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Multispectral pedestrian detection has attracted significant attention owing to its advantages, 
such as providing rich information, adapting to various scenes, enhancing features, and diversifying 
applications. However, most existing fusion methods are based on convolutional neural network 
(CNN) feature fusion. Although CNNs perform well in image processing tasks, they have limitations 
in handling long-range dependencies and global information. This limitation is addressed by 
Transformers through their self-attention mechanism, which effectively captures global dependencies 
in sequential data and excels in processing such data. We propose a Multimodal Fusion Transformer 
(MFT) module to effectively capture and merge features. This module utilizes the Transformer’s self-
attention mechanism to capture long-term spatial dependencies of intra- and inter-spectral images, 
enabling effective intra- and inter-modal fusion to improve performance in downstream tasks, such 
as pedestrian detection. Additionally, the Dual-modal Feature Fusion (DMFF) module is introduced to 
more effectively capture between RGB and IR modalities on a broader scale. To assess the network’s 
effectiveness and generalization, various backbones were developed for experimentation, yielding 
impressive results. Additionally, extensive ablation studies were performed, varying the positions and 
quantities of fusion modules to determine the optimal fusion performance.
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In recent years, pedestrian detection has become a prominent research area in computer vision, with extensive 
applications in video surveillance1–3, autonomous driving4–6, and UAV small object detection. Traditional 
methods primarily depend on visible light images, but their effectiveness is limited by factors such as lighting 
conditions7, complex backgrounds, and occlusions8, which can significantly compromise detection accuracy. To 
overcome these challenges, researchers are increasingly exploring the fusion of infrared and visible light images 
to improve pedestrian detection performance9–11.

Infrared and visible light imaging techniques provide complementary information that enhances pedestrian 
detection. As illustrated in Fig.  1, infrared images capture thermal radiation emitted by objects, facilitating 
reliable detection of pedestrians in low-light or nighttime environments. Conversely, visible light images offer 
rich texture information, aiding in the differentiation of pedestrian features. By integrating the advantages of 
these two modalities, a more robust and accurate pedestrian detection system can be developed.

Existing image fusion methods can primarily be categorized into traditional techniques and deep learning-
based approaches. Traditional algorithms typically carry out feature extraction in either the spatial or transform 
domain while relying on manually designed fusion rules. Classical frameworks encompass a variety of techniques, 
including multi-scale transforms, sparse representations, subspace methods, saliency-based approaches, and 
variational models. Although these methods can achieve satisfactory results in many cases, they still have 
some problems. Firstly, they tend to use the same transformations or representations to extract features from 
the source images and fail to take into account the essential differences between the source images. Second, 
manually designed fusion rules and activity level measurements perform poorly in complex fusion scenarios 
with gradually increasing design complexity.
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In contrast, deep learning-based image fusion12 methods primarily address three key challenges: feature 
extraction, feature fusion, and image reconstruction. Based on their network architecture, these methods can be 
categorized into three groups: self-encoder-based methods, self-convolutional neural networks, and generative 
adversarial networks.

Auto-Encoder (AE) framework: Initially, the auto-encoder is pre-trained on large datasets for the purposes 
of feature extraction and image reconstruction., after which deep features are integrated using manually 
designed fusion strategies. Notable examples of such datasets include MS-COCO (Microsoft Common Objects 
in Context) and ImageNet13. However, these manual strategies may not be applicable to deep features, thus 
limiting performance.

Convolutional Neural Network (CNN) framework: This approach achieves end-to-end feature extraction and 
image reconstruction by designing the network architecture and loss function, thereby eliminating the need for 
tedious manual design14. A popular CNN-based image fusion framework constructs a loss function by assessing 
the similarity between the fused image and the source image, guiding the network for end-to-end training15. 
Many mainstream methods focus on building the loss function based on this similarity measurement16. 
Additionally, some CNN-based approaches utilize convolutional networks for feature extraction or activity level 
assessment as components of the overall method17.

Generative Adversarial Network (GAN) framework: image fusion is regarded as an adversarial process 
between a generator and a discriminator. GANs constrain the generator using the discriminator to ensure that 
the generated fusion result aligns with the object distribution, thereby facilitating feature extraction and image 
reconstruction. Current GAN-based fusion methods establish object distributions from source images18 or 
pseudo-labeled images19.

Despite numerous studies on multispectral pedestrian detection, effectively fusing visible and thermal images 
to enhance feature consistency continues to pose challenges. Visible images can capture valuable features, such 
as skin tone and hair, which thermal images do not provide. To tackle this issue, it is essential to develop a 
method that fully leverages the features from visible light while incorporating information from thermal images, 
thus enhancing the accuracy of pedestrian detection.

