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Coronary artery disease (CAD) commonly occurs and elevates the risk of cardiovascular events and 
mortality in chronic kidney disease (CKD) patients. The underlying pathogenesis of CKD-related CAD 
is believed to be closely linked to inflammatory responses. Here, we explored inflammation-related 
markers for early diagnosis and management of CAD in CKD patients. Through comprehensive 
bioinformatics analysis and machine learning techniques, glutamate cysteine ligase modifier subunit 
(GCLM), nuclear protein 1 (NUPR1), and prostaglandin E receptor 1 (PTGER1) were selected as hub 
biomarkers. Furthermore, GCLM and NUPR1 were demonstrated significantly upregulated in the two 
validation cohorts of CKD patients with or without hemodialysis, while the change in PTGER1 was not 
prominent. Additionally, GCLM and NUPR1 were identified as promising indicators to predict CAD in 
CKD patients. Our study deciphered the higher predictive genes for CAD associated with CKD that is 
related to inflammation, which provides novel insights into the diagnosis and therapeutic options.
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Cardiovascular disease (CVD), which has a prevalence of up to 50% in advanced chronic kidney disease (CKD), 
is responsible for 40–50% of the deaths in this population1. As is well known, coronary artery disease (CAD), 
a CVD characterized by atherosclerotic lesions and blockage of vessels2, has a significantly higher incidence 
in patients with CKD than that in the general population3,4. Moreover, the clinical manifestations and main 
symptoms of CAD become less typical in the setting of renal dysfunction and the potential risks of adverse 
effects during interventions are also significantly higher, making the management of CAD particularly complex 
for patients with advanced CKD5. Thus, it is critical to achieve early diagnosis and management of CAD in CKD 
to reduce mortality and improve prognosis.

Mechanistically, it has been established that inflammation drives and orchestrates the early coronary artery 
disease6. Recently, anti-inflammatory treatments have been shown to have promising effects in regressing 
atherogenic plaques and altering the course of CAD7–9. In patients with CKD, as renal function deteriorates, 
uremia, oxidative stress, and reduced clearance of inflammatory factors often result in an increased inflammatory 
state, which may be one of the reasons for triggering and exacerbating the risk of CAD. Therefore, evaluating 
the increased inflammatory risk is expected to provide new perspectives for predicting and managing CAD in 
patients with CKD10.
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In recent years, with the widespread application of bioinformatic technologies and machine learning in 
medicine, numerous novel genes that can serve as biomarkers and therapeutic targets have been discovered in 
various human diseases11,12. Although clinical research have shown that inflammation plays an important role in 
the pathophysiological process of CAD13, there is currently no study that has explored the inflammation-related 
genes associated with a high risk of CAD in patients with CKD through comprehensive bioinformatic methods 
combined with validation in real-world populations. In the present study, we analyzed databases GSE113079, 
GSE37171, and GSE70528 using multiple machine learning methods, screened for specific inflammation-related 
genes, and constructed an optimal diagnostic model for CAD in patients with CKD. Furthermore, we validated 
these genes in CKD patients at different stages, providing promising biomarkers and therapeutic targets for 
predicting the risk of CAD in CKD patients.

Results
Screening DEGs in CAD
As shown in Fig. 1, the flowchart of bioinformatics analysis was performed. To detect differentially expressed 
genes (DEGs) related to CAD, the original dataset included 93 CAD and 48 healthy samples was collected 
from the Gene Expression Omnibus (GEO) repository. The box plot revealed the raw data before and after 
removing batch effect (Fig. 2A,B). The medial value of the box plot was at the same level, showing that the data 
preprocessing effect was effective. Differential analysis in CAD dataset revealed 2882 DEGs by p ≤ 0.05 and |log2 
(fold change) |≥ 0.585, including 1544 upregulated genes and 1338 downregulated genes (Fig. 2C). Out of these, 
the top 20 upregulated genes and top 20 downregulated gens are presented in the form of heatmap (Fig. 2D).

