1)

35–64 years 391,485 (37.6)

≥ 65 years 177,116 (17.0)

Table 1.  Statistical characteristics of emergency department visits in Haikou City from 2018 to 2021.
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Correlation analysis
Spearman’s correlation coefficient is a non-parametric measure that evaluates the correlation between two 
graded ordinal variables using monotonic equations29. As the data did not follow a normal distribution, 
Spearman correlation analysis was employed, and the correlation coefficients all passed the t-test, which was 
statistically significant (P < 0.05). As shown in Supplementary Table S2, daily emergency department visits were 
positively correlated with sunshine hours (r = 0.08), temperature (r = 0.17), PM10 (r = 0.05), O3 (r = 0.19), as well 
as NO2 (r = 0.1). Conversely, they were negatively correlated with relative humidity (r = − 0.13), wind speed 
(r = − 0.07), CO (r = − 0.11), and SO2 (r = − 0.1). Furthermore, no significant correlation was observed between 
daily emergency department visits and air pressure (r = − 0.04).

Analysis by DLNM
Based on the results of Spearman correlation analysis, PM2.5 (r = 0.04) and PM10 (r = 0.05) showed no significant 
association with emergency department visits. Further multivariate linear screening revealed a high linear 
correlation between PM2.5 and PM10 (r = 0.91), while PM2.5 (r = -0.53) and PM10 (r = -0.47) exhibited significant 
negative correlations with temperature. Based on the predetermined threshold (r ≥ 0.7), PM2.5 and PM10 were 
separately included in the final model for DLNM analysis, but their lag effects showed no statistical significance 
(complete results are presented in Supplementary Tables S3 and S4). Daily average temperature, daily average 
relative humidity, NO2, SO2, CO, and O3 were incorporated into the model for analysis, with results reported 
using the median values of each factor as reference. In Fig. 2, a peak visit risk was observed when the temperature 
was 8.5 ℃ with a lag of 3 days (RR = 1.065, 95% CI: 1.020–1.112) and when the temperature was 33 ℃ with a lag 
of 9 days (RR = 1.021, 95% CI: 1.003–1.039). For relative humidity, a peak visit risk was observed at 36% with a 
lag of 3 days (RR = 1.055, 95% CI: 0.989–1.124). Regarding air pollutants, a peak visit risk was observed when 
the average daily concentrations of NO2 were 40 µg/m3 and 41 µg/m3, respectively, at lag2 and lag10 (RR = 1.028, 
95% CI: 0.980–1.081) and (RR = 1.054, 95% CI: 1.007–1.102), respectively. Furthermore, a peak visit risk was 
observed when the average daily concentrations of SO2, CO, and O3 were 14 µg/m3, 0.2 mg/m3, and 205 µg/m3, 
respectively, at lag3, lag10, and lag8 (RR = 1.045, 95% CI: 1.006–1.086), (RR = 1.019, 95% CI: 1.003–1.035), and 
(RR = 1.027, 95% CI: 0.993–1.061), respectively.

In Fig. 3, the effect of each factor on emergency department visits exhibited a lag effect from day 0 throughout 
the lag period. Specifically, when the temperature was within 8.5 ℃-25 ℃, a lower temperature was associated 
with a lower visit risk at lag0-lag2. For relative humidity within 36-60%, a lower relative humidity was associated 
with a lower visit risk at lag0-lag1, lag5-lag9, and lag12-lag14. Regarding air pollutants, the average daily 
concentration of NO2 at 25–41  µg/m3 was associated with a higher visit risk at lag0-lag4. The average daily 
concentration of SO2 at 10–23 µg/m3 was associated with a higher visit risk at lag12-lag14. Moreover, the average 
daily concentration of O3 at 150–207  µg/m3 was associated with a higher visit risk at lag0-lag2. Conversely, 
the average daily concentration of CO at 0.2–0.4 mg/m3 was associated with a higher visit risk with a lag of 
0–6 days, and a smaller concentration was associated with a higher visit risk. Overall, these findings suggest 

Fig. 1.  Time sequence diagram of emergency department visits, meteorological factors, and air pollutants in 
Haikou City from 2018 to 2021, ED emergency department visits, Temp temperature, RH relative humidity, ST 
sun time, WS: wind speed, AP air pressure.
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Fig. 3.  Contour graphs of different contributing factors on emergency department visits at different lag days 
from 2018 to 2021, red areas indicate hazardous effects and blue areas indicate protective effects, with the 
median of each factor as the reference value.

