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Depression is a prevalent mental health disorder, and early detection is crucial for timely intervention. 
Traditional diagnostics often rely on subjective judgments, leading to variability and inefficiency. 
This study proposes a fusion model for automated depression detection, leveraging bimodal data 
from voice and text. Wav2Vec 2.0 and BERT pre-trained models were utilized for feature extraction, 
while a multi-scale convolutional layer and Bi-LSTM network were employed for feature fusion and 
classification. Adaptive pooling was used to integrate features, enabling simultaneous depression 
classification and PHQ-8 severity estimation within a unified system.Experiments on the CMDC and 
DAIC datasets demonstrate the model’s effectiveness. On CMDC, the F1 score improved by 0.0103 
and 0.2017 compared to voice-only and text-only models, respectively, while RMSE decreased by 
0.5186. On DAIC, the F1 score increased by 0.0645 and 0.2589, with RMSE reduced by 1.9901. These 
results highlight the proposed method’s ability to capture and integrate multi-level information across 
modalities, significantly improving the accuracy and reliability of automated depression detection and 
severity prediction.
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Depression is a serious mental illness characterized by low mood, fatigue, loss of interest, and physical discomfort. 
It causes considerable suffering for patients and imposes a significant burden on socio-economic systems. 
According to estimates from the World Health Organization, approximately 350 million people worldwide 
suffer from depression, and this number continues to rise1,2. Economically, the total burden of depression in the 
U.S. was estimated at $326 billion in 20203, which even exceeds Americans’ expenditure on dining out4. Thus, 
enhancing the prevention, diagnosis, and treatment of depression has become increasingly urgent. Traditional 
diagnostic methods rely on clinical experience and self-assessment scales, however, subjects may conceal their 
true conditions, compromising the efficiency and reliability of detection. Therefore, developing a quick and 
accurate method for detecting depression remains a pressing challenge.

With the rapid advancement of artificial intelligence and machine learning technologies, depression detection 
systems utilizing multimodal data, including voice, text, and physiological signals, have increasingly become a 
research focus. These systems analyze individuals’ behavioral patterns, linguistic expressions, and emotional 
states to assist clinicians in making timely and accurate assessments. Despite progress in multimodal depression 
detection research, extracting robust and highly discriminative features from individual modalities remains a 
significant challenge. In audio data feature extraction, most studies opt for eGeMAPS to extract voice features, 
however, its limited number of voice features leads to insufficient utilization of audio information5. Additionally, 
regarding feature fusion strategies, most studies focus primarily on simple feature concatenation or attention-
based methods for integrating different modalities. However, simple concatenation fails to utilize features 
effectively. While attention mechanisms based on cross-modal interactions provide an alternative but come with 
challenges. They struggle to capture temporal dependencies, require large parameter sizes, and depend heavily 
on extensive training data. These factors together limit their effectiveness in depression detection6.

To address these challenges, this study proposes an innovative model that leverages Wav2Vec 2.0 for audio 
data and BERT for text data, forming an end-to-end architecture for automatic depression recognition. A 
multi-level aggregation layer is designed to effectively integrate cross-modal information while preserving 
temporal correlations between modalities. Additionally, a Bidirectional Long Short-Term Memory (Bi-LSTM) 
network is employed for classification, enabling the model to capture long-term dependencies in sequential 
data. Experiments were conducted on the authoritative Chinese Multimodal Depression Corpus (CMDC) and 
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the English DAIC-WOZ datasets. The results demonstrate that the proposed fusion model performs effectively 
across different languages, highlighting its robust adaptability to diverse linguistic and contextual settings. 
This study presents a novel and effective approach for automated depression detection, contributing to the 
advancement of multimodal analysis in mental health diagnostics. By achieving consistent performance across 
different languages and datasets, the proposed method has the potential to support scalable, cross-linguistic 
applications in real-world clinical and telehealth environments.

Related work
Modalities related to depression
Previous studies have shown significant differences in various physiological data between depressed patients and 
healthy subjects during interviews7,8. These differences are evident in both physiological and non-physiological 
data. Physiological data, such as heart rate variability (HRV), electrocardiogram (ECG), galvanic skin response 
(GSR), blood pressure, and electroencephalogram (EEG), have proven effective for depression recognition9. 
These indicators are strongly correlated with depression, and their measurement methods enable more accurate 
and reliable identification, reducing the potential for human concealment. Non-physiological data, by contrast, 
are easier to collect. Studies suggest that, compared to healthy individuals, depressed patients use more negative 
vocabulary, express pessimistic emotions, mention positive achievements or optimistic thoughts less frequently, 
and often make self-critical remarks10. Additionally, depressed patients typically have a monotonous voice, 
lacking variation, speak slowly with prolonged pauses, maintain low volume, and articulate unclearly. Their 
facial expressions show little variation, often appearing furrowed and vacant, with infrequent smiles11. Due to 
the accessibility of non-physiological data, recognizing depression from this source has become a major research 
focus. However, research on multimodal depression detection is still limited. Therefore, this study uses both 
voice and text data for depression detection.