The construction of Weighted gene co-expression network analysis (WGCNA) and 
identification of key module genes
To detect the key genes in CAD, WGCNA was performed to analyze cohesive gene networks and their gene 
association patterns. We calculated the soft threshold power according to scale independence and mean 
connectivity, which was most suitable when set to 3 (Fig. 3A,B). As shown in Fig. 3C, 25 modules were selected while 
using the soft threshold power of 3. The blue module was found to have the most significant positive correlation 
with CAD according to the analysis of the relationship between these modules and CAD (Correlation = 0.85, 
P value = 5e-40) (Fig. 3D). The genes of this module were chosen as the main module. Comparing these genes 
to the DEGs, 995 overlapping genes were identified as crucial genes in CAD for subsequent analysis (Fig. 3E).

Fig. 1.  Flow chart of this study. CAD, coronary artery disease; CKD, chronic kidney disease; DEGs, 
differentially expressed genes; WGCNA, Weighted gene co-expression network analysis; LASSO, least absolute 
shrinkage and selection operator; RF, random forest; ROC, receiver operating curve.
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Functional enrichment analysis of crucial genes in CAD
To better understand the potential pathogenic mechanism in CAD, we conducted Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analyses to explore the functions of 
crucial genes. According to the result presented in Fig. 4A–C, genetic biological processes are mainly including 
signal transduction, cell–cell signaling, cell–cell adhesion, leukocyte migration in inflammatory response. 
Moreover, the genetic cellular components were mainly localized to plasma membrane, extracellular space 
and cell face. The genetic molecular function mostly focused on G protein-coupled receptor activity, signaling 
receptor binding and cytokine activity. KEGG pathway analysis indicated that the crucial genes in CAD are 
mainly involved in cytokine-cytokine receptor interaction and leukocyte transendothelial migration (Fig. 4D). 
Following the GO and KEGG pathway enrichment analyses, it has been implicated that inflammatory response 
plays a fundamental role in CAD formation and development. Given the established role of inflammatory 
response, our research aims to unravel their significance in CAD process.

Identification of IRGGs in CKD-related CAD
It is widely acknowledged that CAD was more prevalent in CKD than general populations, and the incidence of 
CAD increases with sustained decreases in kidney function17.To obtain the shared genes for CKD and CAD, we 
acquired the CKD PBMC dataset GSE37171 and GSE70528 from GEO dataset. We integrated the two datasets 
after removing the batch effect, and performed the principal component analysis of the integrated dataset. After 
batch effect removal, the differences between two datasets were significantly decreased, as demonstrated by the 
results (Fig. 5A,B). A total of 1721 genes were identified by adjusted p ≤ 0.05 and |log2 (fold change) |≥ 0.585 after 
pretreatment in integrated dataset, including 509 upregulated genes and 1212 downregulated genes (Fig. 5C). 
The top 20 significantly upregulated genes and downregulated genes were presented as heatmap (Fig. 5D). Using 
a relative score ≥ 5 as the screening threshold, we identified 4,238 IRGGs from GeneCards database. To shed 
more light on inflammatory response on their significance in CKD with CAD, a Venn diagram revealed 14 
overlapping DEGs among CKD, CAD and IRRGs (Fig. 5E).

Identification of hub genes by machine learning in CKD related CAD
To obtain the hub genes of CKD with CAD, two different machine learning algorithms were utilized to screen 
genes. The least absolute shrinkage and selection operator (LASSO) algorithm was employed to delve into 
potential inflammatory response genes in CAD (Fig. 6A,B). Additionally, we performed by random forest (RF) 
machine learning algorithm to rank the overlapping genes with the MeanDecreaseGini > 2 were extracted, as 
demonstrated in Fig. 6C. Identifying hub genes for CKD was carried out using the same methods (Fig. 6D–F). 
Based on the information contained in this, three hub genes nuclear protein 1 (NUPR1) , glutamate cysteine 