 

Fig. 2.  The three-dimensional graphs of the relative risks of emergency department visits with different 
contributing factors versus lag days from 2018 to 2021, with the median of each factor as the reference value.

 

Scientific Reports |        (2025) 15:20849 6| https://doi.org/10.1038/s41598-025-03517-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


that temperature, relative humidity, and air pollutant concentrations have a significant impact on emergency 
department visits, and their effects exhibit a lag effect over time.

In Fig. 4, the effect curve between average daily temperature and emergency department visits exhibited a 
“V” pattern, with the lowest risk of visits observed at a temperature of 17 ℃ (RR = 0.795, 95% CI: 0.738–0.856). 
Regarding relative humidity, a visit risk increase was observed in the range of 75-80%, while a decrease in visit 
risk was observed in the range of 80-85%. For air pollutants, a concentration of NO2 greater than 30 µg/m3 was 
associated with a higher visit risk. The effect curve between SO2 and emergency department visits exhibited an 
“inverted V” pattern, with the greatest visit risk observed when the average daily concentration was 15 µg/m3 
(RR = 1.457, 95% CI: 1.126–1.885). Moreover, the effect curve between CO and emergency department visits 
exhibited an “S” pattern, with the greatest visit risk observed when the average daily concentration of CO was 
0.2 mg/m3 (RR = 1.191, 95% CI: 1.072–1.323). However, no statistically significant effect of O3 on emergency 
department visits was observed. These findings suggest that temperature, relative humidity, and air pollutant 
concentrations have complex and nonlinear effects on emergency department visits. Specifically, the effect 
curves exhibit different patterns for different factors, highlighting the importance of considering multiple factors 
when assessing the risk of emergency department visits.

In Supplementary Figure S1, the effect plots of each factor on emergency department visits by gender were 
found to be similar. Hypothermia had a greater impact on emergency department visits in men. When the 
temperature was at 17 °C, the lowest risk of visits was (RR = 0.800, 95% CI: 0.741–0.864) and (RR = 0.814, 95% 
CI: 0.744–0.889), respectively. Additionally, a relative humidity greater than 80% was associated with a reduction 
in the number of male emergency department visits. The impact of NO2 on male emergency department visits 
was also observed. Regarding women, the effect of SO2 on emergency department visits exhibited the greatest 
visit risk at an average daily concentration of SO2 of 15 µg/m3 (RR = 1.421, 95% CI: 1.079–1.870) and (RR = 1.507, 
95% CI: 1.113–2.039), respectively. Furthermore, a low concentration of CO (< 0.4 mg/m3) was found to affect 
women, while O3 was found to affect men.

In Supplementary Figure S2, the effects of low temperature (< 15 ℃), low relative humidity (< 50%), high 
concentration of NO2 (> 30 µg/m3), and high concentration of O3 (> 150 µg/m3) on the elderly (> 65 years) were 
assessed, as well as the effects of high temperature (> 25 ℃) and CO on children (0–14 years). Furthermore, 
the effect of SO2 on people aged 15–34 years was evaluated, with the greatest visit risk observed when the 
concentration was 20  µg/m3 (RR = 2.196, 95% CI: 1.168–4.129). Regarding relative humidity, a value greater 
than 80% was associated with a reduction in emergency department visits for individuals aged 0–14 years and 
15–34 years. These findings suggest that relative humidity is protective in reducing emergency department visits 
for these age groups.

In this study, the 5th, 25th, 75th, and 95th percentiles of Haikou temperature and relative humidity, as well 
as the 10th and 90th percentiles of air pollutants, were selected to calculate the RR and 95% CI of specific factors 
for emergency department visits at different lag days using the median as the reference value.

In Table 3, the visit risk was found to be lowest when the temperature was 17 ℃ with a cumulative lag of 14 
days (RR = 0.796, 95% CI: 0.736–0.860), while the visit risk was highest when the humidity was 75% at cumulative 

Fig. 4.  Exposure-response curves (red solid lines) and 95% confidence intervals (grey areas) between different 
contributing factors and relative risks of emergency department visits from 2018 to 2021, with the median of 
each factor as the reference value.