Research related to depression
In recent years, substantial progress has been made in depression recognition research focusing on single 
modalities, such as audio, video, and text. For example, Md. Rafiqul et al. collected user comments from Facebook 
and used Linguistic Inquiry and Word Count (LIWC) to analyze the text, assessing users’ emotional states 
and sentence tenses based on word types to label their depressive tendencies. They extracted 27 features from 
sentences and classified depression using machine learning methods, achieving a maximum accuracy of 0.7112. 
However, machine learning methods are limited in their ability to output results directly from raw data, and 
there may be issues with the data labeling, as some samples might not come from depressed patients. Amna et 
al. used a large, imbalanced dataset of tweets from Kaggle and proposed a depression prediction model based on 
deep learning, combining two layers of LSTM and two layers of dense RNN, achieving a prediction accuracy of 
0.9913. However, the labels of such datasets may be controversial and may not serve as comprehensive depression 
recognition methods. Ahmed et al. developed an optimized word embedding method, applied it to Twitter user 
data, and developed a multi-channel depression recognition model by combining CNN and RNN, achieving an 
accuracy of 0.8714.

Additionally, some researchers have utilized audio data for depression recognition. Mamidisetti et al. 
collected audio data from 225 students in India, extracted voice features using openSMILE, and employed 
machine learning methods with classifiers such as Support Vector Machine (SVM), Decision Tree (DT), Naive 
Bayes (NB), and K-Nearest Neighbors (KNN) for depression recognition, achieving an F1 score of 0.8015. Zhang 
et al. extracted voice features using a self-supervised model and combined them with transfer learning to identify 
depression, achieving a maximum recall rate of 0.9616. Although these studies have shown promising results, 
their reliance on a single modality limits the generalizability of the models.

Consequently, some researchers have started exploring multimodal data for depression detection. Multimodal 
data fusion is categorized into early and late fusion, with early fusion being favored by most researchers. Alhanai 
et al. extracted 379 features from both audio and text, concatenating them to input into SVM and LSTM networks 
for depression recognition, achieving a maximum F1 score of 0.7717. Lin et al. utilized a 1D Convolutional 
Neural Network and an LSTM network with a fused attention layer to process audio and text content separately, 
achieving a fusion of the two modalities through fully connected layers and obtained an F1 score of 0.8518. 
Zhang et al. designed a three-branch network to extract features from audio, text, and video, followed by feature 
fusion and attention modules for depression detection, achieving an F1 score of 0.78 and a recall rate of 0.8119. 
Ye et al. extracted 384 low-level voice features and proposed a multimodal fusion method based on deep spectral 
features and word vector features, achieving a detection accuracy of 0.91 and an F1 score of 0.9020. However, in 
the aforementioned studies, only the research by Alhanai and Lin utilized professional depression datasets. The 
other datasets were derived from experimentally induced emotions in subjects, without involving actual patients 
diagnosed with depression or undergoing professional psychological evaluations. This limitation hinders an 
accurate assessment of detection performance in real cases of depression.

Zou et al. established a Chinese dataset for depression recognition, with the data verified by professional 
clinicians. They extracted text features using the BERT self-supervised model, video features via OpenFace, and 
audio features using eGeMAPS. Through early fusion for multimodal feature integration and processing for 
downstream tasks, they achieved a depression recognition F1 score of 0.94 and a recall rate of 0.916. However, 
the limited audio features extracted using eGeMAPS constrain the full potential of end-to-end architectures, 
somewhat limiting model performance. Our previous research utilized the Wav2vec2.0 self-supervised model 
to extract voice features, applying a small fine-tuning network as a classification model, achieving an accuracy 
of 0.9621. However, as it only focused on a single modality in the English dataset, the model’s generalization 
capability still requires enhancement. Building on this, we propose a new fusion model that uses BERT and 
Wav2vec2.0 to extract features from text and voice modalities, respectively. By further expanding the model’s 
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receptive field through multi-scale convolutional kernels and integrating multimodal features using a mid-level 
fusion strategy, depression recognition is ultimately achieved based on the Bi-LSTM framework. Evaluation 
results on datasets from two different contexts demonstrate that the model exhibits significantly improved 
performance compared to the single-modality model.

Methods
Feature extraction
The voice of depressed patients often reflects their emotional and psychological states. This study employs 
Wav2vec 2.0 to extract features from audio data. Wav2vec 2.0 learns rich acoustic representations through 
extensive training on unlabeled data, producing high-dimensional features beneficial for emotion analysis 
tasks22. We used the Base version of Wav2vec 2.0 for voice feature extraction, taking the output from the final 
hidden layer, which yields a feature vector with 1024 dimensions. To ensure consistency, the temporal length of 
all voice features was standardized.