Fig. 2.  The procession of CAD dataset and differentially expression analysis of CAD. (A) Box plot of 
normalization of data from 141 samples. (B) UMAP for GSE113079. (C) The volcano plot illustrating 
CAD DEGs in GSE113079. Upregulated gene were represented by red dots, while downloaded genes were 
represented by bule dots. (D) Heatmap of the top 20 upregulated and 20 downregulated DEGs in GSE113079. 
CAD, coronary artery disease; DEGs, differentially expressed genes.
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Fig. 3.  Identification of key module genes in CAD dataset by WGCNA and determination of key genes in 
CAD via overlapping DEGs and key module genes. (A, B) Identification of the best β value through scale 
independence and mean connectivity. (C) The dendrogram and module eigengenes. (D) Correlation between 
WGCNA modules and status of CAD. (E) The intersection of DEGs and key module gens through venn 
diagram. CAD, coronary artery disease; WGCNA, Weighted gene co-expression network analysis; DEGs, 
differentially expressed genes.
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ligase modifier subunit (GCLM) and prostaglandin E receptor 1 (PTGER1) were identified that could serve as 
hub genes related inflammatory response for CKD and CAD (Fig. 6G).

Validation of hub genes
To evaluating the accuracy of the hub genes, receiver operating characteristic (ROC) curves were constructed 
utilizing both the training and validation sets. We split CAD dataset into a training set and a validation set at a 
7:3 ratio. As we expected, three hub genes exhibited AUC values > 0.9 in training set (Fig. 7A,B). Consistently, 
the validation cohort presented AUC value > 0.9 (Fig. 7C,D). The result showed that the three hub genes have 
certain diagnostic value for CAD.

Immune cell infiltration in CAD and CKD
Given that CKD with CAD is closely associated with inflammatory response, CIBERSORT was employed to 
analyze the proportion of immune infiltration cell. Figure 8A exhibited the distribution of 22 types immune 
cells in each sample. The result indicated that CAD exhibited higher T cells CD4 naive, T cells regulatory, T cells 
gamma delta, Monocytes, Macrophages M0, whereas lower T cells CD8, T cells CD4 memory resting, T cells 
CD4 memory activated, NK cells activated, Dendritic cells activated, Mast cells activated (Fig. 8B). We further 
explored the relationship between individual immune cells. As shown in Fig. 8C, T cells CD8 had a significant 
negative correlation with Monocytes (r = − 0.74), while Mast cells activated were positively related with NK 
cells activated (r = 0.47). To investigate the correlation between hub genes and immune cells. As presented in 
Fig.  8D, the hub genes were positively correlated with T cells regulatory, T cells gamma delta, T cells CD4 
naive, Monocytes and Macrophages M0 in CAD. The findings suggested that three genes may be essential in the 
pathogenesis of CAD by affecting the infiltration of immune cells.

External validation of hub genes
To further confirm the potential applicability and diagnostic efficacy of the three hub genes, we conducted 
validation experiments in CKD patients with or without CAD, consisting of 150 maintenance hemodialysis 
(MHD) patients and 42 non-MHD stage 3–5 CKD patients. As detailed in Tables 1 and 2, there were no 
statistically significant differences between the two groups in baseline characteristics except for age. In MHD 
patients, apart from PTGER1, both GCLM and NUPR1 were significantly elevated in CAD patients versus non-

Fig. 4.  Functional enrichment analysis of key genes in CAD. (A) Bar plots of GO biological process 
enrichment analysis. (B) Bar plots of GO cell component enrichment analysis. (C) Bar plots of GO molecular 
function enrichment analysis. (D) The chord plot showing KEGG enrichment pathway results. CAD, coronary 
artery disease; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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CAD patients (Fig. 9A–C). Notably, the ROC curves proposed that GCLM and NUPR1 harbored a promising 
performance to predict CAD. The AUCs of NUPR1 and GCLM were 0.744 and 0.823, respectively. The combined 
analysis of two genes further improved diagnostic accuracy for CAD, achieving an AUC of 0.860 (Fig. 9D,E). 
These findings were supported by analysis of the non-MHD stage 3–5 CKD population, which showed that the 
expression of GCLM and NUPR were increased in CAD group compared with the non-CAD group except for 

