Table 6 Performance analysis for proposed method with existing based on database 1 (80% variation in training rate).
Approaches | Accuracy | Precision | Sensitivity | Specificity | MCC | NPV | F-measure | FPR | FNR |
---|---|---|---|---|---|---|---|---|---|
Proposed | 0.99927 | 0.99967 | 0.98173 | 0.98928 | 0.98327 | 0.98051 | 0.98756 | 0.01827 | 0.00957 |
SVM30 | 0.96284 | 0.95283 | 0.95894 | 0.95889 | 0.95081 | 0.95827 | 0.95519 | 0.03349 | 0.03981 |
AArSLRS31 | 0.95842 | 0.94183 | 0.94583 | 0.95083 | 0.94193 | 0.95992 | 0.95083 | 0.04893 | 0.04015 |
ArSL-CNN32 | 0.96342 | 0.95083 | 0.96583 | 0.95284 | 0.96048 | 0.95183 | 0.95008 | 0.03156 | 0.02832 |
CNN35 | 0.94827 | 0.94883 | 0.95583 | 0.94482 | 0.95083 | 0.94144 | 0.950159 | 0.05892 | 0.04188 |