Text features are extracted using BERT. The contextual understanding architecture of BERT enables the 
model to generate rich and accurate semantic representations. Pre-training on a large corpus of unlabeled text, 
BERT demonstrates strong comprehension capabilities in sentence-level tasks. BERT is used for text feature 
extraction to generate deep language representations23. The extracted features have a dimensionality of 768, 
matching the padded length of the sentences.

Feature fusion
Current multimodal fusion approaches primarily employ either feature concatenation or attention-based 
mechanisms. Several notable attention-based approaches have emerged in recent literature, including Yang et 
al.’s Multi-Scale Context layer that utilizes attention mechanisms to establish information flow across different 
scales through fully connected layers24. Han et al.’s bidirectional fusion method employing sigmoid channel 
attention for quality-aware feature summation25. Sun et al. developed the SimAM2 framework that innovatively 
incorporates principles from signal processing and uncertainty theory to enhance multimodal data integration26. 
Similarly, Vaswani et al. proposed a Transformer-based architecture that effectively enables bidirectional cross-
modal attention mechanisms for feature fusion27. However, the above attention-based methods typically demand 
substantial memory resources, often exceeding the capacity constraints of real-world clinical deployment 
environments. Moreover, when processing temporal sequences characteristic of speech and language data, pure 
attention architectures show reduced sensitivity to timing patterns compared to hybrid CNN-LSTM networks. 
To address this, we introduce a multi-scale convolution(MSC) module to enhance the feature representation, 
enabling the model to capture information at various scales. The multi-scale information is concatenated along 
the channel dimension. Then, adaptive average pooling is used to reduce the sequence length and align voice 
and text features into a shared semantic space. Finally, the fused features are input into the classification network. 
Different channels represent the text or speech features at specific time steps. The feature fusion process is 
illustrated in the feature fusion section of Fig. 1.

Fusion model architecture
Figure. 1 illustrates the depression recognition framework based on voice and text bimodal data. First, the text 
and audio features are extracted separately using BERT and Wav2Vec2.0. The extracted features are then fed into 
a multi-scale convolutional layer, where convolution kernels of varying sizes capture information across different 
time scales, the methods of calculation are as follows:

Fig. 1.  Model architecture
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fkernal[m, n] =

∑
j

∑
k

o[j, k]f [m − j, n − k]� (1)

fkernal denotes the features extracted using kernels of different scales, where m and n represent the sequence 
length and feature dimension of the feature matrix, o is the convolution kernel, and j and k represent the 
elements within the kernel. f is the input raw matrix. Through convolution operations, the model updates 
information across different data positions, capturing spatial information from text or audio modalities and 
thereby enhancing feature expressiveness.

After extracting the multi-scale convolution features fkernel, the features from different scales of a single 
modality are concatenated in the channel dimension.To achieve adaptive output dimensions, adaptive average 
pooling was applied. Firstly, to determine the area ∆i in the input tensor corresponding to the output position 
i′, it needs to calculate the ratio r of the entire input tensor length n to the target output length n′:

	
r = n

n′ � (2)

Then, for output position i′, the length of the corresponding area ∆i in the input tensor is calculated as follows:

	
∆i = (i′ + 1) · r − i′ · r

r
� (3)

Finally, the output text or audio feature matrix Y i′
m  is calculated as follows:

	

Y i′
m = 1

∆i

βi′∑
i=αi′

F i
m� (4)

where F i
m represents the audio or text modality features extracted at time step i through the MSC module. αi′  

is the starting index, and βi′  is the ending index of the input region corresponding to the output position i′. 
During feature fusion, the audio and text feature matrices are concatenated and fed into the Bi-LSTM for context 
modeling.

Bi-LSTM uses a bidirectional gating mechanism to extract sequence information in both directions, thus 
enhancing the model’s understanding of the intermodal context. The core of Bi-LSTM consists of three gating 
units (forget gate, input gate, and output gate), which control the retention and updating of information. The 
forget gate determines which long-term state information in the sequence should be retained, and its computation 
is as follows:

	 fi = σ(Wf , [hi′−1, Yi′ ] + bf )� (5)

where Wf  and bf  represent the weight matrix and bias vector of the forget gate, σ denotes the sigmoid function, 
hi′−1 represents the output of the hidden state at the previous time step, and Yi′  denotes the input at the current 
time step.