Fig. 5.  The integration of CKD datasets and identification of IRGGs in CKD related CAD. (A, B) PCA plots of 
two CKD datasets before and after batch-effect correction. (C) The volcano plot showing DEGs of integrated 
CKD dataset. Upregulated gene were represented by red dots, while downloaded genes were represented by 
bule dots. (D) The heatmap presenting the top 20 upregulated and 20 downregulated DEGs of integrated 
CKD dataset. (E) The intersection of key genes in CKD related CAD and IRGGs through venn diagram. CKD, 
chronic kidney disease; IRGGs, inflammatory response-related genes; CAD, coronary artery disease; DEGs, 
differentially expressed genes; PCA, principal component analysis.
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PTGER1 (Fig. 9F–H). ROC curves of NUPR1 (AUC = 0.736), GCLM (AUC = 0.734), and the combined two-
gene (AUC = 0.831) demonstrated their promising diagnostic utility for CAD detection in CKD populations 
(Fig. 9I,J).

Discussion
With increasing severity of renal dysfunction, the impact of CAD on patients with CKD gradually becomes 
heavier14,15. To reduce the burden, in our study, we for the first time screened the inflammation- related 
biomarkers to predict CAD in CKD patients by applying comprehensive bioinformatics analysis approaches. 
Totally, we identified three hub genes (GCLM, NUPR1 and PTGER1), and further validation work in two CKD 
cohorts confirmed that GCLM and NUPR1 have higher predictive value for CAD, providing novel insights into 
early diagnosis and management strategies.

Microinflammatory state disrupts immune tolerance and induces endothelial inflammation, promoting 
lipid deposition and platelet aggregation that culminate in atherosclerotic plaque formation and that impair 
coronary microvascular structure and microcirculatory function16. Consistent with previous studies, our GO 
and KEGG enrichment analysis of CAD-related crucial genes revealed significant enrichment in inflammatory 
pathways such as cytokine-cytokine receptor interaction and leukocyte transendothelial migration. Cytokines 
produced by activated inflammasomes drive inflammation, promote endothelial cell proliferation, and 
further facilitate the recruitment and activation of additional inflammatory cells17. This complex cascade 
underscores the critical role of cytokines in the pathophysiology of atherosclerosis. Extensive preclinical and 
clinical studies have revealed the infiltration of diverse immune cells within atherosclerotic plaques. In CAD 
patients, CD4 + T cells contribute to endothelial injury and macrophage activation through pro-inflammatory 
cytokine secretion. Under sustained local microenvironmental stimulation, these T cells differentiate into Th1, 
Th2, or Th17 subsets, thereby amplifying inflammatory responses18. Our study corroborates these findings by 
demonstrating significant differences in immune cell infiltration between CAD patients and healthy controls. 
Immune cell profiling in CAD patients revealed a predominance of monocytes, which serve as central drivers 
of atherosclerosis. Monocytes were significantly elevated in CAD patients and correlated with disease severity19. 
In independent models, reduction in circulating monocytes attenuates atherosclerotic lesion development20.

Accumulating evidence demonstrates that inflammation represents a fundamental pathological feature 
of CKD and a key pathogenic process in the progression to end-stage renal disease (ESRD)21. Indeed, this 
persistent microinflammatory state is a hallmark of CKD and contributes to adverse cardio renal outcomes22–24. 
Therefore, we further performed an intersection analysis among CAD-related genes, CKD-related genes, and 
inflammation-related genes, screening out 14 differentially expressed genes. Numerous studies have confirmed 
that RF and LASSO regression exhibit robust predictive performance in screening key genes11,25. Through in-
depth analyses using these two machine learning algorithms, we ultimately identified three hub genes (NUPR1, 
GCLM, and PTGER1), which are of great significance for identifying inflammatory biomarkers of CAD and 
promising therapeutic intervention targets.