Many current methods predominantly use convolutional layers to enhance modality-specific features; 
however, the restricted receptive field of these layers hampers their ability to capture long-range spatial 
dependencies. In contrast, Transformers excel at processing sequence data, allowing them to effectively capture 
long-range dependencies. This capability allows for improved integration of information from different sensors 
and enhances the representation of fused features by treating the feature representations of infrared and visible 
images as sequences. Transformer, as a general-purpose sequence modelling module, is able to flexibly handle 
inter-modal feature representations between different modalities to achieve better image information fusion.

The existing Transformer based fusion methods (such as CFT20) mainly have two limitations: (1) single-
stage attention mechanisms are difficult to simultaneously model long-range dependencies within modalities 
and cross modal global interactions; (2) Feature fusion is mostly concentrated at a single scale, lacking 
collaborative enhancement of multi-level semantics. To overcome these limitations, we propose a phased fusion 
paradigm: firstly, the MFT module synchronously enhances intra modal feature consistency and inter modal 
complementarity through a hierarchical self attention mechanism; Secondly, the DMFF module establishes cross 

Fig. 1.  The first column is a RGB image and the second column is an IR image. The first row captures 
images taken at night, where the infrared image distinctly highlights the positions of pedestrians. In contrast, 
the second row showcases daytime images, in which the visible light photograph distinctly highlights the 
background details.
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modal global associations in the high-level semantic space and achieves multi-scale information collaboration 
through dual path feature enhancement. This divide and conquer design enables MFTNet to fully exploit the 
potential of bimodal features from both local global and single scale multiscale dimensions. The key contributions 
of this paper are summarized as follows:

	(1)	 This article proposes a progressive fusion architecture of MFT and DMFF, which synchronously models 
long-range dependencies within modalities and cross-modal semantic associations through a “local-global” 
decoupling design.

	(2)	 This article integrates the dynamic network characteristics of YOLOv11 to construct an efficient adaptive 
detection framework. While maintaining real-time performance, it greatly reduces the number of model 
parameters and significantly improves robustness in complex scenarios.

	(3)	 The broad applicability and high efficiency of this feature fusion method enable seamless integration with 
various backbone networks and detection frameworks, such as ResNet and VGG, thereby improving both 
flexibility and performance.

	(4)	 Through extensive experiments, good results are achieved on the challenging multispectral datasets LLVIP 
and FLIR by our method.

Related works
Multispectral pedestrian detection
The proposal of several infrared and visible datasets, such as FLIR and LLVIP, has garnered significant attention 
from researchers in multispectral pedestrian detection. Recent advances in multimodal registration21 have 
highlighted that robust feature fusion fundamentally requires solving geometric misalignment between 
sensors—a prerequisite often overlooked in existing detection frameworks. Recent studies on multi-focus 
image fusion have demonstrated the effectiveness of adaptive weighting strategies22 and dynamic transformer 
architectures23 in addressing similar cross-domain alignment challenges. Peng et al.24 proposed Hierarchical 
Attentive Fusion Network (HAFNet), an adaptive cross-modal fusion framework aimed at enhancing 
multispectral pedestrian detection performance. Zhang et al.25 proposed TFDet, addressing RGB pedestrian 
detection under low-light conditions and enhancing overall multispectral pedestrian detection performance. 
These approaches align with findings from FusionGCN26, which emphasizes the importance of hierarchical 
feature reconstruction through graph-based interactions. Unlike other methods, this approach thoroughly 
analyzes how noise-fused feature maps affect detection performance, demonstrating that enhancing feature 
contrast significantly mitigates these issues. Bao et al.27 proposed Dual-YOLO, an infrared object detection 
network designed to address high misdetection rates and decreased accuracy resulting from insufficient 
texture information. Yang et al.28 introduced a bi-directional adaptive attention gate (BAA-Gate) cross-modal 
fusion module, which optimizes feature representations from two modalities through attention mechanisms 
and incorporates an adaptive weighting strategy based on illumination to enhance robustness. Wang et al.29 
developed the Redundant Information Suppression Network (RISNet) to suppress cross-modal redundant 
information between RGB and infrared images, facilitating the effective fusion of complementary RGB-
infrared data. Li et al.30 proposed a recurrent multispectral feature refinement method that employs multiscale 
cross-modal homogeneity enhancement and confidence-aware feature fusion to deepen the understanding of 
complementary content in multimodal data and to explore extensive multimodal feature fusion. Cao31 focused 
on generating highly distinguishable multimodal features by aggregating human-related cues from all available 
samples in multispectral images, achieving multispectral pedestrian detection through locally guided cross-
modal feature aggregation and pixel-level detection fusion. Ding et al.32 recently proposed LG-Diff, a diffusion-
based framework that achieves high-quality visible-to-infrared translation in nearshore scenarios through local 
class-regional guidance and high-frequency prior modeling, demonstrating the potential of diffusion models 
in cross-modality feature alignment. Despite significant progress in multispectral pedestrian detection from 
previous studies, CNN convolution-based fusion strategies find it challenging to effectively capture global 
information in both intra-spectral and inter-spectral images. To address this limitation, this paper proposes a 
Transformer-based attention scheme.