Subsequently, the input gate is used to control how much new information can be updated to the current 
state. It decides which parts of the candidate state are added to the existing cell state.The specific calculation 
method is as follows:

	 ti = σ(Wt, [hi′−1, Yi′ ] + bt) � (6)

	 C′
i = tanh(Wc, [hi′−1, Yi′ ] + bc) � (7)

Where Wt,bt,Wc, and bc are the parameters related to the input gate, and the candidate state, and tanh denotes 
the hyperbolic tangent activation function. Then, the current state is updated based on the results of the forget 
gate and the input gate. The calculation for the current input transformation matrix Ci is as follows:

	 Ci = fi ∗ Ci−1 + ti ∗ C′
i � (8)

Here, ∗ denotes element-wise multiplication. The output gate controls the output at the current time step. The 
calculation formula is as follows:

	 Oi = σ(Wo, [hi′−1, Yi′ ] + bo) ∗ tanhCi� (9)

Wo and bo represent the weight matrix and bias vector of the output gate. The output is calculated by 
element-wise multiplication of the non-linearly activated input transformation matrix and the element-wise 
sigmoid-transformed output proportion matrix, resulting in the hidden state at the current time step. When the 
model reaches the final time step, the hidden state is extracted as the forward iteration result. Simultaneously, the 
data from the final time step is used as input to obtain the backward hidden state.The hidden states from both 
directions are then concatenated. Finally, the features are mapped through a fully connected layer to output the 
classification results or PHQ-8 prediction scores, thereby achieving depression detection.
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In the proposed multimodal architecture, pre-trained models are utilized to effectively extract features. Multi-
level aggregation modules are employed to fuse features across different time scales, enhancing the accuracy 
of feature extraction. Adaptive average pooling is applied to compress the features, reducing dimensionality 
and ensuring effective utilization of information. Finally, Bi-LSTM is used to enhance cross-modal context 
understanding, leading to improved emotion classification and depression detection.

Experiments
Datasets
The CMDC Depression dataset was constructed based on semi-structural interviews in Chinese, designed to 
support the screening and assessment of severe depression6. All participants were recruited from a well-known 
psychiatric hospital in China, aged between 20 and 60 years, with diagnoses meeting the criteria outlined in the 
Diagnostic and Statistical Manual of Mental Disorders (DSM). The interviews were designed by professional 
clinicians and conducted by trained interviewers. Each subject (19 severe depression patients and 26 healthy 
controls) has corresponding audio and text records, with the transcripts derived from the audio recordings and 
manually verified. The dataset includes PHQ-9 and HAMD-17 scores, offering robust data for the screening and 
evaluation of severe depression in China.

The DAIC-WOZ dataset was built using semi-structural interviews in English, conducted by a virtual human 
named Ellie. It forms part of a larger clinical interview corpus known as the Distress Analysis Interview Corpus 
(DAIC). This methodology supports the development of automated assessment of language and non-verbal 
behaviors associated with depression and Post-Traumatic Stress Disorder(PTSD). The dataset includes 189 
subjects. PHQ-8 results indicate that 56 participants exhibit varying degrees of depressive symptoms. The dataset 
consists of text, video, and audio data related to depression28, offering valuable resources for the automated 
detection of depression.

Our audio data preprocessing pipeline began with standardization of all recordings to 50-60 dB amplitude 
range, accompanied by noise reduction to enhance signal quality. To address dataset size limitations while 
preserving linguistic context, we implemented a semantic-aware segmentation approach where each sample 
contains five consecutive sentences, with detailed parameters documented in Table 1.

For multimodal alignment, we established a rigorous verification protocol. Transcripts were systematically 
cross-validated against their corresponding audio recordings, with any discrepancies corrected to ensure textual 
accuracy. This process identified and removed temporally misaligned segments, representing a minimal 1% data 
loss that did not compromise overall dataset integrity.

The validated audio clips were uniformly processed into 20-second segments using zero-padding when 
necessary, creating consistent input dimensions for downstream analysis. Following segmentation, each sample 
underwent manual quality inspection to identify and rectify any processing artifacts. This meticulous curation 
yielded final datasets with clinically meaningful sample sizes: the CMDC dataset contains 2969 samples (1677 
healthy controls vs. 1292 depression cases) and the DAIC-WOZ dataset comprises 6544 samples (4515 healthy 
controls vs. 2029 depression cases).

Figure.2 illustrates this comprehensive preprocessing workflow, demonstrating the multilayered approach to 
data quality assurance. The resulting datasets maintain clinically relevant class distributions while eliminating 
technical artifacts that could potentially bias model performance. Importantly, our segmentation strategy 
successfully balanced the need for adequate sample sizes with preservation of meaningful linguistic units for 
depression detection.

Model training
Information about the experimental environment for this study is as follows: CPU: 11th Gen Intel(R) Core (TM) 
i7-11700 @ 2.50 GHz; GPU: NVIDIA GeForce RTX 3090; RAM: 24GB. Operating system: 64-bit Ubuntu 20.04.4 
LTS; CUDA: 11.6; Python 3.7.

The model was trained for 100 epochs using an early stopping strategy. If no significant improvement in 
model performance occurred over a predefined number of epochs, the training was stopped early. Cross-
validation was performed by partitioning the dataset into training, validation, and testing sets in a 6:2:2 ratio. 
After processing the voice data with Wav2vec 2.0, the resulting feature dimensionality was 1024, while the text 
feature dimensionality after processing with BERT was 768. Subsequently, 2D convolutional kernels with sizes 
(3/21/51/75, 1024) and (3/21/51/75, 768) were applied to expand the receptive fields of the voice and text data, 
respectively. A dropout rate of 0.2 was set uniformly for all convolutional modules. A feature mapping module 
was then utilized to compress the voice and text features, with the compression convolutional kernels set to 
(1, 3). After adaptive pooling, the audio data is compressed to a final padding length of 64. The training task 
determines the output size. For classification tasks, the output is 2, and for the regression task that aims to predict 
the PHQ-8 score, the output is 1. The specific parameters of each module are summarized in Table 2.