NUPR1 serves as a multifunctional stress-induced protein participating in various cellular stress responses26. 
NUPR1 promotes pathological inflammation in pancreatic ductal adenocarcinoma cells both in vivo and in 
vitro27. A recent study has found that NUPR1 is not only upregulated in the aorta of atherosclerotic mice but also 
significantly increased in peripheral blood mononuclear cells of CAD patients28. In line with the above findings, 
as a key regulator of inflammation and immunity, our results demonstrated that NUPR1 was upregulated 
in the peripheral blood of CKD patients with CAD. In vascular endothelial cells, the inflammatory inducer 
LPS significantly upregulates NUPR1 protein expression, and knockdown of NUPR1 inhibits LPS-induced 
autophagy in these cells29. This finding supports our conclusion that NUPR1 plays a crucial role as a regulatory 
molecule involved in CAD-associated inflammation. However, further investigation is needed to determine the 
exact molecular mechanism.

GCLM, functioning as a modified subunit, along with the catalytic subunit GCLC, constitutes a crucial 
enzyme called glutamate cysteine ligase (GCL). GCL serves as the pivotal rate-limiting factor in the synthesis 
of glutathione (GSH), which plays a vital role as an antioxidant and scavenger of free radicals in vivo30. It is 
common knowledge that ROS directly induces and aggravates the inflammation responses in CAD31. The 
downregulation of GCLC/GCLM expression and subsequent decrease in total cellular GSH levels are strongly 
associated with microvascular dysfunction in atherosclerosis32. Conversely, administration of GSH precursors 
can stimulate intracellular synthesis, reduce ROS and LDL oxidation, increase nitric oxide (NO) production, and 
mitigate atherosclerosis and its complications33. These findings align with our results and suggest that GCLM 
may serve as a potential biomarker for premature coronary artery disease.

PTGER1, one of the receptor subtypes of prostaglandin E2 (PGE2), which is a G protein-coupled receptor-E 
type prostaglandin receptor34. Studies have found that PTGER1, expressed in the kidney and cardiovascular 
system, maintains their homeostasis35,36. Previous studies have shown upregulated expression of PTGER1 
in peripheral blood mononuclear cells of patients with CAD and in the aortic tissues of ApoE−/− mice with 
atherosclerosis28. Contrary to their findings, PTGER1 showed no significant upregulation in our validation 
cohort. This discrepancy may be attributed to differences in the study populations. CKD is characterized by 
multidimensional imbalances in metabolism and inflammation, potentially leading to divergent PTGER1 
expression and functions across different cohorts. In neuroinflammation and oncological diseases, PTGER1 
promotes Th1 cell differentiation and exerts pro-inflammatory effects37,38. However, in doxorubicin-induced 
cardiac myocyte ferroptosis, activation of the PGE2/PTGER1 axis promotes antioxidant gene expression, 
protecting myocytes from ferroptosis and exerting anti-inflammatory effects in this context39. In type 1 
diabetes, PTGER1 alleviates cytokine-induced β-cell dysfunction40. These findings suggested that PTGER1 may 
exhibit dual pro-inflammatory and anti-inflammatory roles depending on metabolic conditions and cellular 
microenvironments. Furthermore, medications commonly used to treat CAD may influence PTGER1 expression. 
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A prior study revealed that atorvastatin can reduce PTGER1 expression41. Additionally, aspirin inhibits 
cyclooxygenase-2 (COX-2) to reduce PGE2 synthesis, thereby downregulating ligand-dependent expression of 
PTGER142. These pharmacological interventions may have masked the CAD-induced upregulation of PTGER1. 
Consequently, the biological effects of PTGER1 are likely subject to multifaceted regulation by metabolic status, 
cellular microenvironment, and pharmacological interventions. The pathophysiological role of PTGER1 in CAD 
still needs to be further explored.