 

Scientific Reports |        (2025) 15:20849 7| https://doi.org/10.1038/s41598-025-03517-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


lag0-14d (RR = 1.022, 95% CI: 1.006–1.037). Supplementary Table S5 revealed that when the concentration of 
SO2 was at 3 µg/m3 with a cumulative lag of 0–7 days, the highest visit risk was observed (RR = 1.030, 95% CI: 
1.015–1.046). Moreover, when the CO concentration was at 0.4 mg/m3 with a cumulative lag of 14 days, the 
highest visit risk was observed (RR = 1.035, 95% CI: 1.010–1.061). However, NO2 and O3 were found to be 
statistically insignificant at specific concentration values.

In Fig. 5, the optimal lag period was assessed, and it was found that a 1 ℃ increase in temperature and a 
1% increase in relative humidity increased the risk of emergency department visits by 1.019% (95% CI: 1.012-
1.027%) and 0.999% (95% CI: 0.998-1.000%), respectively. Moreover, a 10 µg/m3 increase in NO2, SO2, and O3 
concentrations and a 0.5 mg/m3 increase in CO concentrations were found to increase the risk of emergency 
department visits by 1.010% (95% CI: 0.964-1.057%), 1.419% (95% CI: 1.137-1.770%), 0.995% (95% CI: 0.937-
1.057%), and 1.004% (95% CI: 0.995-1.014%), respectively.

In Supplementary Table S6, analyzed by gender and age, during the optimal lag period, with a 1 ℃ increase in 
temperature and a 1% increase in relative humidity, a 10 µg/m3 increase in NO2, SO2, and O3 concentrations, and 
a 0.5 mg/m3 increase in CO concentration, the percentage increase in the risk of emergency department visits 
is as follows. The increase of 1 °C in temperature may have a more significant impact on emergency department 
visits among males and children, while a 1% increase in humidity does not show significant differences based on 
gender or age. A 10 µg/m³ increase in NO2 concentration may have a greater effect on males and children, while 
a 10 µg/m³ increase in SO2 concentration may have a greater effect on females and children.

Sensitivity analyses
The segmented sensitivity analysis revealed that, at specific values of different factors, effect estimates from the 
full-period and segmented models were generally consistent in direction, with minimal variability, indicating 
a low risk of distortion in core conclusions due to pandemic-related data (Supplementary Tables S7-S10). 
Temperature, humidity, and O3 demonstrated similar effect estimates during the entire period and pre-pandemic 
period, whereas NO2, SO2, and CO exhibited comparable effect estimates during the entire period and pandemic 
period (Supplementary Figures S3 and S4). To verify the robustness of the model, sensitivity analysis results 
(Supplementary Figures S5 and S6) were generated by varying the degrees of freedom (df = 7–10) for the time 
variable to plot 3D effect diagrams of lagged impacts of different factors on emergency department visits. The 
results demonstrated that when adjusting the degrees of freedom for the time variable, the effect plots remained 
similar, indicating appropriate parameter settings and model stability. The disease category heterogeneity 
analysis demonstrated that temperature and O3 were significantly associated with both all-cause and disease-
specific emergency visits. Ozone exhibited the strongest association with respiratory disease emergencies and 

Lag(d)

Temperature Humidity

17℃ 22℃ 29℃ 31℃ 67% 75% 86% 93%

Lag0 0.909(0.884,
0.936)✳

0.963(0.951,
0.976)✳

1.015(1.001,
1.028)✳

1.020(0.995,
1.046)

0.999(0.984,
1.015)

1.002(0.997,
1.008)

0.996(0.991,
1.000)

0.987(0.973,
1.001)

Lag1 0.944(0.932,
0.956)✳

0.974(0.969,
0.980)✳

1.011(1.005,
1.017)✳

1.016(1.005,
1.027)✳

1.003(0.995,
1.011)

1.003(1.000,
1.005)✳

0.996(0.994,
0.999)✳

0.990(0.982,
0.997)✳

Lag3 0.992(0.976,
1.008)

0.992(0.984,
0.999)

1.003(0.996,
1.010)

1.004(0.991,
1.017)

1.005(0.997,
1.014)

1.002(0.999,
1.005)

0.998(0.996,
1.001)

0.996(0.988,
1.005)