Parameter Number of parameters

Minimum duration of silence 300 ms

Silence decibel threshold − 45 dB

Effective voice length 100–10000 ms

Keep the silence length 300 ms

Table 1.  Audio segmentation parameters
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Evaluation metrics
Despite preprocessing and data augmentation efforts to mitigate data imbalance, the final dataset ratios remain 
mildly imbalanced (CMDC: 56.5% healthy vs. 43.5% depressed; DAIC-WOZ: 69% healthy vs. 31% depressed). 
While these distributions reflect real-world clinical screening scenarios, the mild class imbalance necessitates 
comprehensive performance evaluation. The confusion matrix is a standard tool for assessing classification 
performance. It enables the calculation of various performance metrics, including accuracy, precision, recall, 
and the F1 score. The confusion matrix categorizes data into four categories: true positives (TP), false positives 
(FP), false negatives (FN), and true negatives (TN), corresponding to correctly predicted positives, incorrectly 
predicted positives, incorrectly predicted negatives, and correctly predicted negatives, respectively. Accuracy is 
defined as the proportion of correctly classified samples, calculated as follows:

	
Accuracy = T P + T N

T P + F P + F N + T N
� (10)

Precision refers to the ratio of true positives to the total number of samples predicted as positive:

Hierarchy Hyper-parameter

MSC Conv (3/21/51/75, 768/1024)

Feature fusion Average pooling (length, 64)

Bi-LSTM Number layers = 4, hidden size=128

Output size Number class = 2 or 1

Table 2.  Specific parameters of each module

 

Fig. 2.  The figure shows the data processing flow. Red represents the quizzer segments, black indicates silence 
segments, and blue denotes the subject’s data segments.

 

Scientific Reports |        (2025) 15:21907 6| https://doi.org/10.1038/s41598-025-03524-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
P recision = T P

T P + F P
� (11)

Recall is the ratio of true positives to the total number of actual positive samples:

	
Recall = T P

T P + F N
� (12)

The F1-score (harmonic mean of precision and recall) is employed as the primary metric due to its robustness 
for imbalanced data. This approach ensures that both depression detection sensitivity and diagnostic precision 
are given balanced consideration.The specific calculation is as follows:

	
F 1 = 2 ∗ P recision ∗ Recall

P recision + Recall
� (13)

Each of these four metrics focuses on different aspects: accuracy considers all types of predictions, while 
precision and recall concentrate on specific prediction types. The F1 score balances precision and recall, making 
it particularly suitable for imbalanced datasets. To predict the severity of depression in samples, this study 
extends the model to a regression task aimed at estimating the PHQ-8 index. The predictive performance is 
evaluated using the MAE and RMSE metrics. MAE measures the average absolute difference between predicted 
and actual values, and its formula is as follows:

	
MAE = 1

n

n∑
i=1

|ŷi − yi|� (14)

RMSE considers the mean of squared errors, assigning higher weights to larger deviations. Its formula is 
expressed as:

	

RMSE =

√√√√ 1
n

n∑
i=1

(ŷi − yi)2� (15)

Here, n denotes the number of samples, ŷi represents the predicted values, and yi indicates the actual values. 
MAE reflects the average deviation between predictions and true values. RMSE is more sensitive to larger errors. 
Together, these metrics provide a comprehensive evaluation of the model’s predictive performance.

Results and discussion
The proposed fusion model integrates a MSC module and a Bi-LSTM module. To better understand the 
individual contributions of each module to the overall performance, we compared the test results of unimodal 
and multimodal data on the MSC model, the Bi-LSTM model, and the fusion model proposed in this study. 
Specifically, in the experimental design, the MSC model directly passed its output through a fully connected 
layer for final decision making. In contrast, the Bi-LSTM model compresses feature dimensions using a fully 
connected layer before making predictions. These ablation experiments provided valuable insights into the 
impact of different model architectures on prediction performance and highlighted the potential advantages 
of leveraging multimodal information. Furthermore, to visually illustrate the differences in features before and 
after fusion, we employed the t-Distributed Stochastic Neighbor Embedding (t-SNE) technique to perform a 
visualization analysis of unimodal and multimodal features. This analysis offered a clear representation of how 
feature fusion enhances the learning capability of the model. Finally, we compared the test results of the proposed 
fusion model with those of other state-of-the-art methods evaluated on the same datasets. This comprehensive 
comparison allowed us to identify the strengths and weaknesses of different approaches, providing a holistic 
evaluation of the proposed model’s effectiveness and its position relative to existing methods

Evaluation results
Our systematic evaluation of individual module components reveals distinct performance characteristics, as 
demonstrated by the CMDC dataset results in Table 3.