This study is retrospective and based on public databases and clinical samples, which has several limitations. 
The lack of transcriptomic or multi-omics data from dual-disease cohorts may limit our ability to conclusively 
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identify key genes driving CAD development in CKD patients. In the future, it is essential to increase the 
availability of sequencing datasets for CKD patients with concomitant cardiovascular disease to further 
investigate the genetic associations underlying the heart-kidney crosstalk. In addition, this study was conducted 
using a dataset comprising patients from three different countries. However, the validation of our results was 
limited to the Chinese population. Future studies should expand the validation cohort’s geographical coverage 
and ethnic diversity to enhance the generalizability of our findings.

Fig. 6.  Identification of potential diagnostic genes for CKD related CAD via two machine learning methods. 
(A, B) The LASSO logistic regression algorithm was applied to determine the minimum and lambda values 
of diagnostic genes in CAD. (C) MeanDecreaseGini analysis was performed on 14 genes using the RF 
algorithm, and nine biomarkers with scores greater than 2 were selected in CAD. (D, E) The LASSO logistic 
regression algorithm was applied to determine the minimum and lambda values of diagnostic genes in CKD. 
(F) MeanDecreaseGini analysis was performed on 14 genes using the RF algorithm, and ten biomarkers with 
scores greater than 2 were selected in CKD. (G) Venn diagram showing the overlap in results between two 
algorithms. CKD, chronic kidney disease; CAD, coronary artery disease; LASSO, least absolute shrinkage and 
selection operator; RF, random forest.

◂

Fig. 7.  Diagnostic effectiveness of three hub genes in CAD dataset. (A, B) ROC curve of diagnostic biomarkers 
including NUPR1, GCLM and PTGER1 in training group. (C, D) ROC curve of diagnostic biomarkers 
including NUPR1, GCLM and PTGER1 in validation group. CAD, coronary artery disease; ROC receiver 
operating characteris tic.
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Fig. 8.  Immune cell infiltration analysis in CAD. (A) Stacked histogram showing the immune cell kinds and 
ratios in CAD. (B) Violin plot displaying the expression level of 22 types of immune cells between CAD and 
control group. (C) Heat map illustrating the correlation among 22 kinds of immune cells in CAD. The size of 
the colored squares represents the strength of the correlation, with red indicating positive and blue indicating 
negative correlations. Darker hues signify stronger associations. (D) Correlation map demonstrating the 
correlation between immune cells with GCLM, NUPR1 and PTGER1 in CAD. CAD, coronary artery disease. 
*p < 0.05; **p < 0.01; ***p < 0.001; ns not significant.
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Materials and methods
Data collection and process
The raw gene expression datasets of CAD and CKD, including GSE113079, GSE37171 and GSE70528 were 
obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). There exists a distinct batch effect in 
both diseases, we conducted the combat algorithm of “SVA” package (version 3.56.0) in R software (version 
4.4.1) to remove batch effect. Meanwhile, IRRGs were downloaded from GeneCards database ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​g​e​n​e​
c​a​r​d​s​.​o​r​g​​​​​) by means of searching for the term “inflammation response.” The screening threshold was a relevance 
score of ≥ 5.

DEGs identification
The “Limma” package (version 3.62.2) was leveraged to identify DEGs with an adjusted p ≤ 0.05 and |log2 (fold 
change) |≥ 0.585 in CAD dataset and CKD integrated datasets (GSE37171 and GSE70528). Subsequently, the 
results of DEGs were visually presented in the form of volcano plots and heatmaps using online data analysis 
platform sangerbox (http://www.sangerbox.com/home.html).

WGCNA
WGCNA analysis enables the classification of genes into distinct gene modules based on their co-expression 
similarity in samples, and it can concurrently establish direct connections between these modules and clinical 
characteristics. To determine the correlation between gene modules and clinical features, outliers in the samples 
were initially identified through hierarchical clustering analysis using the “ggplot2” package (version 3.5.2), and 
an appropriate soft threshold was selected as the weight value. Once the modules were obtained, the correlation 
between gene modules and clinical phenotypes was evaluated using the Pearson correlation coefficient, and the 
module-trait relationship with the most significant correlation was screened out.