Lag5 0.994(0.980,
1.008)

0.999(0.993,
1.006)

0.996(0.990,
1.002)

0.991(0.980,
1.003)

0.998(0.990,
1.006)

0.999(0.997,
1.002)

1.001(0.999,
1.003)

1.003(0.995,
1.010)

Lag7 0.999(0.988,
1.010)

0.998(0.993,
1.003)

1.002(0.998,
1.007)

1.004(0.995,
1.013)

1.000(0.994,
1.006)

1.001(0.999,
1.003)

0.999(0.997,
1.001)

0.998(0.992,
1.005)

Lag9 1.003(0.989,
1.017)

0.996(0.989,
1.002)

1.008(1.001,
1.014)✳

1.014(1.002,
1.026)✳

1.006(0.998,
1.014)

1.003(1.000,
1.005)✳

0.998(0.995,
1.000)

0.995(0.987,
1.003)

Lag11 0.990(0.975,
1.006)

0.996(0.989,
1.003)

0.999(0.992,
1.006)

0.998(0.985,
1.011)

1.005(0.997,
1.013)

1.001(0.999,
1.004)

1.000(0.997,
1.003)

1.001(0.993,
1.009)

Lag14 1.001(0.976,
1.026)

0.999(0.987,
1.010)

0.996(0.985,
1.007)

0.992(0.972,
1.012)

1.002(0.989,
1.015)

1.002(0.997,
1.006)

0.999(0.995,
1.003)

0.998(0.985,
1.011)

Lag0-1 0.858(0.825,
0.893)✳

0.939(0.922,
0.956)✳

1.026(1.007,
1.045)✳

1.036(1.002,
1.072)✳

1.003(0.981,
1.025)

1.005(0.997,
1.013)

0.992(0.985,
0.999)✳

0.976(0.956,
0.997)✳

Lag0-3 0.829(0.795,
0.864)✳

0.916(0.899,
0.934)✳

1.037(1.018,
1.056)✳

1.052(1.017,
1.088)✳

1.014(0.988,
1.040)

1.010(1.001,
1.018)✳

0.988(0.980,
0.995)✳

0.966(0.942,
0.990)✳

Lag0-5 0.820(0.783,
0.859)✳

0.913(0.894,
0.931)✳

1.031(1.012,
1.051)✳

1.039(1.002,
1.077)✳

1.014(0.985,
1.044)

1.009(1.000,
1.019)✳

0.988(0.980,
0.997)✳

0.968(0.941,
0.997)✳

Lag0-7 0.814(0.771,
0.860)✳

0.911(0.889,
0.933)✳

1.030(1.007,
1.054)✳

1.037(0.993,
1.083)

1.011(0.976,
1.047)

1.009(0.998,
1.020)

0.989(0.979,
0.999)✳

0.969(0.937,
1.002)

Lag0-9 0.820(0.771,
0.871)✳

0.904(0.881,
0.929)✳

1.045(1.020,
1.071)✳

1.065(1.017,
1.116)✳

1.021(0.982,
1.062)

1.014(1.002,
1.027)✳

0.984(0.973,
0.996)✳

0.959(0.924,
0.996)✳

Lag0-11 0.808(0.756,
0.864)✳

0.896(0.871,
0.923)✳

1.048(1.022,
1.076)✳

1.070(1.019,
1.123)✳

1.032(0.989,
1.078)

1.018(1.005,
1.031)✳

0.983(0.971,
0.995)✳

0.958(0.919,
0.998)✳

Lag0-14 0.796(0.736,
0.860)✳

0.890(0.860,
0.921)✳

1.036(1.005,
1.068)✳

1.043(0.985,
1.105)

1.041(0.990,
1.095)

1.022(1.006,
1.037)✳

0.982(0.968,
0.996)✳

0.957(0.912,
1.004)

Table 3.  Single-day lag effects and cumulative lag effects, and 95% confidence intervals of different 
temperatures and relative humidity on emergency department visits. ✳P<0.05.
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ranked second in circulatory system diseases (Supplementary Table S11). High temperature (29 °C) showed acute 
effects on all-cause and respiratory emergencies, concentrated within 0–2 lag days. In contrast, ozone (94 µg/
m³) displayed a significant delayed effect on cardiovascular emergencies at a 7-day lag, highlighting the need 
for long-term exposure monitoring (Supplementary Table S12). Analysis of environmental factors associated 
with cardiovascular disease-related emergency visits revealed that low temperature, elevated PM10, and NO2 
increased cardiovascular emergency risks. The dose-response relationship between O3 and cardiovascular 
emergencies approximated a U-shaped curve (Supplementary Figures S7 and S8).