Transformers
Transformer, known for its significant breakthrough in NLP and outstanding performance, has garnered 
considerable attention from researchers in computer vision. Increasingly, researchers are applying Transformers 
to various vision tasks, yielding promising results. Carion et al.33 introduced DETR (Detection Transformer), 
marking the inaugural application of Transformer in object detection. Dosovitskiy et al.34 introduced the ViT 
(Vision Transformer) model, which employs a self-attention mechanism for image classification. Esser et al.35 
developed VQGAN (Vector Quantized Generative Adversarial Network), combining Transformer and CNN for 
various applications. Transformer has since been increasingly adopted by researchers in multispectral pedestrian 
detection. Qingyun et al.20 introduced the Cross-Modality Fusion Transformer (CFT), a cross-modal feature 
fusion method designed to fully leverage the combined information from multispectral image pairs, thereby 
enhancing the reliability and robustness of object detection in open environments. Unlike previous CNN-
based approaches, this network learns long-range dependencies guided by Transformer and integrates global 
contextual information during feature extraction. Lee et al.36 proposed a Cross-modality Attention Transformer 
(CAT), aiming to fully exploit the potential of modality-specific features to enhance pedestrian detection 
accuracy. Notably, Ding et al.37 proposed a cross-modality bi-attention transformer (CBT) to decouple and guide 
RGB-thermal fusion in dynamic nearshore environments, demonstrating that transformer-based architectures 
can effectively align global contextual features across modalities while mitigating temporal degradation—a 
critical advancement for multispectral fusion in complex scenarios. Shen et al.38 improved feature fusion in 
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multispectral object detection through a framework that employs dual Cross Attention Transformers, enhancing 
the integration of global feature interactions while simultaneously capturing complementary information 
across modalities. Zang et al.38 introduced two sub-networks, Fusion Transformer Histogram day (FTHd) and 
Fusion Transformer night (FTn), tailored for multispectral pedestrian detection in day and night conditions, 
respectively. However, existing feature fusion methods using Transformer-based self-attention mechanisms have 
not fully exploited the potential of attention to efficiently capture and integrate complementary information 
across different modalities. To address this gap, this paper introduces a cross-modal attention feature fusion 
algorithm, leveraging Transformer architecture for enhanced multispectral pedestrian detection.

Proposed method
Architecture
As shown in Fig. 2, our proposed network model redesigns the YOLOv11 feature extraction network as a two-
stream backbone architecture and embeds MFT and DMFF modules to facilitate cross-modal feature fusion. 
The network consists of four core components: (1) the dual stream CSPDarknet53 backbone network extracts 
multi-scale features from infrared and visible light images, respectively; (2) Embedding MFT modules at various 
feature levels to achieve pixel-level modal interaction; (3) Deploy the DMFF module on the Neck end for high-
level semantic fusion; (4) The detection head completes pedestrian positioning and recognition. This progressive 
architecture preserves modality-specific information through a dual-stream backbone and enhances pedestrian 
detection robustness in complex scenes through the hierarchical fusion of MFT and DMFF.

The MFT module synchronously executes two key tasks in each stage (P3-P5) of the backbone network: 
firstly, establishing global context correlation of unimodal features through self-attention mechanism (Eq. 5) to 
strengthen long-range dependencies within the modality; Secondly, designing a cross-modal Q-K projection 
mechanism (Eqs.  2–4) to my local feature complementarity between modalities through query key-value 
mapping, achieving pixel level cross-modal interactive response. This design does not require explicit geometric 
alignment, but instead adaptively captures semantic correspondences between modalities through attention 
weights.

The DMFF module aggregates multi-level MFT outputs in the Neck section, and its dual path design acts on 
both spatial and channel dimensions: the Spatial Feature Shrinkage (SFS) path suppresses redundant background 
noise through channel attention, while the Cross-Modal Enhancement (CFE) path establishes global channel 
correlations between modalities. This hierarchical fusion strategy enables collaborative optimization of high-
level semantic information (such as pedestrian contours) and low-level geometric details (such as texture edges), 
significantly improving the discriminative ability of feature expression.

The progressive fusion architecture of MFT and DMFF achieves a “locally global” decoupling design: MFT 
processes high-resolution features at various levels of the backbone network and captures pixel level cross-
modal correspondence; DMFF integrates multi-scale information in the high-level semantic space, suppresses 

Fig. 2.  Multimodal fusion backbone framework. Ri and Ti denote the RGB feature mapping and thermal 
modal feature mapping after convolution, respectively. θi denotes the convolution module. MFT represents our 
proposed multimodal feature fusion module, DMFF represents the introduced bimodal feature fusion module.
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background interference, and enhances semantic consistency. The two form a cascade optimization through a 
multi-scale feature pyramid, which gradually improves the detection accuracy from low-level detail alignment to 
high-level semantic correlation, ultimately forming a complementary enhancement effect in complex and varied 
pedestrian detection tasks.