Characteristics Non-CAD (n = 25) CAD (n = 17) P-value

Age, y 49.0 ± 13.9 65.7 ± 11.3 P < 0.001

Female/male (n) 10/15 10/7 P = 0.231

BMI (kg/m2) 26.3 ± 3.3 25.2 ± 3.9 P = 0.322

Primary disease, %

 Primary glomerulonephritis 18 (72.0) 11 (64.6) P = 0.616

 Diabetic kidney disease 5 (20.0) 2 (11.8) P = 0.681

 Hypertensive nephrosclerosis 1 (4.0) 2 (11.8) P = 0.556

 Interstitial nephritis 1 (4.0) 2 (11.8) P = 0.556

Medication, %

 Erythropoietin 1 (4.0) 2 (11.8) P = 0.556

 Roxadustat 1 (4.0) 1 (5.9) P = 1.000

 Atorvastatin 9 (36.0) 13 (76.5) P = 0.010

 Aspirin 1 (4.0) 5 (29.4) P = 0.032

Table 2.  Baseline characteristics of stage 3–5 CKD patients from our cohort. CKD chronic kidney disease.

 

Characteristics Non-CAD (n = 97) CAD (n = 53) P-value

Age, y 52.0 ± 14.3 58.7 ± 13.4 P = 0.005

Female/male (n) 31/66 18/35 P = 0.803

BMI (kg/m2) 21.9 ± 4.2 22.7 ± 3.8 P = 0.216

Primary disease, %

 Primary glomerulonephritis 48 (49.5) 26 (49.0) P = 0.960

 Diabetic kidney disease 7 (7.2) 9 (17.0) P = 0.064

 Hypertensive nephrosclerosis 14 (14.4) 8 (15.1) P = 0.913

 Interstitial nephritis 24 (24.8) 9 (17.0) P = 0.273

 Polycystic kidney 4 (4.1) 1 (1.9) P = 0.657

Medication, %

 Erythropoietin 78 (80.4) 47 (88.7) P = 0.194

 Roxadustat 24 (24.8) 9 (17.0) P = 0.273

 Atorvastatin 20 (20.6) 28 (52.8) P < 0.001

 Aspirin 3 (3.1) 13 (24.5) P < 0.001

Table 1.  Baseline characteristics of hemodialysis patients from our cohort. CAD coronary artery disease.
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Fig. 9.  Validation of the expression patterns of three hub genes in CKD patients and assessment of their 
diagnostic value for CAD in this population. (A–C) Expression levels of three hub genes from hemodialysis 
patients with or without CAD. (D, E) ROC curve of diagnostic performance including GCLM and NUPR1 in 
hemodialysis patients. (F, H) Expression levels of three hub genes from patients with CKD stage 3–5 with or 
without CAD. (I, J) The ROC curve of diagnostic performance including GCLM and NUPR1 in patients with 
CKD stage 3–5. CKD, chronic kidney disease; CAD, coronary artery disease. *p < 0.05; **p < 0.01; ***p < 0.001; 
ns not significant.
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Functional enrichment analysis
For a more detailed exploration of the biological function of the CAD pathogenic genes, GO and KEGG pathway 
enrichment43–45 were employed using DAVID database (https://davidbioinformatics.nih.gov), a biological 
information database for comprehensive gene and protein analysis. Moreover, the result of enrichment analysis 
was visually represented via bar and circus plot.

Machine learning
In order to identify potential candidate biomarkers and construct a diagnostic model for CKD with CAD, we 
applied two machine learning algorithms for screening hub genes, with LASSO and RF algorithm, respectively. 
The identification of candidate biomarkers was initially conducted through LASSO analysis, utilizing the 
“glmnet” package (version 4.1–8) in R software. Following this, the selection of genes was refined using the 
“randomforest” package (version 4.7–1.2), focusing on those with a MeanDecreaseGini > 2. Ultimately, the genes 
that overlapped between the two algorithms were identified as hub genes, which were employed to construct the 
diagnostic model for CKD-related CAD.