The ablation study highlights the complementary nature of each architectural element: The multi-scale 
convolution (MCN) network exhibits particular efficacy in multimodal data processing, attaining a 0.9673 F1-
score through its hierarchical feature extraction mechanism. This advantage stems from the network’s capacity 
to concurrently capture both granular acoustic characteristics and higher-level spatial patterns within combined 
audio-text feature spaces.

Conversely, the Bi-LSTM network demonstrates specialized proficiency in temporal sequence modeling, 
achieving exceptional unimodal audio performance (accuracy = 0.9613, F1-score = 0.9605). These results validate 
the architecture’s competence in modeling temporal speech patterns and maintaining sequential dependencies. 
Nevertheless, the Bi-LSTM’s effectiveness diminishes when processing concatenated multimodal features (F1-
score = 0.9213), reflecting the challenges inherent in heterogeneous feature integration.

The integrated MCN+Bi-LSTM framework synthesizes these complementary strengths, yielding optimal 
performance metrics. The complete system shows measurable improvements over both constituent modules: 
a 0.35% F1-score enhancement (0.9708 vs. 0.9673) relative to the MCN network alone, coupled with a more 
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substantial 2.67% gain (0.9708 vs. 0.9213) compared to the standalone Bi-LSTM implementation. These results 
substantiate the framework’s dual capability to both enhance the MCN’s multimodal processing through 
temporal refinement and substantially augment the Bi-LSTM’s capacity for heterogeneous feature analysis.

Similar to the results observed on the CMDC dataset, the proposed fusion model achieves superior 
performance on the DAIC-WOZ dataset, as shown in Table 4. further validating its robustness and effectiveness 
across different datasets and experimental settings. The method exhibits minor discrepancies in outcomes 
between the two datasets, with the CMDC dataset yielding results that are 0.4% higher in F1-scores. This marginal 
difference primarily stems from inherent variations in data composition between the two datasets: the CMDC 
dataset contains a more balanced distribution (56.5% healthy vs. 43.5% depressed), while the DAIC-WOZ 
dataset shows a greater imbalance (69% healthy vs. 31% depressed). Despite these distributional differences, 
the model maintains consistently strong performance across both datasets, demonstrating its robustness to 
variations in data characteristics.

t-SNE dimensionality reduction and visualization analysis
To further validate the influence of different modality feature on the classification effect, we visualized the 
extracted features using t-SNE dimensionality reduction. As shown in Fig. 3.

The visualization results indicate that unimodal data, when reduced to a 2D space, exhibits poor clustering 
performance, with text data performing particularly weakly. Upon further analysis, we found that this poor 
clustering in text data is largely due to the data augmentation process. During text slicing, certain segments 
lose their original semantic meaning, limiting the model’s ability to acquire sufficient information during 
training. This issue directly affects the recognition performance of the text modality, particularly in mental 
health applications, where textual data often underperforms relative to other modalities. For instance, short 
written expressions in depression-related datasets often fail to convey the emotional depth and nuance necessary 
for accurate emotion recognition. The evaluation results of the text modality, as presented in Tables 3 and 4, 
further corroborate this finding, highlighting the limitations of text-based features in emotion recognition tasks, 
especially when addressing complex mental health issues.

In contrast, the audio modality demonstrates superior clustering performance on the DAIC-WOZ dataset, 
showcasing a clear advantage in recognition accuracy over text. Audio data inherently carries richer emotional 

Modality Metric MCN Bi-LSTM MCN+Bi-LSTM

Audio

Accuracy 0.9434 0.9496 –

Precision 0.8603 0.9608 –

Recall 0.9277 0.9157 –

F1 score 0.8928 0.9021 –

Text

Accuracy 0.7021 0.7471 –

Precision 0.6506 0.6723 –

Recall 0.7020 0.7470 –

F1 score 0.6753 0.7077 –

Audio+Text

Accuracy 0.9343 0.9274 0.9794

Precision 0.8170 0.7926 0.9702

Recall 0.9548 0.9669 0.9631

F1 score 0.8806 0.8711 0.9666

Table 4.  Evaluation results of the DAIC-WOZ dataset Significant values are in bold.

 

Modality Metric MCN Bi-LSTM MCN+Bi-LSTM

Audio

Accuracy 0.8636 0.9613 –

Precision 0.8751 0.9608 –

Recall 0.8772 0.9604 –

F1 score 0.8636 0.9605 –

Text

Accuracy 0.7604 0.7710 –

Precision 0.7577 0.7684 –

Recall 0.7534 0.7722 –

F1 score 0.7549 0.7691 –

Audio+Text

Accuracy 0.9680 0.9226 0.9747

Precision 0.9691 0.9206 0.9752

Recall 0.9658 0.9221 0.9664

F1 score 0.9673 0.9213 0.9708

Table 3.  Evaluation results of the CMDC dataset Significant values are in bold.
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information, which significantly contributes to its better performance. The Wav2Vec 2.0 pre-trained model plays 
a key role in this success by effectively extracting features that capture subtle emotional expressions in audio, 
such as pitch, speaking rate, and pauses. These features allow the model to better recognize mental health-related 
emotions, including those associated with depression. This highlights the strength of Wav2Vec 2.0 in audio 
emotion analysis, as it excels at capturing nuanced emotional variations that are challenging to convey solely 
through text.