Multimodal fusion transformer (MFT)
An MFT module is proposed to aggregate multispectral features. As illustrated in Fig. 3, the MFT comprises 
SAB, SAM, and MLP modules. This configuration is described by Eq. 1:

	 F i
R+T = (SAB(LN(F i

R + F i
T ))) + (SAM(LN(F i

R + F i
T ))) + (MLP (LN(F i

R + F i
T )))� (1)

F i
R+T ∈ RW ×H×C  represents the fused features at the layer indexed by i, H represents the height of the feature 

map, W the width, and C the total number of channels. respectively. SAB and SAM indicates the feature fusion 
function with a specified parameter, MLP denotes Multilayer Perceptron, LN denotes LayerNorm. F i

R represents 
the RGB feature maps, while F i

T ​ corresponds to the thermal fused features at the layer indexed by i. The spatial 
information from multi-scale input feature maps can be processed, the relationship between input features and 
input channels of different modules can be effectively established, and the interference of background noise can 
be reduced. In the following sections, the SAB and SAM modules will be introduced in detail.

Self attention Block(SAB)
The SAB module mitigates variability between the two modalities through a self-attention mechanism, 
enhancing representation and learning capabilities through local-global attention interactions. This enables 
multi-layer learning of sequence models to effectively extract semantic information regarding location, context, 
and dependencies within the sequences. In SAB, complementary features between different modalities are 

Fig. 3.  (a) Multimodal fusion transformer module, (b) self attention block, (c) self aggregation module.
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obtained to provide spatial weights for the subsequent attention mechanism. CNN convolution has only local 
receptive fields, whereas the Transformer can consider global spatial information. Inspired by20, the Transformer 
is used for cross-modal feature extraction. The details are shown in Fig. 3b.

Initially, the input sequence ϕX  undergoes Layer Normalization before being mapped onto three weight 
matrices to generate a set of queries, keys, and values (Q, K, and V). using the following formulas.

	 Q = φxW Q� (2)

	 K = φxW K � (3)

	 V = φxW V � (4)

WQ, WK and WV are the weight matrices. Furthermore, the self-attention layer calculates the attentional weights 
using the scaled dot product of Q and K, and subsequently multiplies these weights with V to derive the output 
φY .

	
φY = soft max

(
QKT

√
DK

)
V � (5)

Where 1√
DK

 is a scaling factor used to prevent the softmax function from converging to regions with the 
smallest gradient when the dot product becomes large. Subsequently, it passes through a multilayer perceptron 
(MLP) and finally produces the output sequence φZ . The overall formula is as follows:

	 φZ = W φY + φX � (6)

The SAB module focuses on the global dependencies within a single modality through self-attention mechanism. 
As shown in Fig. 3b, its Q/K/V all come from the feature mapping of the same mode, and the feature consistency 
of the mode itself is enhanced through the global interaction within the layer. In contrast, the CFE module 
in DMFF (see “Cross-modal Feature Enhancement”) is specially designed with a cross-modal interaction 
mechanism, where Q comes from one mode and K/V comes from another, to achieve cross-spectral attention 
guidance.

Self aggregation module (SAM)
The feature mapping φZ  is obtained by the self-attentive weighting module, which encompasses feature 
mappings for both RGB and IR modalities. Each feature mapping functions as a feature detector. More weight 
must be assigned to both the visible and infrared feature detectors. We refer to the channel attention block in 
CBAM, which is shown in Fig. 3c. The SAM module performs feature weighting and adaptive fusion along the 
channel dimension using an adaptive gating mechanism, thereby enhancing feature expressiveness and diversity.

The input consists of the hybrid feature mapping φz ∈ RW ×H×C ​, which is normalized using Layer Norm 
across each feature dimension of every sample, ensuring that each feature has a mean of 0 and a variance of 
1. Subsequently, the normalized data is fed into a multilayer perceptron (MLP) comprising two linear layers 
and a Gelu activation function. The sigmoid activation function then generates the channel attention weights 
φW ∈ RC×1×1. Finally, the output feature mapping φo is obtained. The specific formula is as follows:

	 φW = Sig mod (MLP (LN(φZ))� (7)

	 φO = W φW + φZ � (8)

Dual-modal feature fusion
The DMFF module consists of two primary components: the Spatial Feature Shrinkage module and the Cross-
modal Feature Enhancement module, Which is illustrated in Fig. 4. Detailed descriptions of these modules are 
provided in the following sections.