Discussion
This study found that even in Haikou, one of the least polluted cities in China, major air pollutants and temperature 
still exhibited significant health effects. This suggests that China’s environmental air quality standards may 
underestimate the sensitivity of populations in tropical regions to low-dose pollution. There is a need to develop 
climate-zone-specific risk assessment models, and future studies should incorporate temperature-humidity-
pollutant interaction terms.

Consistent with previous specialized studies on respiratory diseases15, this study identified O3 and NO2 as 
significant risk factors for all-cause emergency admissions, while the effects of PM2.5 and PM10 did not reach 
significance (P > 0.05). In Haikou, a tropical region, despite higher PM2.5 and PM10 concentrations (relative to 
WHO guideline thresholds), their health impacts were less pronounced, potentially reflecting a ‘tropical paradox’ 
This may be explained by the fact that in high-humidity environments, airborne particles more readily absorb 
moisture, increasing their size—i.e., PM2.5 and PM10 mass concentrations may rise. However, their primary 
component is sea salt, which exhibits lower toxicity, leading to less severe overall health impacts compared to 
regions where PM2.5 toxicity is driven by heavy metals30. Future studies should validate this hypothesis through 
composition-resolved toxicity assessments. This discrepancy may also stem from the etiological heterogeneity 
of all-cause emergency admissions, as particulate matter predominantly drives respiratory events31, while 
other systemic diseases are more influenced by meteorological factors. The disease category heterogeneity 
analysis revealed that the strong association between O3 and respiratory emergencies aligns with its potent 
oxidative properties and airway inflammatory mechanisms32. Notably, O3’s secondary but significant effect on 
cardiovascular diseases may originate from its potential pathways inducing systemic oxidative stress, endothelial 
dysfunction, and hypercoagulability33. In contrast, the acute effects of high temperature (29 °C) on all-cause and 
respiratory emergencies (0–2 day lag) reflect rapid pathological processes involving the breach of physiological 
compensation thresholds under heat stress, while its preferential respiratory impact may relate to heat-induced 
increases in mucosal permeability and allergen dispersion. The 7-day lagged cardiovascular effects of O3 suggest 
health risks potentially emerging through cumulative tissue damage or delayed immune modulation, consistent 
with findings from European multi-city studies documenting delayed associations between O3 exposure and 
myocardial infarction risks34. It is recommended to incorporate lag-effect adjustment parameters into existing 

Fig. 5.  The relative risks and 95% confidence intervals of increasing percentage of emergency department 
visits by different contributing factors at different lag days from 2018 to 2021, with the median of each factor as 
the reference value.
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air quality warning systems, particularly emphasizing mid-to-long-term health surveillance following high 
O3 episodes. The positive associations of low temperature, PM10, and NO2 with cardiovascular emergencies 
likely conform to classical pathways involving cold-induced vasoconstriction, particle-driven atherosclerosis 
progression, and NO2-mediated endothelial dysfunction33.