Despite the strengths of individual modalities, relying on a single modality is insufficient for comprehensively 
capturing complex emotions and psychological states. This underscores the importance of multimodal fusion 
approaches. On both the CMDC and DAIC-WOZ datasets, multimodal fusion significantly improves emotion 

Fig. 4.  The example of a single sample with 6.1 s of effective voice data length. Therefore, the subsequent data 
are no longer shown, and their characteristics are 0.

 

Fig. 3.  t-SNE dimensionality reduction is applied, where red represents healthy subjects and blue represents 
depression patients in the figure.
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recognition accuracy, resulting in clearer clustering boundaries and enhanced discrimination capability. By 
employing MSC networks to expand the model’s receptive field, features from different modalities are effectively 
integrated and processed. This integration enables the model to better capture emotional and mental health-
related traits, particularly when addressing complex mental health issues.

The proposed framework enables detailed analysis of modality-specific feature contributions through 
quantitative evaluation of both speech and text representations. For the audio modality, we compute the L1 
norm of temporal features to assess the relative importance of different speech segments. As visualized in Figure 
4, this analysis reveals distinct patterns in feature weighting - brief pauses occurring at 0.68 seconds and 2.24 
seconds demonstrate significantly lower weights compared to continuous speech segments. These findings align 
with clinical observations that sustained vocal characteristics (including prosodic variations, spectral changes, 
and phoneme transitions) contain more diagnostically relevant information than isolated pauses for depression 
assessment.

Text modality features are evaluated through their absolute magnitudes in the embedding space, with attention 
mechanisms further highlighting clinically significant linguistic markers. The analysis identifies specific lexical 
patterns that strongly influence model predictions (Fig. 5). Common function words and neutral expressions 
(e.g., positions 17, 42, and 44 in the sample text) contribute minimally, while self-reported symptoms and 
affect-related terms demonstrate substantially higher weights. Notably, phrases describing sleep disturbances 
(positions 7-10) emerge as particularly discriminative features, consistent with established diagnostic criteria 
for depressive disorders.

While the precise quantification of each modality’s contribution remains challenging, our ablation studies 
(Tables 3 and 4) and feature visualizations (Fig. 3) consistently demonstrate that speech features exhibit greater 
discriminative power than text features for depression detection. This observation aligns with the clinical 
prominence of vocal biomarkers in mental health assessment, though the complementary value of textual 
information remains evident in the model’s comprehensive evaluation framework.

In conclusion, unimodal approaches face inherent limitations in recognizing complex emotions and 
psychological states. The proposed multimodal fusion method overcomes these challenges by integrating the 
strengths of both audio and text, leading to significant improvements in recognition accuracy and classification 
performance. This approach demonstrates strong potential for applications in mental health, such as depression 
detection, where understanding nuanced emotional and psychological traits is critical.

Comparison with existing methods
For the CMDC dataset, the classification results are compared with those of the attention-based multimodal 
fusion method6, as shown in Table 5. Through a comprehensive comparison of multiple evaluation criteria, the 
performance of our multimodal fusion method surpasses that reported in6. Our method demonstrates superior 
performance, particularly in terms of the F1 score, highlighting its effectiveness in depression classification.

Not limited to the CMDC dataset, the proposed multimodal fusion method in this paper also demonstrates 
excellent performance on the DAIC-WOZ dataset, exhibiting high robustness and recognition accuracy. 
Compared with other multimodal depression detection methods that utilize the DAIC-WOZ dataset, the 
proposed method shows significant improvements across various metrics, including classification and regression. 
The comparison results are presented in Table 6.

Compared with other fusion methods, the proposed method demonstrates superior performance across 
both classification and regression tasks. As shown in Table 6, our approach outperforms existing methods by 
significant margins, with a 12.66% improvement in F1-score (96.66% vs 84.00%) compared to cross-attention 
baselines and an 11.66% enhancement (96.66% vs 85.00%) over LSTM-CNN architectures. These improvements 
stem from our optimized model structure that enables multi-scale information extraction while maintaining 

Fig. 5.  The text data corresponds to the audio data, and the picture shows the attention characteristics of 
different tokens.
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computational efficiency. In the regression task for PHQ-8 score prediction, our method achieves the lowest error 
rates with MAE=2.8793 and RMSE=3.8199, representing reductions of 0.87 and 1.62 respectively compared to 
LSTM-CNN approaches.