Spatial feature shrinking
In the Spatial Feature Shrinkage (SFS) module, we employ two commonly used pooling methods in deep 
learning: average pooling and maximum pooling. Average pooling effectively captures the overall information 
of an image by calculating the average of pixel values within the pooling window, whereas maximum pooling 
emphasizes salient features by selecting the maximum value from that same window. Each method offers distinct 
advantages: average pooling enhances global information integration, while maximum pooling focuses on local 
key features. To capitalize on the advantages of both approaches, we introduce an adaptive weighted pooling 
mechanism inspired by hybrid pooling39. This mechanism enables flexible adjustment of the weights for average 
and maximum pooling, facilitating more effective extraction of both global and local image features. This 
operation can be expressed as:

	

avg1 = AvgP ool(FR), max 1 = MaxP ool(FR)
avg2 = AvgP ool(FI), max 2 = MaxP ool(FI)

� (9)
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TR = λrgb · avg1 + (1 − λrgb) · max 1
TI = λir · avg2 + (1 − λir) · max 2

� (10)

Where, FR and FI represent the for-input feature mapping for visible and infrared images respectively. λrgb and 
λir  represent the weights between 0 and 1, which is a learnable parameter. TR and TI are the visible and infrared 
images obtained by hybrid pooling respectively.

Cross-modal feature enhancement
The input feature mappings FR and FI ∈ RH×W ×C  are passed through the SFS module to obtain a set of tokens 
TR, TI ∈ RHW ×C . These are then used as inputs to the CFE module. Given that RGB-IR image pairs often do 
not align perfectly, two distinct CFE modules are utilized to extract complementary information, enhancing 
both RGB and IR features. The parameters of these two CFE modules remain separate. In Fig. 5, for the sake of 
clarity, only an example of the CFE module for the thermal branch is illustrated, as shown in Eq. 11:

TR and TI represent the RGB and IR feature representations extracted from the input for the CFE module. 
Here, T ′′

I  represents the IR image features enhanced through the CFE module, while ΓCF E−I(·) represents the 
IR branching CFE module.

The CFE module functions as follows: First, tokens from the IR modality TI​ are projected onto two 
independent matrices VI, KI​ to generate a set of values and keys. Next, tokens from the IR modality TR​ is mapped 
onto a different independent matrix QR​ to derive a set of queries, as expressed in the following equation:

	 T ′
I = ΓCF E−I({TR, TI})� (11)

The cross-modal features output by the CFE module is enhanced through a feedforward network (FFN), which 
involves two mechanisms: (1) fusing complementary features extracted by cross-modal attention through the 
nonlinear transformation of multi-layer perceptrons; (2) By using residual connections to preserve the original 
modal features, an enhanced structure of “cross-modal interaction + intrinsic feature enhancement” is formed. 
Specifically, the activation function in FFN (such as GELU) provides non-linear representation capability for 
cross-modal features, while layer normalization ensures the stability of feature distribution, allowing thermal 
modal features to adaptively absorb texture clues from visible light modes, and vice versa.

Fig. 5.  Shows the details of the Cross-modal Feature Enhancement module. This module enhances feature 
representations by integrating information from different modalities, with the goal of improving the overall 
performance of multispectral pedestrian detection systems.

 

Fig. 4.  This figure illustrates the DMFF module, which includes both the SFS and the CFE module.
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	 VI = TIW V , KI = TIW K , QR = TRW Q� (12)

WQ, WK, WV  denotes the weight matrix.
Subsequently, a matrix is created using the dot product operation, which is then normalized via the softmax 

function to produce correlation scores that indicate the resemblance between the features of the RGB and IR 
modalities. This similarity is then utilized to enhance the RGB features by performing a multiplication of the 
matrix and the vector VI​, yielding the vector ZI​. Additionally, a multi-attention mechanism is incorporated to 
enhance the model’s understanding of the relationship between RGB and thermal features.

	
ZI = soft max

(
QRKT

I√
DK

)
· VI � (13)

	 T ′
I = α · ZIW O + β · VI � (14)

	 T ′
I = γ · T ′

I + δ · F F N(T ′
I)� (15)

Third, the tensor I is transformed reverted to the original domain using a nonlinear mapping and then combined 
with the input sequence via a residual link (Eq. 14), where WO refers to the output weight matrix prior to the 
FFN layer.

Finally, a two-layer fully-connected feedforward network (FFN) within the conventional Transformer 
framework is used to enhance the global information further, there by enhancing the model’s robustness and 
accuracy, and outputting the enhanced features T ′′

I ( Eq. 15). Where α, β, γ, δ represents all learning parameters.

Experiment
Experimental settings
Datasets
Next, we evaluate the effectiveness of our proposed method through experiments conducted on two publicly 
available multispectral datasets: LLVIP and FLIR.

LLVIP. The LLVIP dataset comprises 33,672 infrared and visible image pairs, totalling 16,836 pairs. It 
was trained and tested with 12,025 and 3,463 image pairs, respectively, predominantly captured in low-light 
conditions, with strict temporal and spatial pairing.