In terms of total effect difference, the results of this study showed that temperatures between 12 ℃ and 
25 ℃ decreased emergency department visits, which was consistent with the results of previous studies14,34 
This validates the protective effect of the intermediate temperature range (12–25  °C), which approximates 
the human thermal neutral zone, where no additional metabolic heat production or dissipation is required, 
thereby reducing cardiovascular and respiratory system stress. Studies indicate that extreme temperatures may 
elevate blood viscosity and exacerbate inflammatory responses, triggering cardiovascular, cerebrovascular, and 
respiratory diseases36. Moderate temperatures likely mitigate the acute risks of these conditions. In tropical 
regions with year-round high temperatures, lower temperatures are often associated with higher wind speeds 
or precipitation, which reduce concentrations of pollutants such as PM2.5 and ozone, thereby mitigating 
respiratory irritation. Additionally, the activity of vectors for certain mosquito-borne diseases diminishes at 
lower temperatures, potentially reducing infection risks. When the humidity ranges between 80% and 85%, the 
number of emergency department visits decreases, which is inconsistent with previous findings37. This may be 
associated with the unique climatic adaptation in tropical regions and pollutant-meteorological interactions. 
First, long-term exposure to high humidity may enhance physiological tolerance to heat and moisture 
among local residents through improved sweat evaporation efficiency and optimization of mucosal defense 
mechanisms38. Second, high humidity may indirectly reduce pollutant-related health risks by promoting particle 
deposition and suppressing ozone formation. Notably, discrepancies between this phenomenon and prior 
research findings may reflect geographical heterogeneity in humidity-related health effects, as baseline climatic 
conditions can significantly alter risk thresholds of environmental factors39. Future studies should combine 
personalized exposure monitoring with disease-stratified analyses to further elucidate these mechanisms. High 
concentrations of NO2 (> 30 µg/m3) resulted in an increased risk of emergency department visits, consistent 
with previous findings40. NO2 is a major oxidative gaseous pollutant in the atmosphere and can cause systemic 
oxidative damage and airway inflammation41,42. This study found an increasing trend in emergency risk when 
O3 concentrations exceeded 120 µg/m³, with confidence intervals encompassing 1, though the trend aligns with 
most studies43,44. The non-significance of this result may stem from the following factors. First, the limited 
number of exposure days with O3 > 120 µg/m³ in Haikou reduced statistical power. Second, O3 effects may be 
amplified through synergistic interactions with high temperatures, but the absence of interaction term analysis in 
this study might underestimate its true risk. Additionally, long-term exposure to higher background O3 levels in 
tropical populations may reduce sensitivity through behavioral adaptations (e.g., minimizing outdoor activities 
during peak heat periods). Future research should expand sample sizes and incorporate multi-city data to further 
validate the uniqueness of O3 health effects in tropical regions. Notably, the effect directions of SO2 and CO in 
this study contradicted reports from industrial cities45-48. Building on prior respiratory studies, we hypothesize 
that secondary aerosol conversion of SO2 under tropical marine climates may enhance its toxicity, while high 
temperatures accelerate CO dispersion yet amplify low-concentration exposure effects through thermal stress 
synergism. This suggests that environmental health risk assessments in low-pollution areas require integrated 
meteorology-pollutant interaction models. This study found that the cumulative lag effects of temperature, 
humidity, SO2, and CO persisted for up to 14 days, demonstrating greater significance compared to single-
day lag models, which may reflect progressive pathological mechanisms of environmental exposure. First, the 
chronic toxicity of SO2 and CO requires cumulative activation of oxidative stress and inflammatory pathways. 
CO inhibits cytochrome C oxidase, leading to mitochondrial dysfunction49, with effects becoming pronounced 
after sustained exposure over multiple days. Second, the synergistic effects of temperature and humidity may 
prolong biological response times to heat stress and allergen exposure. High temperatures suppress heat shock 
protein repair capacity, while high humidity promotes dust mite proliferation50, collectively contributing to 
delayed exacerbation of chronic respiratory diseases. Additionally, distributed lag models, by integrating multi-
day exposure weights, more sensitively captured the cumulative effects of environmental stressors, a finding 
consistent with conclusions from global multi-city studies51,52.

This study revealed significant population heterogeneity in the health effects of environmental factors. The 
pronounced impact of high temperatures on males and children highlights the interaction between physiological 
vulnerability and behavioral exposure, with elevated metabolic rates and occupational exposure in males and 
immature thermoregulatory systems in children constituting critical risk pathways53. The protective effects 
observed for males and individuals under 34 years old at a humidity above 80% may reflect behavioral adaptations 
(e.g., surge in air conditioning use) offsetting physiological risks, suggesting that the prevalence of climate-
adaptive infrastructure may redefine traditional exposure-response relationships. The heightened sensitivity of 
elderly males to O3 and NO2 may be linked to chronic respiratory disease burdens and smoking54, while the 
unique response of female children to low-concentration CO could relate to sex-based differences in hemoglobin 
levels and prolonged household exposure55,56. The significant effect of SO2 on females aged 15–34 may indicate 
emerging risk sources such as cosmetic use and occupational exposure. These findings emphasize the need for 
environmental health policies to transition from ‘one-size-fits-all’ approaches to precision interventions, such 
as O3 warning systems targeting elderly males and mandatory installation of CO detectors in households with 
female children.