For telehealth platforms, the improved accuracy enables more reliable remote screening, particularly valuable 
in resource-limited settings where in-person evaluations may be challenging. The model’s robust performance 
across different datasets suggests strong generalizability to diverse patient populations. The balanced performance 
across both classification and regression tasks demonstrates the framework’s versatility, making it suitable for 
deployment in various healthcare settings, from primary care offices to community mental health centers. These 
technical advantages position our method as a promising tool for enhancing depression screening workflows 
while maintaining clinical relevance and practical applicability. The combination of improved accuracy and 
robust performance across metrics addresses key requirements for implementation in real-world healthcare 
environments.

Conclusion
This study developed an efficient fusion model designed to capture temporal correlations and effectively utilize 
features from both voice and text. Departing from traditional feature engineering approaches, pre-trained 
models were integrated into an end-to-end architecture, enabling the direct input of preprocessed CMDC and 
DAIC-WOZ datasets for depression detection. This approach not only simplifies feature extraction for each 
modality but also expands the receptive field, significantly enhancing both the applicability and performance 
of the model. The evaluation results demonstrate that the proposed method consistently outperforms single-
modal approaches in terms of recognition accuracy and PHQ-8 score prediction. These findings highlight the 
effectiveness and advantages of the proposed fusion model, offering a robust and reliable solution for automated 
depression detection.

However, the study has certain limitations. Due to dataset constraints, our work focused solely on the fusion 
of voice and text modalities. There are potential risks associated with data proportion issues, and the model may 
be prone to overfitting. Future research will explore the inclusion of additional modalities, such as video and 
image data, which could provide richer contextual and emotional information, thereby enhancing the model’s 
generalization and performance. Additionally, we will attempt to use larger datasets for training to mitigate the 
risk of overfitting. Another limitation lies in the computational complexity of self-supervised models such as 
BERT and Wav2Vec 2.0, which require significant memory resources, posing challenges for practical deployment. 
To address this, future research will investigate model compression techniques, such as model distillation and 
lightweight strategies, to reduce the number of parameters and memory usage, thereby improving the model’s 
efficiency and suitability for real-world applications. In conclusion, this study demonstrates the potential of 
multimodal fusion approaches in advancing automated depression detection. By effectively integrating voice 
and text features and leveraging state-of-the-art pre-trained models, the proposed method provides a robust 
foundation for future research in mental health diagnostics and related applications.

Data availability
The data of CMDC that support the findings of this study are available in the School of Computer and Com-
munication Engineering, University of Science and Technology Beijing, [​h​t​t​p​s​:​​/​/​i​e​e​e​​-​d​a​t​a​p​​o​r​t​.​o​r​​g​/​o​p​e​​n​-​a​c​c​e​​
s​s​/​c​h​i​​n​e​s​e​-​m​​u​l​t​i​m​o​d​a​l​-​d​e​p​r​e​s​s​i​o​n​-​c​o​r​p​u​s]. In addition, the data of DAIC-WOZ are available in the Institute 
for Creative Technologies, University of Southern California, [https://dcapswoz.ict.usc.edu/]. These datasets are 

Metric Ours Cross-attention6 LSTM17 LSTM-CNN18

Accuracy 0.9794 – – -

Precision 0.9702 0.8800 0.7100 0.7900

Recall 0.9631 0.8100 0.8300 0.9200

F1 score 0.9666 0.8400 0.7700 0.8500

MAE 2.8793 4.7400 5.1000 3.7500

RMSE 3.8199 5.8100 6.3700 5.4400

Table 6.  Comparison results on the DAIC-WOZ Dataset Significant values are in bold.

 

Metric Ours Cross-Attention6

Accuracy 0.9747 –

Precision 0.9752 0.9668

Recall 0.9664 0.8605

F1 score 0.9708 0.9106

MAE 2.6232 3.6591

RMSE 4.0714 4.5872

Table 5.  Comparison results on the CMDC dataset Significant values are in bold.

 

Scientific Reports |        (2025) 15:21907 11| https://doi.org/10.1038/s41598-025-03524-4

www.nature.com/scientificreports/

https://ieee-dataport.org/open-access/chinese-multimodal-depression-corpus
https://ieee-dataport.org/open-access/chinese-multimodal-depression-corpus
https://dcapswoz.ict.usc.edu/
http://www.nature.com/scientificreports


publicly available datasets, but permission is required before use. If you want to get the data, ask for permission 
at the two addresses above.

Code availability
The source code for all the experiments can be viewed in ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​x​z​r​l​z​​z​/​A​-​m​​u​l​t​i​m​o​​d​a​l​-​m​o​​d​e​l​-​f​o​​r​-​d​
e​t​​e​c​t​i​n​g​​-​d​e​p​r​e​​s​s​i​o​n​-​​u​s​i​n​g​-​t​e​x​t​-​a​n​d​-​a​u​d​i​o​-​d​a​t​a.
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