FLIR. The FLIR dataset includes 5,142 aligned RGB-IR image pairs capturing both day and night scenes. Of 
these, 4,129 pairs were utilized for training, while 1,013 pairs were set aside for testing. The dataset encompasses 
three object classes: “person,” “car,” and “bicycle.” Due to the lack of alignment in the original dataset, we utilized 
the FLIR-aligned dataset for our experiments.

Evaluation indicators
For the evaluation of these two publicly available datasets, we employed the mean Average Precision (mAP), a 
widely used metric in pedestrian detection. This metric encompasses mAP50, mAP75, and mAP. Specifically, 
mAP50 averages AP values across all categories at IoU = 0.50, while mAP75 does so at IoU = 0.75. The mAP 
metric aggregates AP values across IoU thresholds between 0.50 and 0.95, with a step of 0.05. Higher values of 
these metrics indicate better performance of our method on the respective dataset.

Realization details
The code of MFTNet is implemented in PyTorch. The experiments are performed on 7 NVIDIA GeForce GTX 
1080 Ti GPUs, with an input resolution of 640 × 640 pixels and a batch size of 28. All parameters in the network 
are updated using the SGD optimizer with an epoch of 200. We take the training weights of YOLOv11 on the 
COCO dataset as our pre-training weights.

Quantitative results
Evaluation of the LLVIP Dataset. Table 1 compares the performance of our network with other methods. Our 
approach achieves state-of-the-art results on this dataset, demonstrating significant performance improvements. 
Specifically, it outperforms other multimodal networks by a minimum of 0.6% and a maximum of 12.6% in 
terms of mAP50. When compared to the state-of-the-art RSDet40 using ResNet50, our method shows superior 
performance with improvements of 0.6% and 1.4% in mAP50 and mAP, respectively.

Figure 6 demonstrates our method’s detection performance on the LLVIP dataset through three key scenarios: 
(a) Distinctive Features Detection, (b) Occlusion Detection, and (c) Overlap Detection. The visualization shows 
consistent accuracy in pedestrian identification across varying scales and lighting conditions. Particularly, our 
approach maintains robust detection capability even in challenging cases with significant occlusion (b) and 
dense object overlap (c), while preserving fine feature discrimination (a).

Figure 7 shows the experimental results of MFTNet with other state-of-the-art methods on the LLVIP dataset. 
As can be seen from the figure, our method achieves state-of-the-art results on the evaluation metric of mAP.

As shown in Table 2, our method achieves state-of-the-art performance in most categories, with a 75.4% 
mAP50 that surpasses BU-LTT51 (73.2%) and ThermalDet52 (74.6%). This superiority stems from three key 
innovations:

	(1)	 Global Cross-modal Interaction: Compared to CNN-based methods (e.g., BU-ATT51 with 73.1% mAP50), 
our Transformer-based MFT module (“Multimodal fusion transformer (MFT)”) establishes pixel-wise 
long-range dependencies between RGB and IR modalities through self-attention mechanisms (Eq. 5). This 

Scientific Reports |        (2025) 15:18778 8| https://doi.org/10.1038/s41598-025-03567-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


enables adaptive fusion of complementary features, particularly improving pedestrian detection by 12.6% 
over YOLOv5s.

	(2)	 Hierarchical Feature Enhancement: The DMFF module (“Dual-modal feature fusion”) synergizes mul-
ti-scale features through dual-path fusion (SFS + CFE), significantly boosting car detection accuracy to 
88.3% (+ 8.3% vs. YOLOv5s). As evidenced by ablation studies (Table 5), the combined use of MFT and 
DMFF contributes 2.6% mAP improvement.

	(3)	 Computational Efficiency: Despite its superior performance, our model maintains lightweight with only 
12.4 M parameters (Fig. 8), achieving 39.4% mAP that outperforms ResNet50-based methods (e.g., RSDet40 
at 61.3% mAP with 95.8 M parameters).

Fig. 6.  Visualizing the results on the LLVIP dataset, pedestrians can be accurately detected even if they are 
occluded by an object.

 

Methods Data Backbone mAP50↑ mAP↑
Halfwayfusion41 RGB + IR VGG16 91.4 55.1

GAFF42 RGB + IR ResNet18 94.0 55.8

ProbEn43 RGB + IR ResNet50 93.4 51.5

CSAA44 RGB + IR ResNet50 94.3 59.2

RSDet40 RGB + IR ResNet50 95.8 61.3

FusionGAN45 RGB + IR GAN 83.8 48.1

GANMcC46 RGB + IR GAN 87.8 49.8

NestFuse47 RGB + IR Encoder–decoder 86.9 49.7

DenseFuse48 RGB + IR Encoder–decoder 88.2 50.4

SDNet27 RGB + IR – 86.6 50.8

U2Fusion49 RGB + IR VGG 87.1 47.6

DIVFusion50 RGB + IR Encoder–decoder 89.8 52.0

Ours RGB + IR CSPDarknet53 96.4 62.7

Table 1.  Comparison with advanced techniques on the LLVIP dataset.
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The visualization in Fig. 9 further validates our method’s robustness in cross-modal scenarios, where attention 
maps (Fig. 10) demonstrate effective suppression of background interference while preserving critical pedestrian 
contours.