This study found that although traffic restrictions during the COVID-19 pandemic led to declines in 
emergency department visits and concentrations of certain pollutants (PM2.5, NO2, and SO2) in early 2020, 
increased photochemical reactions resulted in elevated O3 levels, potentially partially offsetting the pandemic’s 
overall environmental effects. On the other hand, segmented sensitivity analysis revealed pandemic-specific 
modifications in exposure-response relationships. Temperature, humidity, and O3 exhibited similar effect 
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estimates across the entire study period and pre-pandemic phase, suggesting that pandemic control measures 
significantly altered temperature-related emergency risk pathways, potentially linked to reduced cold exposure 
due to home confinement and modified physiological responses to heat stress from mask usage57. In contrast, 
NO2, SO2, and CO showed consistent effect estimates during both the entire period and pandemic phase, 
reflecting persistent industrial emission impacts3, while lower pre-pandemic effect values may stem from 
China’s 2019 clean air initiatives. The differential modification of health effects for meteorological factors and 
specific pollutants by the pandemic does not weaken the conclusions but rather provides new empirical insights 
into socio-environmental interactions. Further comparative analyses confirmed the reliability of core findings. 
Sensitivity analyses demonstrated that the directionality and significance levels of effect estimates remained 
highly consistent across segmented models under varying environmental factor thresholds, with coefficients 
of variation generally below 15%. Low coefficients of variation suggest spatiotemporal reproducibility in 
environment-health associations58, necessitating the development of dynamic risk assessment models through 
multi-regional cohort studies, with particular emphasis on precise identification of the “inflection concentration” 
in U-shaped dose-response curves. Nevertheless, we recommend validating these findings with longer-term 
data, particularly from the post-pandemic era.

The strengths of this study lie in being the first systematic investigation in a low-pollution tropical Chinese city 
to delineate the response mechanisms of all-cause emergency visits to multiple environmental factors, revealing 
latent risks of SO2 and CO below WHO thresholds and their climate-mediated amplification effects. This provides 
a template for environmental health risk assessment in other tropical coastal cities globally and informs regional 
adaptations of WHO guidelines. Through methodological innovation and large-sample empirical validation, the 
research bridges the paradigm from ‘high-pollution industrial cities’ to ‘low-emission tourist cities’. However, 
several limitations warrant consideration. As an ecological study employing time-series analysis, this work did 
not incorporate pathogenicity, socioeconomic status, education level, or personal habits into models, potentially 
introducing exposure misclassification. COVID-19 restrictions were treated as confounders, and pandemic 
control policies might have introduced unquantifiable selection bias. Future studies could employ interrupted 
time-series analysis to disentangle the interference mechanisms of public health emergencies on environment-
health associations. The single-city focus (Haikou) limits generalizability; expanding data collection to multiple 
cities in Hainan Province would enhance representativeness. Additionally, the reliance on emergency department 
records from three major hospitals in Haikou may not capture all potential cases, and the absence of individual-
level exposure data might partially influence the findings.

Conclusion
This study systematically elucidates the distinct mechanisms underlying environmental health effects in a tropical 
city through four-year emergency department big data coupled with DLNM models, yielding the following 
key findings. Significant emergency visit risks persist even at low concentrations of SO2 and CO, challenging 
traditional linear risk models. The low toxicity of sea salt aerosols and their climate-driven rapid dispersion 
collectively obscure the health signals of PM2.5 and PM10. The pandemic induced differential modification in 
the health effects of specific environmental factors, providing novel empirical dimensions for understanding 
socio-environmental interactions. Tailored to tropical climatic features, we recommend lowering SO₂ health 
alert thresholds and establishing a ‘high temperature-O3 compound alert’ mechanism. The study identifies 
females aged 15–34 and elderly males as high-risk populations, necessitating prioritized deployment of mobile 
monitoring stations at their activity hotspots (schools, senior communities).

Data availability
Meteorological data were obtained from the Hainan Meteorological Bureau, and air pollution data were collect-
ed from the China Air Quality Online Monitoring Platform (https://www.aqistudy.cn/historydata/). Because of 
the confidentiality requirements of this study, the emergency department dataset was not made publicly availa-
ble but could be obtained from the corresponding author on reasonable request.
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