The evaluation of diagnostic efficacy of hub genes
To assess the diagnostic efficacy of hub genes in CAD, ROC and area under ROC curve (AUC) analysis were 
conducted using the “pROC” package (version 1.18.5) to estimate the predictive ability. In addition, the accuracy 
was evaluated through a calibration curve.

Immune infiltration analysis
To assess the level of immune cell infiltration in CKD and CAD gene expression data, the “CIBERSORT” package 
(version v1.03) was utilized. To compare the differences in the proportions of 22 different types of immune 
cells between disease and normal samples, the Wilcoxon test was employed, with a significance threshold set 
at p < 0.05. These differences were illustrated as stacked histograms, generated with the “ggplot2” package. 
Furthermore, the relationships among the 22 infiltrating immune cells were depicted using the “corrplot” 
software package (version 0.95). In the end, the Spearman rank correlation coefficient was applied to analyze 
the correlation between the levels of diagnostic biomarkers and the content of infiltrating immune cells, with 
statistical significance determined at p < 0.05.

Patients’ samples collection
Peripheral blood samples were collected from CKD patients who visited the Department of Nephrology at 
the Fourth Hospital of Hebei Medical University between January and December 2024. The inclusion criteria 
were an eGFR < 60  mL/ (min·1.73  m2) and age > 18  years. Exclusion criteria included acute inflammation, 
chronic infections (e.g., hepatitis B or C), current use of corticosteroids or immunosuppressants, and a history 
of malignancy. These samples served as the external training cohort. Informed written consent was obtained 
from all participants. Our study (No. 2020ky189) received approval from the Fourth Hospital of Hebei Medical 
University. CKD participants were categorized based on CAD status: the non-CAD group and the CAD group.

ELISA
The concentrations of GCLM, NUPR1, and PTGER1 in samples of participants were measured with commercially 
available kits (Elsbiotech, Shanghai, China). Initially, peripheral blood monocytes were treated with lysis buffer, 
followed by centrifugation at 12,000 × g for 20 min, according to the manufacturer’s instructions. The supernatant 
obtained after centrifugation was then used for detection. The absorbance of the samples was measured at a 
wavelength of 450  nm using a microplate reader, and these values were compared against a standard curve 
for quantification. The glutamate cysteine ligase modulating subunit (GCLM) concentrations were determined 
using the Human GCLM ELISA kit (EIA-3696-Hum; Elsbiotech, Shanghai, China), which has a detection range 
of 0.625–20 ng/mL. The nuclear protein1 (NUPR1) concentrations were determined using the Human NUPR1 
ELISA kit (EIA-3701-Hum; Elsbiotech, Shanghai, China), which has a detection range of 3.12–100 ng/mL. The 
prostaglandin E receptor1 (PTGER1) concentrations were determined using the Human PTGER1 ELISA kit 
(EIA-2938-Hum; Elsbiotech, Shanghai, China), which has a detection range of 0.312–10 ng/mL. The intra-assay 
CV and inter-assay are less than 15%.

Statistical analysis
Statistical analyses were conducted using SPSS version 22.0 and GraphPad Prism 10 software. For categorical 
variables, either the chi-square test or Fisher’s exact test was applied, while continuous variables were analyzed 
using either Student’s t-test or the Mann–Whitney U test. Comparisons involving more than two groups were 
performed using one-way analysis of variance (ANOVA). Additionally, the Spearman method was employed to 
assess the correlation between two variables. Statistical significance was determined using two-sided p-values, 
with a threshold of less than 0.05 indicating significance. *p < 0.05; **p < 0.01; ***p < 0.001; ns not significant.

Data availability
The datasets used to support the current findings during the study are available from the corresponding authors 
on reasonable request.
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