Comparison of parameter counts and accuracy on the FLIR dataset: In the FLIR dataset, we conducted a 
detailed comparison of various detectors in terms of parameter count and detection accuracy. As shown in 
Fig. 8, our detector achieved higher detection accuracy (75.4% mAP@50) while maintaining a relatively small 
parameter count (12.41 M). Compared to other multispectral detectors, our approach strikes a better balance 
between model complexity and performance.

To verify the cross-modal detection capability of our method, we conducted visual analysis on the FLIR 
dataset. As shown in Fig.  9, the results are organized into three key scenarios: (a) Occlusion Detection, (b) 

Methods Person↑ Bicycle↑ Car↑ mAP50↑
Faster R-CNN53 39.6 54.7 67.6 67.6

SSD54 40.9 43.6 61.6 48.7

RetinaNet55 52.3 61.3 71.5 61.7

FCOS56 69.7 67.4 79.7 72.3

MMTOD-UNIT53 49.4 64.4 70.7 61.5

MMTOD-CG53 50.3 63.3 70.6 61.4

RefineDet57 77.2 57.2 84.5 72.9

TermalDet52 78.2 60.0 85.5 74.6

YOLOv3-tiny58 67.1 50.3 81.2 66.2

IARet58 77.2 48.7 85.8 70.7

CMPD59 69.6 59.8 78.1 69.3

PearlGAN60 54.0 23.0 75.5 50.8

YOLOv5s58 68.3 67.1 80.0 71.8

YOLOF61 67.8 68.1 79.4 71.8

CFR62 74.4 57.7 84.9 72.4

BU-ATT51 76.1 56.1 87.0 73.1

BU-LTT51 75.6 57.4 86.5 73.2

Ours 80.9 57.1 88.3 75.4

Table 2.  Comparison with advanced techniques on the FLIR dataset.

 

Fig. 7.  Visualisation of MFTNet with other state-of-the-art methods on the LLVIP dataset on the evaluation 
metric for mAP.
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Overlap Detection, and (c) Remote Detection, presented in a multi-scene grid layout. Different colored bounding 
boxes (blue for pedestrians, orange for vehicles, green for cyclists) clearly indicate detected objects across various 
conditions. The visualization demonstrates our method’s robust performance in accurately identifying targets 
despite occlusion, overlapping objects, or long distances, providing intuitive validation of the cross-modal 
detection mechanism.

Figure 11 shows the experimental results of MFTNet with other state-of-the-art methods on the FLIR dataset. 
As can be seen from the figure, our method achieves state-of-the-art results on the evaluation metric of mAP.

Qualitative analysis
Figure 10 depicts a sample of the visualization results illustrating daytime and nighttime attention maps on the 
LLVIP and FLIR datasets. In the second and fifth columns of the figure, the baseline approach demonstrates 

Fig. 9.  Visualize results on FLIR dataset.

 

Fig. 8.  Parameter vs. accuracy on the FLIR dataset.
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less comprehensive coverage of various regions in the input image. Conversely, in the third and sixth columns, 
our approach effectively utilizes global spatial positioning data and correlations between different objects to 
comprehensively capture all objects. In different datasets, the experimental results of the mAP50 rate are shown 
in Fig. 12.

Fig. 11.  Visualisation of MFTNet with other state-of-the-art methods on the FLIR dataset on the evaluation 
metric for mAP.

 

Fig. 10.  The first and third rows are visible light images and the second and fourth rows are infrared images. 
The second and fifth columns visualize the baseline method, and the third and sixth columns visualize our 
method.
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Ablation study
Comparisons with different backbones
To assess the effectiveness of the MFT and DMFF modules, experiments were first performed on the YOLOv11 
detector using three different backbones: ResNet50, VGG16, and CSPDarkNet53. The results from the FLIR 
dataset, shown in Table  3, demonstrate that our approach using ResNet50, VGG16, and CSPDarkNet53 
outperformed the baseline method, achieving improvements of 0.8%, 1.6%, and 2.9% in representative mAPs, 
respectively. Thus, it is concluded that our method is applicable to a variety of backbone networks.

Figure 13 illustrates the results of our ablation experiments conducted on the YOLOv11 detector using three 
different backbone networks: ResNet50, VGG16, and CSPDarkNet53. The bar chart compares the performance 
of our proposed method against the baseline for each backbone. As shown, our approach consistently 
outperforms the baseline across all three backbones, with the most significant improvement observed when using 
CSPDarkNet53. These results highlight the versatility of our method across different backbone architectures and 
its effectiveness in enhancing detection performance.

Effects of different module positions
As shown in Fig. 14, this section presents the mAP50, mAP75, and mAP values for various positions and numbers 
of MFT modules on the FLIR dataset. Table 4 presents the positional details of these modules. The results in 
Table 4 indicate that the highest mAP index values, 75.4%, 34.1%, and 39.4%, correspond to the positions of the 
MFT fusion modules at layers 3, 4, and 5, respectively. The Continued increase in the number of fusion modules 
results in a decrease in the mAP metric. Therefore, we conclude that the optimal fusion position occurs after the 
convolution of the third, fourth, and fifth layers.

Ablation of different modules
To assess the effectiveness of the MFT and DMFF modules, we excluded these modules from our method. Table 5 
shows that integrating the MFT module enhances the mAP performance of the LLVIP dataset by 1.1% and the FLIR 
dataset by 1.9% compared to the baseline. Similarly, integrating the DMFF module enhances the mAP performance 
by 0.5% for the LLVIP dataset and 1.0% for the FLIR dataset compared to the baseline. Introducing both MFT and 
DMFF modules results in an improved mAP performance of 2.3% for the LLVIP dataset and 2.9% for the FLIR dataset 

Detector Backbone Methods Params(M)↓ mAP50↑ mAP75↑ mAP↑

YOLOv11

ResNet50
Baseline 48.73 69.5 29.5 34.8

Ours 103.32 72.1 31.2 35.6

VGG16
Baseline 40.53 68.5 27.9 32.8

Ours 83.17 70.1 29.4 34.4

CSPDarkNet53
Baseline 3.95 72.1 31.3 36.8

Ours 12.41 75.4 34.1 39.4

Table 3.  Comparison of baselines with our method in different network backbones on the FLIR dataset.

 

Fig. 12.  Training process of mAP50 different dataset.
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compared to the baseline. Overall, the experimental results exhibit consistent trends, particularly in the mAP metrics. 
These results clearly demonstrate the effectiveness of these modules.

Comparison with different input modalities
To demonstrate the overall effectiveness of our proposed method, we configured separate input modes for comparison 
and conducted tests on the FLIR dataset. Table  6 presents the evaluation of the experimental results, including 
efficiency (i.e., network parameters) and effectiveness (i.e., mAP50, mAP75, and mAP). Our method significantly 
enhances the performance of multispectral object detection compared to unimodal and conventional bimodal inputs.

MFT DMFF

LLVIP FLIR

mAP50 mAP75 mAP mAP50 mAP75 mAP

94.8 69.6 60.4 72.1 31.3 36.8

√ 95.2 70.8 61.5 74.5 33.0 38.4

√ 96.1 71.2 60.9 72.6 32.9 37.5

√ √ 96.4 71.5 62.7 75.4 34.1 39.4

Table 5.  Ablation studies of MFT and DMFF modules using mAP50, mAP75 and mAP as evaluation metrics.

 

1 2 3 4 5 mAP50 mAP75 mAP

√ √ √ √ √ 73.4 33.5 38.2

√ √ √ √ 74.1 32.1 37.6

√ √ √ 75.4 34.1 39.4

Table 4.  Differences in the performance of fusion modules at different locations on the FLIR dataset.

 

Fig. 14.  MFT modules in different positions and in different quantities.

 

Fig. 13.  The bar chart indicates that our modules are embedded in different network backbones.
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Conclusions
We propose an innovative cross-modal feature fusion framework aimed at overcoming the drawbacks of CNN-
based multispectral fusion techniques, particularly their constrained receptive domain that focuses primarily on local 
feature interactions. Specifically, we introduce a Transformer-based self-attentive fusion module that unifies intra- 
and inter-modal information, effectively addressing existing limitations. This framework enhances the model’s ability 
to elucidate relationships between different modalities, thereby improving the comprehensiveness and accuracy of 
feature fusion in multispectral object detection tasks. Additionally, we conducted numerous ablation experiments to 
demonstrate our method’s effectiveness, achieving 65.1% and 77.3% accuracy on the challenging LLVIP and FLIR 
datasets, respectively, surpassing current state-of-the-art techniques. Moving forward, we will explore a streamlined 
and efficient cross-modal feature fusion framework in-depth to meet the multimodal task requirements across 
various domains. Furthermore, we intend to extend our approach to broader application areas, encompassing object 
detection, behavioural analysis, and multimodal tasks like environment perception, to address diverse challenges and 
requirements. We aim to contribute further to the advancement of multimodal data processing through ongoing 
research and practical applications, promoting the adoption and application of related technologies.

Data availability
The datasets used during this study are publicly available in the [LLVIP] and [FLIR] repository at ​[​h​t​t​p​s​:​/​/​b​u​p​t​-​a​
i​-​c​z​.​g​i​t​h​u​b​.​i​o​/​L​L​V​I​P​/​] and [https://www.flir.com/oem/adas/adas-dataset-form/].
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